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Multivariate lesion-symptom mapping (MLSM) considers lesion information across the 
entire brain to predict impairments. The strength of this approach is also its 
weakness—considering many brain features together synergistically can uncover complex 
brain-behavior relationships but exposes a high-dimensional feature space that a model 
is expected to learn. Successfully distinguishing between features in this landscape can 
be difficult for models, particularly in the presence of irrelevant or redundant features. 
Here, we propose stable multivariate lesion-symptom mapping (sMLSM), which 
integrates the identification of reliable features with stability selection into conventional 
MLSM and describe our open-source MATLAB implementation. Usage is showcased with 
our publicly available dataset of chronic stroke survivors (N=167) and further validated in 
our independent public acute stroke dataset (N = 1106). We demonstrate that sMLSM 
eliminates inconsistent features highlighted by MLSM, reduces variation in feature 
weights, enables the model to learn more complex patterns of brain damage, and 
improves model accuracy for predicting aphasia severity in a way that tends to be robust 
regarding the choice of parameters for identifying reliable features. Critically, sMLSM 
more consistently outperforms predictions based on lesion size alone. This advantage is 
evident starting at modest sample sizes (N>75). Spatial distribution of feature importance 
is different in sMLSM, which highlights the features identified by univariate lesion 
symptom mapping while also implicating select regions emphasized by MLSM. Beyond 
improved prediction accuracy, sMLSM can offer deeper insight into reliable biomarkers of 
impairment, informing our understanding of neurobiology. 

INTRODUCTION 

Lesion mapping is central to theories of functional neu
roanatomy.1 Seminal case studies from the 19th century re
lating lesion location to behavioral deficits have consid
erably shaped modern understanding of brain function.2,
3 The principle that location of brain damage can reveal 
causal information about where cognitive processes are im
plemented in the brain continues to be productive for cog
nitive neuroscience and there is a growing number of stud
ies leveraging lesion-symptom mapping (LSM) methods.4‑6 

Unlike older lesion mapping approaches that evaluated 
the locus of lesion overlap, modern LSM studies employ 
more sophisticated statistical analyses to objectively iden
tify voxels that are consistently damaged in individuals 
with a specific impairment yet spared in those without the 
symptom.7 Traditional LSM is conducted using a mass-uni

variate approach in which damage to each voxel (or region) 
of the brain is independently tested for its association with 
a given impairment. This approach generates some infer
ential challenges. A more comprehensive review of these 
may be found elsewhere.6,8‑12 Here, we briefly consider 
how multivariate methods can capture unique patterns of 
brain damage that address some of the inferential limita
tions of LSM, describe how the conventional multivariate 
lesion-symptom mapping (MLSM) pipeline functions, and 
motivate a modification that can mitigate some of MLSM’s 
shortcomings. 

1. IDENTIFYING MORE COMPLEX PATTERNS OF DAMAGE 
WITH MULTIVARIATE LESION SYMPTOM MAPPING 

The assumption in LSM that deficits stem from damage to 
isolated regions of the brain oversimplifies the complexity 
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of brain injury. Consider an impairment that is observed 
when either of two brain regions is injured (e.g., a sequen
tial processing network as seen in the primary sensory cor
tices). In this situation, a mass univariate approach has very 
little statistical power, as damage restricted to one node 
provides a counterexample for the criticality of the other. 
Here LSM may struggle to identify the relevancy of either 
region. Alternatively, consider a situation where the brain 
has some redundancy, where a symptom is only seen when 
two regions are both injured. Again, apparent counterex
amples lead to low statistical power. 
Multivariate methods can leverage the pattern of dam

age across the brain synergistically to predict behavior, 
capturing more complex damage to explain impairments.13 

As modeling higher order interactions between so many 
brain features (i.e., voxels or regions) becomes complicated 
for classical statistics, machine learning algorithms are em
ployed.14,15 These methods, while tremendously promis
ing, must carefully navigate between being over-constrain
ing or too liberal in fitting the observed data if they are to 
be successful. Tuning mechanisms like regularization con
trol this balancing act by adjusting model bias and variance 
to achieve better generalization to new, unseen data.16 

That is, hyperparameters for these mechanisms are ad
justed before the model is trained, and evaluation on in
dependent data is used to guide selection. This flexible ap
proach allows the error in predicting impairments on new 
lesions to determine the appropriate level of model com
plexity for analyzing lesion data. 
There are other advantages to using machine learning 

models for lesion mapping. Better predictions can be 
achieved because these algorithms can leverage both posi
tive and negative predictors to recognize injuries that elicit 
an impairment as well as injuries that indicate eloquent 
cortex is spared. In theory, this ability to pool information 
across noisy brain regions should allow MLSM methods 
to achieve more accurate prediction of impairment than 
LSM.13,17 However, realizing this potential is difficult. 

2. SOURCES OF MODEL INCONSISTENCY IN 
MULTIVARIATE LESION SYMPTOM MAPPING 

Most neuroimaging data is affected by spatial autocorre
lation.18‑20and lesion mapping is no exception.11,21‑25 In 
stroke, deficits result from injury along large vascular terri
tories, leading to archetypal injury between individuals and 
strong associations of neighboring voxels within individu
als. These multicollinearities can make it more difficult for 
models to estimate the independent effects of each predic
tor on the response variable. Machine learning algorithms 
can be more robust to multicollinearities for the purpose 
of making more accurate predictions.26 For example, in the 
face of redundant features, successful regularization will 
favor simpler models that are less likely to overfit.26 This 
minimizes model error by excluding complex relationships, 
some of which may be genuinely present, thereby under
mining the purpose of MLSM. 
Much of neuroimaging data also contains irrelevant fea

tures, which can introduce noise into the model.27 In the 
case of MLSM, the goal is typically to relate lesions to 

deficits carefully isolated by a task to represent some cog
nitive process. Thus, even ignoring typical sources of model 
noise in lesion mapping (e.g., inconsistencies in hand 
drawn lesion masks, poor registration quality, imaging arti
facts, measurement noise, etc), we might expect many fea
tures to meaningfully predict cognitive processes, but not 
necessarily those under study. If this form of “noise” is per
vasive enough, a model might learn spurious relationships. 
Thus, the limited learning capacity of a model (e.g., com
pute available for tuning) might be wasted either attempt
ing to learn from noise, or to distinguish between signal 
and noise, resulting in a model that does not fully exploit 
all the available signal.27‑29 

Even when the complexity of models is successfully 
tuned to make good predictions from data with redundant 
and/or noisy features, they can still produce an incomplete 
or misleading understanding of feature importance. High 
feature importance may simply reflect a models’ efforts 
to make sense of noise.26 When multiple features provide 
common predictive information, many algorithms will fa
vor one feature over another, which would now no longer 
provide any unique information to the model. Indeed, some 
approaches such as LASSO regression explicitly select one 
of many correlated features for modeling.30 Other ap
proaches like ridge regression adjust the weights of cor
related features together, diluting feature importance in 
potentially counterintuitive ways (e.g., low weights for cor
related but highly predictive features).26 Feature dilution 
over correlated variables affects other algorithms as well 
(e.g., random forests).31,32 The most commonly used al
gorithm in MLSM, support vector machines (SVMs), rely 
on the same regularization term as ridge regression but 
uniquely assign feature weights based on their contribution 
to fitting a regression function within a specified margin 
of tolerance.33 This approach can lead to the assignment 
of high weights to features with relatively low predictive 
power, a phenomenon that is more pronounced in the pres
ence of correlated features.34 Provided enough feature re
dundancy or noise in the data, the preference for specific 
features in machine learning models can shift, reflecting 
sensitivity to random variations in training data and 
noise.28,35 Consequently, the conventional MLSM approach 
may be able to generate models with good predictive accu
racy by ignoring complex patterns of brain damage but may 
still produce inconsistent feature weights with limited in
terpretability and generalizability. 
In sum, the performance of machine learning is heavily 

dependent on the hyperparameters that ensure training 
does not overfit or underfit the data. Critically, for MLSM, 
there is little guidance regarding how to choose these para
meters (though see Zhang et al.,15; Wiesen et al.,36) as they 
are typically tuned using the data itself, even though this 
process can result in poorly generalizable models. There is 
therefore a need for a principled and robust methods that 
can help researchers ensure that their models are fully ex
ploiting the signal that is available in the tremendously 
expensive and often challenging to collect clinical neu
roimaging data that they have acquired. 
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3. STABLE MULTIVARIATE LESION SYMPTOM MAPPING 

Here, we propose a flexible pipeline that attempts to im
prove MLSM models by identifying more reliable features. 
In conventional MLSM, feature selection is arguably the 
end goal of the analysis—a model is tuned using all of the 
features and, after being tested, some method like a per
mutation test is performed to understand which feature 
weights are meaningful (e.g., are assigned more importance 
by the true model than permuted models). We propose an 
approach we call stable multivariate lesion symptom map
ping (sMLSM), where more careful selection of features is 
the starting point of the model building process. Whereas 
traditional training selects strong predictors, this approach 
requires that the selected predictors are reliably strong. 
Because more reliable or stable features are tuned during 
model optimization, we expect sMLSM models to poten
tially generate more consistent feature weights, pick out 
more complex patterns of damage, and have better gener
alizability by attempting to limit the models’ exposure to 
noise or spurious associations. 
Implementation of sMLSM requires a single modification 

to the standard MLSM pipeline: incorporating feature se
lection within the model tuning process, as illustrated in 
Figure 1. That is, in conventional MLSM, a machine learn
ing model is trained inside of a nested cross-validation 
scheme, where non-overlapping partitions of samples are 
each used to test the model, and the remaining data is used 
to train it.37,38 This training data is further partitioned in 
the same way to generate validation samples that can be 
used to select optimal hyperparameters for the model, con
trolling model complexity. In sMLSM, feature selection is 
performed on the training dataset, prior to tuning, ensur
ing that the estimate of model generalization remains im
partial. Selecting features and tuning a model on the same 
data can induce overfitting when selecting model hyperpa
rameters.28 To tackle this problem while avoiding nesting 
a third cross-validation loop (which substantially increases 
computational time), the training data is subsampled many 
times in the outer loop.39 Resampling ensures feature eval
uation is performed over more datasets that have higher 
diversity, reducing the influence of noisy data or outliers. 
Such resampling techniques are often used as an alterna
tive to k-fold for cross-validation.40,41 

In most feature selection methods, out of sample error 
is used to understand which subsets of features are more 
generalizable without considering their sensitivity to par
titioning noise.42,43 Our modified approach identifies fea
tures consistently selected across perturbed datasets and 
hyperparameters by some user-selected algorithm, provid
ing an automated and objective method for selecting robust 
features to model. The generalizability of stable features is 
subsequently tested by the model for predicting lesion out
come. To this end, we use stability selection, a framework 
which can be wrapped around any feature selection ap
proach.35 Critically, this method provides some error con
trol, allowing users to identify a stable feature set while at
tempting to control the upper bound on the number of false 
positives in this set. 

There is no consensus on how MLSM should be per
formed.15,37,38,44 and the sMLSM pipeline that we have in
troduced is flexible enough to inherit many open questions 
(e.g., which algorithm is best suited to lesion data?). How
ever, in the broader machine learning literature, feature se
lection plays an important role in improving model perfor
mance.29,45and there is a growing appreciation of this in 
neuroimaging.43,46‑52 

The goal of the present work is to test whether current 
implementations of MLSM may be discounting the poten
tially positive impact that feature selection can have on 
the model and its understanding of feature importance.53,
54 Using a large retrospective dataset of chronic stroke pa
tients with aphasia (N=167) that we have made publicly 
available,55 we implement conventional MLSM, sMLSM, 
and a simple model that predicts impairment from lesion 
size alone. We compare how well each of these models 
predicts lesion outcome in different settings, varying the 
sample size as well as the number of features submitted 
to models by using multiple atlases, including a multires
olution atlas. We also test how robust sMLSM is to the 
primary setting that differentiates this pipeline—the num
ber of false positives that should be controlled to define a 
stable set of features to model. To better understand the 
benefits of sMLSM, we assess whether it identifies more 
complex patterns of damage, evaluate whether it reduces 
the variance in assigned feature importance, and introduce 
synthetic lesions to test the pipeline’s sensitivity to mul
ticollinearities as well as the accuracy of error control. Fi
nally, we provide additional external validation of sMLSM 
by repeating our model training and testing procedure to 
predict NIH stroke severity scores in an independent acute 
stroke dataset (N=1106) that has also been made publicly 
available.56 A MATLAB (The MathWorks Inc, 2021) “live-
code” notebook is shared to demonstrate these pipelines. 
This notebook interfaces with an open source toolbox we 
introduce for stability selection, which implements most 
feature selection algorithms available in MATLAB’s statis
tics and machine learning toolbox. 

METHODS 
PARTICIPANTS: CHRONIC STROKE DATASET 

Data collected from one-hundred and sixty-seven individ
uals with chronic left strokes that participated in studies 
conducted at the Center for the Study of Aphasia Recovery 
(C-STAR) was used for all analyses (age at stroke = 57.51 +/- 
11.31, 63% male). These data were collected at the Univer
sity of South Carolina and Medical University of South Car
olina. All participants gave informed consent for study par
ticipation and the study was approved by the Institutional 
Review Boards at both institutions. Only neuroimaging and 
behavioral data from participants’ first visits was utilized 
where longitudinal data was collected (years post stroke at 
time of imaging = 3.85, +/- 3.68). All participants had both 
behavioral and imaging data available for analysis. The me
dian time between collection of neuroimaging and behav
ioral data was 1 day. This cohort represents a slice of the 
database that continues to be updated on openneuro and 
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more detailed information about reported as well as addi
tional behavioral and demographic data can be found at: 
https://openneuro.org/datasets/ds004512/versions/2.0.0. 

BEHAVIORAL ASSESSMENT: CHRONIC STROKE DATASET 

Each participant was administered the Western Aphasia 
Battery-Revised (WAB-R).57 The WAB-R comprises multiple 
subtests for language impairment in aphasia. The current 
study utilized the aphasia quotient, which collapses spon
taneous speech fluency, auditory comprehension, speech 
repetition and naming subtest performance into one global 
score that scales between 0 (reflecting worst aphasia im
pairment) and 100 (reflecting no aphasia impairment). In 
the present study, we aimed to predict this severity score. 

IMAGING DATA: CHRONIC STROKE DATASET 

Magnetic Resonance Imaging (MRI) was performed at the 
University of South Carolina or Medical University of South 
Carolina using a Siemen’s 3T Prisma (Siemens Medical So
lutions, 2022) equipped with a 20-channel RF receiver 
head/neck coil. T1 and T2-weighted structural scans were 
utilized in the current study. A high-resolution 
T1-weighted MPRAGE sequence was acquired (matrix = 256 
× 256 mm, repetition time = 2.25 s, echo time = 4.11 ms, 
inversion time = 925 ms, flip angle = 9°, 1 x 1 x 1 mm, 
192 slices) with parallel imaging (GRAPPA = 2, 80 reference 
lines). Three-dimensional (3D) T2-weighted sampling per
fection with application-optimized contrasts using differ
ent flip-angle evolution (SPACE) was used to acquire 
T2-weighted sequences (matrix = 256 × 256 mm, repletion 
time = 3200 ms, echo time = 567 ms, flip angle = variable, 1 
x 1 x 1 mm, 176 slices) with parallel imaging (GRAPPA = 2, 
80 reference lines). 

IMAGE PREPROCESSING: CHRONIC STROKE DATASET 

Lesions were segmented manually using T2-weighted im
ages in MRIcron by a neurologist (L.B.) or a supervised re
searcher with extensive experience with brain imaging in 
stroke populations. Both were blinded to behavioral assess
ments. Lesion masks were resampled to the T1-weighted 
images using nii_preprocess (https://github.com/ro
giedodgie/nii_preprocess/tree/v1.1) and SPM12,58 then re
fined for any necessary corrections in the case that any 
additional information about lesion extent was revealed 
by the T1-weighted image. Anatomical deformation during 
normalization in the presence of large lesions was avoided 
using enantiomorphic healing59 as implemented by the 
Clinical Toolbox.60 In this procedure, the lesion boundary is 
smoothed and the brain tissue inside the smoothed lesion 
mask is replaced by intact contralateral tissue, thereby ex
ploiting the natural symmetry of the brain to minimize dis
placement of voxels relative to other methods when nor
malizing large unilateral lesions.61 

Regional damage was computed in MNI space for each 
participant by intersecting their normalized lesion map 
with several atlases. Our initial analyses focused on the JHU 
atlas, which represents structural anatomy, including white 

matter tracts.62 Given that more recently available func
tional atlases may perform better and that it’s unclear what 
parcellation resolution provides the best-fitting reduction 
in the dimensionality of the lesion data,53,63 we also an
alyzed regional damage within the context of a multires
olution atlas.64 Like other functional atlases, this one is 
defined by clustering voxels into larger parcels with simi
lar activation patterns. However, this atlas is provided with 
multiple parcellations, where the number of regions in
creases from 100 to 1000 in increments of 100, reflecting 
how the clustering solution changes as more clusters are 
sought. We analyzed all 10 of these parcellations and 
elected to use a variant of the atlas that includes some 
anatomical subcortical regions for better lesion coverage.65 

Despite this effort, smaller coverage resulted in a margin
ally diminished sample size (N=164). 

PARTICIPANTS: ACUTE STROKE DATASET 

Data was used from one-thousand one hundred and six 
individuals with acute strokes seen at Prisma Health-Up
state in South Carolina from the start of 2019 through 
the end of 2020. This represents all identified acute stroke 
encounters over the two-year period after applying exclu
sion criteria. Participants were excluded if they had sub
arachnoid, subdural, or intracerebral hemorrhage; stroke 
mimics, transient ischemic attacks, or other confounding 
structural or functional brain disorders (e.g., brain tumor, 
refractory epilepsy). Participants without structural scans 
or for whom the NIH stroke scale was not collected or 
recorded were excluded as well. The study through which 
this data was made available was conducted in accordance 
with approval received from the Institutional Review Board 
at Prisma, Requirement for written informed consent was 
waived as the study was a retrospective analysis of archival 
data with negligible risk. This data is public and more de
tailed information about it can be found at: https://open
neuro.org/datasets/ds004889/versions/1.0.0. 

BEHAVIORAL ASSESSMENT ACUTE STROKE DATASET 

Each participant was administered the NIH stroke scale, a 
commonly utilized tool to measure stroke severity in acute 
ischemic stroke that consists of 11 items, each representing 
a different aspect of neurological function. The scores on 
these items are summed to generate a measure of overall 
stroke impairment that ranges from 0 (no stroke symptoms) 
to 42 (severe stroke impairment). 

IMAGING DATA 

The scans collected in individuals were varied. For each 
participant, T1-weighted, T2-weighted, Fluid Attenuated 
Inversion Recovery (FLAIR), and diffusion imaging se
quences were selected based on optimal brain coverage and 
signal-to-noise ratio. Scan settings varied across individ
uals as typical in clinical settings. The specifics of these 
sequences were documented in a text-based BIDS-format 
‘sidecar’ accompanying each NIfTI format image. 
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IMAGE PREPROCESSING 

MRI images were converted from DICOM to NIFTI (Li et 
al., 2016) and an in-house extension of SPM12’s ‘spm_de
face’ script was used to remove features of the neck and 
face. Lesion masks were manually delineated on the diffu
sion weighted (TRACE) images by research staff and super
vised by an expert with extensive experience drawing lesion 
masks in stroke populations (R.N.). The Clinical Toolbox60 

was used to perform segmentation and normalization in a 
comparable way to the chronic stroke data. The lower res
olution diffusion images were coregistered to the higher 
resolution FLAIRs. FLAIR images were then registered to a 
common template in order to warp lesion masks from na
tive to standard space. Regional damage was computed in 
MNI space in the same way as the chronic stroke data. 

ANALYSIS OVERVIEW 

Three different models were trained and tested in a re
peated, nested, cross-validation scheme: a multivariate le
sion symptom mapping (MLSM) model that was exposed to 
all brain features (i.e., regions of brain damage), a stable 
multivariate lesion symptom mapping (sMLSM) model that 
was only exposed to features reliably selected across many 
subsamples of the training data, and a final lesion model 
that was only exposed to lesion size as a predictor and 
with no access to information about regional brain damage. 
For all models, Support Vector Regression (SVR) was used 
for prediction as it is commonly employed in MLSM.37,
66,67 Moreover, SVR has remained the predominant ma
chine learning algorithm in stroke neuroimaging, as evi
dence by trends in PubMed.68 Our core analyses evaluated 
these models relative to each other in chronic stroke, based 
on out of sample predictions of language impairment. The 
robustness of our main findings was confirmed by repeating 
the same procedure in an acute stroke dataset to predict 
NIH stroke severity scores. 

MODEL CROSS VALIDATION 

Cross-validation was repeated 11 times to capture the in
fluence of data partitioning noise, which can have substan
tial impact on performance estimates.69 More repeats are 
advantageous for narrowing the variability of model per
formance. We aimed to perform 20 repeats but found this 
number intractable for the full set of analyses we intended 
to run to comprehensively characterize the performance of 
our proposed pipeline. For example, by far the least compu
tationally expensive analysis we performed is presented in 
Figure 1, where panels A and B alone represent the results 
of 3,080 models (see caption). Consequently, we stopped all 
analyses after 11 repeats of cross-validation but emphasize 
that our point estimates of model performance show clear 
dissociation. The partitions that we used for training and 
testing models were preallocated to facilitate more equi
table comparisons (i.e., the same test and training samples 
were used for all models). To ensure data used to test mod
els represented patients with diverse lesion sizes, train
ing and test partitions were stratified by converting lesion 

size into four distinct categories based on quartiles (0-25th, 
26th-50th, 50th-75th percentile, 75th-100th percentiles). 
These categories were approximately equal in size (N = 
42,42,41,42). Model training and testing was performed 
over 10 outer folds. Each training dataset from these outer 
folds was further partitioned using a 4-fold inner loop that 
was used for tuning models (see Figure 1 for overview). 
In sMLSM, stability selection was applied to each train

ing dataset in the outer loop to identify reliable features 
that were then used for model tuning, training, and testing 
(Figure 1). Otherwise, tuning and testing proceeded sim
ilarly across all models. In all cases, an SVR model was 
tuned using Bayesian optimization, an efficient search 
method that learns a function for predicting the perfor
mance of different hyperparameter combinations.70 Effi
cient search methods are advantageous for high-dimen
sional datasets because each evaluation of the model 
during tuning becomes more computationally expensive, 
limiting the total number of evaluations that can be reason
ably executed and potentially contributing to worse model 
performance. Bayesian optimization was deliberately cho
sen to benefit MLSM, which operates over all features in the 
dataset. We used 50 objective evaluations, wherein the op
timizer iteratively updated its understanding of the hyper
parameter space. Each evaluation informed the subsequent 
choice of hyperparameters, striking a balance between ex
ploring new possibilities and exploiting known high-per
forming regions of this space. 
SVR aims to find the best fitting hyperplane for the re

sponse variable using the L2-norm of the coefficient vector. 
To accomplish this, a maximum acceptable error term, ϵ, 
is tuned for accuracy. As some errors may fall outside ϵ, 
slack variables are introduced to capture deviations from 
the margin. An additional hyperparameter, C, tunes the tol
erance of the model to such deviations. Here, we tuned ϵ 
values in the range of [0.39,3.9e+3] and C values in the 
range [1e-3 1000]. The range for epsilon is determined by an 
automatically implemented heuristic in the statistics and 
machine learning toolbox that is based on the interquar
tile range of the response variable. We also tuned the SVR 
kernel (linear, radial basis function, or 2nd order polyno
mial). In SVR, the kernel trick is used to efficiently trans
form data into a higher dimensional space through which 
a hyperplane can be more successfully optimized using dif
ferent kernel functions. More complex kernels introduce a 
third hyperparameter, 𝛾, for defining the kernel radius.33,
71 The 𝛾 parameter was tuned using a faster probabilistic 
method, measuring deviation across subsampled training 
datasets on a quality criterion.72 Note, Bayesian optimiza
tion can fail when optimizing more parameters.70 

INFLUENCE OF LESION SIZE 

Our analyses accounted for lesion size in two ways. First, 
lesion size was added as a predictor to all models. Second, a 
model using lesion size to predict aphasia severity was used 
as a control. Models that better capitalize on information 
about the location of lesions will better out-perform the le
sion size model when predicting out-of-sample data. 
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Figure 1. Schematic showing analysis overview and the difference between multivariate lesion symptom            
mapping (MLSM) and stable multivariate lesion symptom mapping (sMLSM).          
Conventional MLSM involves cross validating a machine learning model in a nested fashion. Inner folds of the cross-validation scheme can be used to tune the model and outer folds 
can be used to measure the models’ performance. We perform support vector regression tuning with Bayesian optimization for both MLSM and sMLSM models. The sMLSM models 
differ because they are tuned, trained and tested on features deemed reliable by stability selection. Across 500 subsamples of the training data in the outer fold, the features most 
consistently selected by an independent algorithm are identified. This process ensures that test data is not used for feature selection and mitigates any overfitting that may occur 
during validation. The remainder of the pipeline is identical to MLSM. 

STABILITY SELECTION 

The process of stability selection35 distinguishes sMLSM 
from MLSM. In stability selection, a chosen algorithm is 
used to perform feature selection on many perturbed 
datasets using every hyperparameter within a prespecified 
range, providing a principled framework for injecting noise 
into the data to evaluate the reliability with which any user-
defined feature selection procedure or model makes its se
lections. As hyperparameters influence feature selection, 
the stability of a feature is evaluated in the most favorable 
way possible—according to the most stable settings. That 
is, for each feature, stability scores are computed by taking 
the maximum proportion of perturbed datasets in which a 
feature was selected across all hyperparameter settings. A 
stability threshold is then applied to these scores to deter
mine a stable set of features. Knowing the average number 
of features selected across perturbed datasets relative to 
the total number of features available allows for calibration 
of the stability threshold based on the empirical probability 
of selecting features and the expected number of false dis
coveries. Defining a preferred error rate to control permits 
selection of a correspondingly stringent enough threshold 
for defining the stable set.35 Thus, for example, if the fea
ture selection algorithm always selects a large proportion 
of the feature space, stability must be higher in order for a 
feature to enter the stable set (see supplemental material 
for more information). 

In line with prior studies, we perturbed training datasets 
by randomly selecting half of the samples.35 This was re
peated 500 times. Feature selection was performed on each 
subsample using a linear elastic net.30 Although LASSO is 
commonly used in this context.35,73 elastic net combines 
the penalty terms for LASSO and ridge to help address 
collinearity.30 This helps to ensure that reliably predictive 
features are selected, even if they share some variance. 
Elastic net was performed over 1000 log-distributed λ val
ues between 0 and the highest possible value that would re
turn a non-null model, as well as 20  values where the first 
value was 0.001 (i.e., ridge regression) and the others were 
linearly distributed between 0.1 and 1 (i.e., LASSO). 
For each subsample, the elastic net was used to select at 

most just under half of the features in the dataset (e.g., 30 
for JHU-MNI). That is, only the first 40% of features that 
entered the model were retained. This criterion helped en
force regularization during feature selection because the 
same subset of combined  and λ values could result in no 
regularization in one perturbed dataset and some regular
ization in another. We emphasize that stability selection 
works by capitalizing on variability in feature selection and 
as the proportion of total features that are selected grows 
this variability decreases because there are fewer features 
that could be left out of the selection process. 
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TUNING THE PER-FAMILY ERROR RATE 

In the sMLSM pipeline, stability selection acts as a prepro
cessing step to improve final model predictions and fea
ture weight assignments. Therefore, the goal is to select 
the largest set of reasonably stable features. One of our in
terests was understanding how choosing a per-family er
ror rate in stability selection might impact sMLSM predic
tion accuracy. For instance, it may be the case that only a 
very small per-family error rate produces models superior 
to MLSM. Thus, we systematically generated stable sets 
for each preselected number of false positives in the range 
[1,28], where 28 was the largest value that produced a stable 
set not entirely comprised of potential false positives. Each 
of these stable sets was used to tune, train, and test a dif
ferent sMLSM model. As an alternative, we tested whether 
treating the number of false positives as another hyper
parameter for tuning could produce equally robust models 
without requiring manual intervention. Because we had 
tuned models for 1 through 28 false positives, we simply 
selected the tuned model with the lowest validation error. 
However, we made one adjustment—to gently discourage 
selection of a high number of false positives, which we sus
pected would be deleterious to models, we applied a linear 
scaling function, 

where  is the number of false positives,  is the model 
loss on validation data, and  is a constant scaling factor 
set to 0.002. This scaling factor was applied consistently 
across all analyses. The constant value was selected to min
imize standard deviation in chosen number of false posi
tives across training folds of the first of 11 repeats of cross-
validation. This selection was blind to model performance. 
However, we also show this value generalizes well in an 
independent dataset, and in supplemental analyses we 
demonstrate that performance would have been remarkably 
similar if a different value was chosen or even no value at 
all (i.e., no scaling; see supplemental material). 

MODEL PERFORMANCE EVALUATION 

Models were primarily evaluated based on prediction error. 
We also measured the correlation between predictions and 
true values. Although it is a highly popular goodness-of-fit 
measure in predictive models treating neuroimaging data, 
correlation can poorly reflect a model’s predictive perfor
mance because it is translation and scale invariant, sen
sitive to outliers, insensitive to nonlinearities and biased 
in some cross-validation schemes.74 Consequently, we pri
marily evaluated model performance using the accuracy 
percent measure, which expresses in percentage units the 
mean absolute error of predictions scaled to the error of a 
naïve model that guesses based on the mean of the training 
data.75 

EVALUATING FEATURE IMPORTANCE ASSIGNMENT 

Differences in model prediction accuracy should be 
grounded in differences in feature importance. Because we 
tuned the kernel for SVM, some of our training datasets 

were fitted with linear kernels such that feature weights di
rectly correspond to a features’ importance. However, other 
datasets were fitted with nonlinear kernels where feature 
weights represent the importance of a given feature in the 
higher dimensional space mapped by the kernel trick. To 
generate measures of feature importance that could be 
compared across models with different kernels, we used the 
algorithm-agnostic Shapley Additive Explanations (SHAP) 
framework. Shapley values are a game theoretic approach 
for quantifying the average marginal contribution of a 
player in a cooperative game.76 That is, the Shapley value 
for a feature describes its role in deviating the prediction 
from the average or baseline prediction with respect to a 
specific sample in the data. SHAP is an extension of Shap
ley values that uses the conditional kernel with k nearest 
neighbors (corresponding to 10% of the samples) for eval
uating feature importance.77 Critically, this formulation of 
SHAP does not assume feature independence. SHAP values 
were generated for all samples in all training datasets. Be
cause we were purely interested in feature importance and 
not necessarily the direction in which a feature influenced 
the prediction, we took the median absolute SHAP values 
across all 10 training datasets, then samples. How consis
tently a feature was deemed important across repeats of the 
cross-validation scheme was then determined by a one tail 
t-test against zero. 
Finally, we compared feature importance for MLSM and 

sMLSM to univariate lesion symptom mapping (LSM). In 
this case, cross-validation was not used. Instead, lesion size 
was regressed out of aphasia severity and one tail indepen
dent t-tests were performed between the residuals of pa
tients with lesions and without lesions at different loca
tions in the brain. A brain region was considered lesioned 
if more than 10% of its voxels were damaged. Regions in 
which either of the two groups of patients had fewer than 
10 samples were excluded from analysis. The analysis was 
repeated with ten thousand permutations of the residuals 
to establish significance for each t-statistic. 

RESULTS 
1. COMPARING MLSM TO SMLSM ACROSS SETTINGS FOR 
STABLE FEATURE DEFINITION 

The sMLSM pipeline introduces a parameter that controls 
the size of the set of features identified as stable for further 
modeling. In general, this set can be bigger provided we are 
comfortable with accepting more potential false discover
ies. In comparing sMLSM to MLSM performance, we var
ied the number of false positives in the stable set used for 
sMLSM in increments of 1, starting with 1 false positive and 
continuing up to the point that the number of false posi
tives was equal to the stable set size (Figure 2A). We ob
served a sharp increase in stable set size as the number of 
false positives initially increased between 1 and approxi
mately 5. The set size then plateaued as the number of false 
positives increased. If the goal is to identify the largest set 
of stable lesion features with proportionally the fewest false 
positives, this trend suggests that the per family error rate 
(PFER) should not be set to the lowest setting possible (i.e., 
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Figure 2. Stable multivariate lesion symptom mapping improves prediction of impairment.          
Stability selection was used to generate stability scores for each cortical and white matter feature of the JHU atlas (left box in panel A) independently in every training dataset (11 re
peats of nested 10-fold cross-validation, or 110 datasets). Every set of stability scores was then used to generate 28 different stable sets of features by varying the upper bound on the 
number of false positives in the stable feature set (middle box in panel A). As the number of false positives increased, the stable set size rapidly increased as well, but quickly 
plateaued (right box in panel A). At 28 false positives, it was possible for the entire stable set to be false positives. In spite of this, training SVM models on any stable set (3,080 mod
els total) produced predictions that were significantly better than using all features as per standard multivariate lesion symptom mapping (panel B). Mean model performance across 
all training datasets is presented as dots with standard error of the mean. Mean performance for control models is marked by horizontal dashed lines with shaded areas corresponding 
to standard error of the mean. The stable false discovery ratio (sFDR) is the proportion of the stable set that may be a false discovery. Models trained only on lesion size performed 
better than using all features, but worse than any stable set on performance measures based on absolute prediction error (accuracy percent as well as pure absolute error). Adding the 
number of false positives to the tuning procedure retrieved the highest performing models. Models trained by taking the top n features where n was increased iteratively from 1 to 70 
showed a similar overall pattern (panel C). Only when models retained fewer than roughly 45% of the feature set did they begin to perform worse than the lesion size only model. 

the minimum number of false positives that retrieves a sta
ble set) but should remain relatively low. 
However, we found that adjusting the PFER had little ef

fect on the discrepancy between sMLSM and MLSM model 
performance, demonstrating that even stable sets with a 
relatively large number of false discoveries were preferable 
to using all features in the data (Figure 2B). Mann-Whitney 
U-tests between skewed absolute errors made by each of 
the sMLSM models (per-family error rate; PFER: 1-28) and 
the MLSM model were all significantly different after con
catenation across repeats of cross-validation (CV; maxi
mum FDR-corrected p-value was p < 0.01), with sMLSM 

models producing lower errors (see live code notebook sec
tion, “Formally testing for differences between sMLSM, 
MLSM and lesion size models” for more testing information 
and pre-generated figures). The same trend was observed 
for comparisons between sMLSM models and the lesion size 
only (LSO) model (maximum FDR-corrected p-value was p 
< 0.05). The LSO model performed surprisingly well when 
averaging accuracy percent and correlation across repeats 
(i.e., based on standard error of the mean or SEM across 
CV repeats; Figure 2B). However, it did not show signifi
cantly lower absolute errors than the MLSM model when 
concatenating all predictions together, Z = 0.91, p = 0.36. 
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Thus, while LSO may perform more consistently across dif
ferent data subsets (i.e., partitions) because it contains only 
a single feature, this consistency does not imply uniformly 
better performance across all individual instances of the 
dataset when compared to MLSM. To confirm this effect 
was not driven by the dependence between samples parti
tioned together, we also performed a corrected repeated k-
fold CV t-test between model errors,78 t(109) = 1.33, p = 
0.09. 
Within the batch of sMLSM models tested, we did ob

serve a general trend wherein a higher stable false discov
ery ratio (sFDR, or the PFER divided by the stable set size) 
was associated with worse performance and the best models 
had relatively low PFER. We tend to focus on sFDR where 
possible as it is more intuitive, reflecting the proportion of 
discoveries that may be false, and assigns lower rank to low 
PFER values that result in such small stable sizes that the 
proportion of false discoveries is relatively high (e.g., see 1 
false positive sMLSM models in Figure 2B). Accuracy per
cent was inversely correlated with sFDR, r(26) = -0.63, p 
< 0.001 as was the correlation between predicted and true 
values, r(26) = -0.66, p < 0.001. Across repeats of CV, corre
lation performance for sMLSM was more similar to LSO at 
higher sFDR. Note, however, prediction error was still lower 
(i.e., accuracy percent). 

2. TUNING THE STABLE SET IN SMLSM MODELS 

While sMLSM was robust to PFER choice for improving on 
MLSM and LSO models, performance was more consistent 
at lower PFER. Automatically tuning PFER produced good 
models without user intervention, suggesting this to be a 
viable approach for establishing this parameter (Figure 1B). 
Tuning did not purely favor the lowest PFER values. The 
median PFER that was selected was 2.8 and corresponded 
to a median sFDR of 0.12 in a median stable set size of 21. 
That is, generally, 28% of features were retained in sMLSM 
and 12% of those features may have spuriously appeared 
to be stable. Absolute prediction errors were significantly 
lower for the tuned sMLSM model than the LSO model, Z = 
4.5, p < 0.00001 and for the tuned sMLSM model than the 
MLSM model, Z = 5.1, p < 0.00001. 
In another strategy for defining the stable set in sMLSM, 

we retained the top n stable features, and varied n from 
1 to 70 (Figure 2C). Retaining less than 55% of features 
was necessary for more distinctly outperforming MLSM and 
roughly 40% of features for outperforming LSO models. 
This may be another viable strategy for defining stable sets 
without intervention. However, successfully tuning n for a 
particular dataset may be more difficult since the parame
ter space is wider, and it is less meaningful than PFER or 
the corresponding sFDR. 
The features identified by tuning sMLSM were confirmed 

to be more meaningful than feature selection by chance 
according to both accuracy percent and correlation (p < 
0.0001). Due to memory constraints, this test was not per
formed on absolute prediction errors across all repeats of 
CV. Instead, mean correlation and accuracy percent was 
computed over repeats. In this analysis, we performed re
peated CV 500 times, each time selecting features for mod

eling at random based on the size of the stable sets in 
the tuned sMLSM models (see live code with pre-generated 
figures in the “Testing random feature selection” section). 
Random selection of features also resulted in models that 
did not perform differently from MLSM on accuracy per
cent, p = 0.51 or correlation, p = 0.8. 

3. INFLUENCE OF SMLSM ON FEATURE IMPORTANCE 

The predictions for MLSM, sMLSM and LSO models are pre
sented as scatter plots in Figure 3A. Here, predictions were 
collapsed across repeats of CV to form ensembles for each 
model, resulting in slightly better performance (c.f., Figure 
2B and 3A). Performance was notably better for MLSM, in
dicating higher variance in model performance due to par
titioning noise. 
The proportion of repeats of CV in which a feature was 

selected during sMLSM was bimodal, reflecting overall good 
consistency of stability selection in sMLSM across repeats 
(Figure 3B). However, a minority of features were selected 
in some repeats but not others, indicating stability selec
tion is not immune to overfitting to partitioning noise. This 
aligns with the median sFDR of models and datasets with 
more power may be able to produce non-empty stable sets 
for lower PFER. 
Standard deviation in feature importance across repeats 

of CV was evaluated to understand whether sMLSM helped 
to stabilize weights. The skewed standard deviation of 
SHAP values, reflecting gross feature importance to model 
predictions, were lower for sMLSM than MLSM, Z = 3.2, 
p < 0.01. When focusing only on features consistently se
lected by stability selection (i.e., selected in at least 80% re
peats of CV; Figure 3C), the effect was stronger, Z = 3.7, p 
< 0.001. Only a single consistently selected feature showed 
markedly more deviation in sMLSM than MLSM. The differ
ence in SHAP deviation between the two models was not re
lated to feature Variance Inflation Factors (VIFs), showing 
stabilization across levels of multicollinearity, r(75) = 0.02, 
p = 0.98. 
Feature importance was visualized to qualitatively ap

preciate whether model performance in sMLSM stemmed 
from identifying different patterns (Figure 3). Models were 
also compared to LSM, which primarily highlighted pos
terior insula, postcentral, supramarginal, angular, and 
parahippocampal gyri. MLSM downweighed the role of in
ferior parietal regions and generally placed stronger em
phasis on anterior regions. These included pars opercularis 
of the inferior frontal gyrus, the precentral gyrus, anterior 
insula, and anterior superior temporal cortex. In addition, 
MLSM placed high importance on the superior temporal 
gyrus and posterior middle temporal gyrus. sMLSM placed 
highest importance on the same regions highlighted by 
LSM except the parahippocampal gyrus, while also empha
sizing superior temporal gyrus and posterior superior tem
poral gyrus (see also Table 1 for effects in white matter re
gions). 
Evidence that sMLSM picked out more complex patterns 

was also present during the tuning process. In sMLSM, 94% 
of models were tuned to use the radial basis function (RBF) 
kernel. In contrast, only 31% of MLSM models were tuned 
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Figure 3. Consistency of feature selection in stable multivariate lesion symptom mapping.           
Model ensembles are formed by averaging aphasia severity predictions across all stable multivariate lesion symptom mapping models (sMLSM), conventional multivariate lesion 
symptom mapping (MLSM) models (i.e., models trained on all features), and models trained only on lesion size. Ensemble predictions for each sample (represented by dots) are pre
sented in panel A. The sMLSM models show a bimodal distribution of feature selection across repeats of cross validation, indicating that features were either consistently excluded or 
consistently selected across repeats (distribution in panel B). The standard deviation of feature weights (as averaged across training datasets within each repeat) are lower across re
peats of cross validation with sMLSM than MLSM (panel C). Standard deviation of features in MLSM models was subtracted from standard deviation of features from sMLSM models 
(x-axis in panel C). Difference in deviation was unrelated to variance inflation factor for features (y-axis in panel C). 

to use the RBF kernel and 68% of models were tuned to use 
the linear kernel. 

4. INFLUENCE OF SAMPLE SIZE ON MODELS 

To establish the influence of sample size on sMLSM (tuned 
for PFER), MLSM, and LSO models, we drew random sub
samples of the data based on 6 sample sizes ranging from 
35 to 155 in increments of 20. For each sample size, 60 ran
dom datasets were constructed and submitted to our re
peated nested cross validation scheme. Measures of accu
racy percent and correlation were averaged across all 60 
datasets to produce a point estimate of model performance 
for a dataset of a certain size. For brevity, trends are sum
marized based on SEM for model performance across all 
datasets (i.e., whether there is overlap). 
Strikingly, LSO models performed relatively similarly 

across sample sizes, while sMLSM and MLSM models ben
efitted much more from access to larger sample sizes (Fig
ure 5). At smaller sample sizes (35-55), sMLSM improved 
model prediction error over MLSM as reflected in correla

tion, but did not show better accuracy percent. The linear 
relationship between model performance and sample size 
as measured by the variance explained by a linear regres
sion was higher for sMLSM than MLSM, both of which were 
substantially higher than LSO, suggesting that sMLSM may 
be able to generate better models in relatively smaller large 
datasets (Figure 5). It may be that MLSM models begin to 
plateau at sample sizes of 155-167, though this is not clear 
from our simulations and more data is needed. Moreover, 
sMLSM models showed a pronounced improvement in per
formance at these sample sizes. 

5. INFLUENCE OF FEATURE DIMENSIONALITY ON 
MODELS 

A functional multiresolution atlas (see methods) was used 
to evaluate how feature dimensionality impacted models. 
Performance of MLSM on all 10 resolutions of the Schaefer 
atlas was measured. For brevity, we summarize compar
isons between models based on SEM across repeats of CV. 
Performance was not correlated with the number of fea
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Table 1. Feature importance for different models      

Atlas labels sMLSM (t-statistic) MLSM (t-statistic) LSM (t-statistic) 

SFG_L 0 26.97133437 -1.685890596 

SFG_PFC_L 0 18.42651475 -1.235053225 

MFG_L 0 44.63882427 -0.727600584 

MFG_DPFC_L 0 21.63906838 -1.663369757 

IFG_opercularis_L 6.181574041 73.8061549 1.494252874 

IFG_orbitalis_L 0 50.12195109 -0.95864568 

IFG_triangularis_L 0 66.55512941 0.926454056 

LFOG_L 0 58.39722893 -1.031318202 

MFOG_L 0 30.06977981 Insufficient sample size 

PoCG_L 97.05034337 71.89717299 1.630048365 

PrCG_L 36.02555937 76.48737217 1.258037098 

SPG_L 0 65.49995346 -1.286109549 

SMG_L 79.07695111 56.1535431 1.919746423 

AG_L 57.45686611 48.27925812 1.705442739 

PrCu_L 0 68.4102342 -2.878639426 

STG_L 69.51367254 73.24068914 1.263828978 

STG_L_pole 5.09559305 85.26471842 0.297173001 

MTG_L 0 42.74769943 0.320139413 

MTG_L_pole 0 35.72524427 0.865756079 

ITG_L 27.21683058 56.21934862 1.521927221 

PHG_L 0 60.90690763 1.804605251 

ENT_L 0 43.33790503 Insufficient sample size 

FuG_L 0 36.3001989 -0.936451127 

SOG_L 0 50.23008654 -1.338938909 

MOG_L 46.22056432 51.15782906 0.692412812 

IOG_L 0 52.05540653 0.09018953 

Cu_L 0 59.61602615 Insufficient sample size 

LG_L 0 46.60938917 Insufficient sample size 

rostral_ACC_L 0 60.24308213 Insufficient sample size 

dorsal_ACC_L 0 44.03642813 Insufficient sample size 

PCC_L 0 49.01362817 -2.600926494 

Ins_L 43.08310193 108.8642542 0.836222417 

Amyg_L 0 49.80829137 0.155142796 

Hippo_L 0 34.81235822 -0.539516226 

Caud_L 0 98.51874513 -2.135263152 

Put_L 0 41.58365864 0.747789337 

GP_L 0 44.15835841 1.184580758 

Thal_L 0 60.42817496 -1.267138431 

Mynert_L 0 42.78158148 -0.659117032 

NucAccumbens_L 0 34.92454672 Insufficient sample size 

CP_L 0 34.46474384 Insufficient sample size 

CST_R 0 55.28576302 Insufficient sample size 

ACR_L 0 38.84933025 1.037822504 

SCR_L 1.404908237 64.0475951 1.918200855 

PCR_L 2.355626441 57.45420504 0.297725267 
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Atlas labels sMLSM (t-statistic) MLSM (t-statistic) LSM (t-statistic) 

GCC_L 0 47.6710842 -2.532339125 

BCC_L 0 57.70306743 -0.73527104 

SCC_L 0 37.9870522 -1.037801567 

TAP_L 0 57.44871926 -0.880500452 

ALIC_L 0 66.88679961 0.310722967 

PLIC_L 0 59.09303388 0.858830048 

RLIC_L 25.62272576 48.03086489 1.887163701 

EC_L 50.13747438 73.3831669 2.280562015 

CGC_L 0 67.56941614 -2.238822397 

CGH_L 0 44.31337215 Insufficient sample size 

Fx/ST_L 0 56.76632374 1.772621975 

IFO_L 5.088454882 46.94707436 1.040156241 

PTR_L 1.49024225 36.12505752 0.73099944 

SS_L 47.62175323 27.15831044 1.197701504 

SFO_L 0 73.9478966 1.024100834 

SLF_L 104.9370727 44.15472724 1.772171333 

UNC_L 2.374473238 49.06533662 0.707138786 

AnsaLenticularis_L 0 51.06134702 0.512828758 

LenticularFasc_L 0 55.74776476 0.67668277 

OlfactoryRadiation_L 0 53.84436224 Insufficient sample size 

OpticTract_L 0 24.41741229 Insufficient sample size 

LV_frontal_L 0 43.50338572 Insufficient sample size 

LV_body_L 0 57.90089088 Insufficient sample size 

LV_atrium_L 0 45.69041191 Insufficient sample size 

LV_occipital_L 0 58.11504415 -0.448387469 

LV_temporal_L 0 33.7554313 0.710161115 

PIns_L 94.38676635 69.03653231 1.710511169 

PSTG_L 98.00635582 54.78612276 1.299639323 

PSTG_R 6.073944945 46.79916664 Insufficient sample size 

PSMG_L 9.723999913 84.6705847 1.25527175 

PSIG_L 0 41.46502049 -0.006077418 

lesion size 97.68458689 65.50935328 Insufficient sample size 

tures in the atlas (p > 0.05), but the highest resolution atlas 
tended to perform better than the others (Figure 6A). This 
resolution (1000 total features, but 406 that overlapped 
with lesions) was also the only one to outperform the JHU 
atlas (Figure 6A) on both correlation and accuracy percent. 
Due to computational constraints, we analyzed every 

other atlas resolution for sMLSM and LSO models. Here, 
again, PFER rates were systematically varied, revealing sim
ilar overall patterns. One point of difference, however, was 
that some atlas resolutions induced a high degree of vari
ance in model performance based on SEM across cross-val
idation repeats, likely reflecting poor fit of atlas resolution 
to the data (Figure 6B). Further, not all atlas resolutions 
showed a decreasing trend between model performance and 
sFDR (c.f., Figure 2B and 6B). However, tuning PFER in the 
models trained on different atlas resolutions consistently 

gave good solutions, sometimes outperforming the pres
election of any single PFER value (Figure 6B). As we ob
served with the JHU atlas, tuned sMLSM models always 
outperformed MLSM models by a large margin and outper
formed LSO models as well. Just as for MLSM, there was no 
observed relationship between model performance and at
las resolution in sMLSM (Figure 6C). 

6. TESTING SENSITIVITY TO MULTICOLLINEARITIES 
AND ACCURACY OF FALSE DISCOVERY ESTIMATION 
UNDER SIMULATED CONDITIONS 

We explored sMLSM and MLSM behavior under simulated 
conditions. To understand how the models performed in 
the presence of a greater degree of multicollinearity, we 
synthesized 100 multicollinear features and added them to 
the dataset (i.e., JHU features), corresponding to a ~130% 
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Figure 4. Feature importance varies across models.      
Mass univariate lesion-symptom mapping (LSM) with a permuted t-test is shown in panel A. Brighter yellow colors represent higher test statistics. Feature importance for multivari
ate lesion symptom mapping (MLSM) is shown in panel B and feature importance for stable multivariate lesion mapping results (sMLSM) is shown in panel C. The sMLSM and MLSM 
t-statistics reflect a one-tail t-test against zero for absolute SHAP values across repeats of cross-validation (i.e., gross feature importance capturing linear and nonlinear effects as 
well as interactions). 

Figure 5. Effect of sample size on multivariate lesion symptom mapping.          
For each specified sample size (i.e., N=35, 55, 75, 95, 115, 135, and 155), a total of 60 subsamples were taken from the entire dataset (N=167). The cross validated performance of mul
tivariate lesion symptom mapping (MLSM; purple), stable multivariate lesion symptom mapping (sMLSM; yellow), and a lesion size only (pink) model was measured across all sub
samples. Each dot represents mean model performance (accuracy percent in panel A and correlation coefficient in panel B). Error bars represent standard error of the mean. Graphs 
on the left show linear regression trend lines extrapolated to larger sample sizes for each type of model. Graphs on the right show actual model performance across subsamples (as 
well as performance when models were fit to the entire dataset; N=167). 

increase in dimensionality. This process was repeated 50 
times. Multicollinear features were synthesized from the 
set of features that significantly correlated with the re
sponse variable at p < 0.01 (71% of total features). As this 

set was relatively large, we first randomly selected a pool of 
30% of the significantly correlated features. From this pool, 
2 different features were chosen at random to create a mul
ticollinear feature by computing the dot product between 
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Figure 6. Effect of atlas dimensionality on stable multivariate lesion symptom mapping.           
Multivariate lesion symptom mapping (MLSM) was performed for a multi-resolution functional atlas64 and performance was compared to MLSM of the anatomical JHU atlas (panel A, 
top scatter plots). As no strong association between model performance and atlas resolution emerged, half of the multi-resolution parcellations were used to perform stable multi
variate lesion symptom mapping (sMLSM; panel A, bottom row of brain projections). Note, the number of features in the atlas that contained lesion information are shown in paren
theses. The performance of sMLSM models as a function of increasing the upper bound on number of false positives in the stable sets (i.e., from 1 to 30) is shown separately for each 
atlas (panel B). Tuning the number of false positives in the sMLSM model for every training dataset often resulted in better performance and always outperformed the lesion only 
models and the MLSM models. The tuned sMLSM models trained on features of the functional atlas often slightly outperformed the tuned sMLSM models trained on the JHU atlas on 
our main performance measure, accuracy percent (panel C). 

the selected features and random coefficients between 0 
and 1. A noise term was then added from a normal distri
bution with a standard deviation scaled by 0.1 to ensure a 
relatively close relationship to base features while exhibit
ing some variability. The performance of sMLSM was unim
pacted by the increased multicollinearity (c.f., Figure 7A 
and 2B). Meanwhile, MLSM benefitted from the additional 
features (c.f., Figure 7A and 2B). While sMLSM still outper
formed MLSM in this experiment, the results indicate that 
substantially greater redundancy of signal helped MLSM fo
cus on modeling predictive patterns and to avoid modeling 
noise, while sMLSM was already highly effective at captur
ing the predictive signal available. 
In another analysis, we systematically added increasing 

amounts of noise features to a core set of features highly 
correlated with language impairment to assess the accuracy 
of error control in stability selection during sMLSM. First, 

we identified 50% of the features most highly correlated 
with impairment (N=38). We then randomly selected fea
tures from this pool, permuted them, and combined them 
with the highly correlated features. This process was re
peated to create new datasets ranging from 100 to 1000 
features in increments of 100, corresponding to scenarios 
where between 38% and 3.8% of features represent signal. 
The procedure was repeated 5 times. In each resulting 
dataset, stability selection was performed with identical 
settings to previous analyses on one repeat of our cross-
validation scheme. A range of stable sets were generated by 
controlling the estimated number of false positives (NFPs) 
to range between 1 and 30. 
We found stability selection robust under these condi

tions at identifying the majority or all signal features irre
spective of the NFP setting (Figure 7B), bringing our em
pirical results from previous analyses into context. Stability 
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Figure 7. Model behavior under simulated conditions.      
In panel A, MLSM and sMLSM model performance is shown when the feature space is increased by ~130% by introducing synthetic multicollinear lesion data. Mean model perfor
mance is indicated over 50 repeats of adding synthetic features with bars showing standard error of the mean (SEM). While sMLSM performs better than MLSM, there is no shift in 
performance as a function of introducing these synthetic features (c.f. tuned sMLSM in Figure 2). In contrast, MLSM performs slightly better with substantially increased multi
collinearity (c.f. Figure 2). In panel B a varying number of noise features are added to the most highly correlated features with language impairment (top 50% or N = 38) to generate 
datasets of 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 features. This is repeated 5 times and stability selection is performed on each dataset using between 1 and 30 false 
positives to estimate the stable set. The number of true negatives (proportion of total noise features removed by stability selection), true positives (proportion of signal features re
tained by stability selection) and false positives (proportion of retained features that are noise) is plotted for each result of stability selection. Dotted lines represent the mean for a 
dataset. Line colors correspond to the total number of features with brighter colors representing larger datasets. The proportion of false discoveries is shown as a function of the esti
mated number of false positives used to define the stable set (bottom left chart) and the estimated proportion of false discoveries based on the size of the resulting stable (bottom 
right chart). 

selection was also effective at removing noise features, suc
cessfully eliminating between approximately 60 and 100% 
of the noise, depending on the specific signal to noise ratio 
and the estimated NFP. In general, the true proportion of 
the stable set that represented false discoveries was higher 
in smaller datasets characterized by a larger proportion of 
signal to noise (i.e., datasets with 100 and 200 features, and 
38% and 19% signal). In these smaller datasets, the pro
portion of the stable set estimated to be a false discovery 
tended to be lower than the true proportion of false dis
coveries. In the remaining datasets (300-1000 features with 
13% to 3.8% signal), the estimated false discoveries were 
accurate or more conservative than the actual number of 
false discoveries, but only when the estimated number of 
false positives was particularly low (i.e., one of the small
est values that could be set to produce a stable set). Over
all, this supports our findings with real-data, underscoring 
the importance of tuning the NFPs to clarify the degree to 
which the model used for estimation can cope with some 
of the noise that can be retained during feature selection. 
It also confirms an alternative strategy that can be success

ful—selecting one of the lowest possible values that can re
trieve a stable set of features (see Figure 2 for cases where 
the absolute lowest value may not be appropriate). 

7. EXTERNAL VALIDATION OF MODEL PERFORMANCE 

Our core findings are based on out-of-sample model perfor
mance in chronic stroke. We tested whether the same pat
terns would emerge in an independent dataset, using the 
same repeated, nested, cross-validation scheme in Figure 1 
but while reducing the number of repeats from 11 to 10. In 
this case, models were trained to predict NIH stroke sever
ity scores from lesion maps drawn on clinical scans. First, 
we performed this analysis on a subset of individuals to 
more closely match the sample size of the chronic stroke 
dataset we previously used. We achieved this by excluding 
all individuals with left hemisphere or cerebellar lesions (N 
= 275). Using the same parameters for sMLSM (i.e., linear 
scaling, maximum features retained per subsample, etc), 
we found an overall similar pattern of performance, with 
sMLSM performing substantially better than lesion size and 
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Figure 8. Validating sMLSM in external data with larger sample size.          
New sMLSM (purple dots), MLSM (yellow dots) and lesion size models (pink dots) were trained to predict NIH stroke severity in an independent dataset of acute stroke patients. Panel 
A shows mean model performance on a smaller subset of the dataset with right hemisphere lesions that more closely match the size of the chronic stroke dataset from preceding 
analyses. Bars represent standard error of the mean across repeats of cross-validation. Panel B shows model performance on the entire dataset. Panel B also depicts the performance 
of sMLSM when the estimated number of false positives is tuned without a linear scaling function (beige). 

lesion size performing better than MLSM (Figure 8). Our 
sample size simulations in chronic stroke suggest that: i) 
expanding the sample size to one thousand or more indi
viduals substantially shrinks differences in performance be
tween MLSM and sMLSM, and ii) MLSM outperforms le
sion size models. Testing our models on the entire acute 
stroke dataset (N = 1106) shows that MLSM massively ben
efits from the larger sample size as anticipated. Further, 
sMLSM confers a small but significant increase in model 
performance as measured by a paired t-test for both corre
lation, t(9) = 2.4, p < 0.05, and accuracy percent, t(9) = 2.4, p 
< 0.05. Notably, differences were starker when omitting the 
linear scaling function used to push tuning of stability se
lection towards lower estimated number of false positives 
for defining the stable set for both correlation-based perfor
mance, t(9) = 5.8, p < 0.001 and accuracy percent, t(9) = 5, p 
< 0.001. Post-hoc analyses with chronic stroke data suggest 
introducing linear scaling can have a small positive impact 
on model performance (see supplemental material). This 
is because out-of-sample estimates of performance can be 
less reliable when the test sample is smaller.79 However, we 
emphasize that even in the chronic stroke data, omitting 
this scaling factor did not produce a meaningful difference 
in model performance. 

DISCUSSION 

Machine learning models are judged on prediction accu
racy, but in neuroimaging, they are also expected to provide 
insight into neurobiology.74 Consequently, most machine 

learning pipelines separate an initial model development 
stage with a subsequent interrogation of the model to iden
tify which features are important.80 Here, we improved the 
prediction of aphasia severity from lesion location by iden
tifying features that more reliably predict impairment 
across many perturbed datasets and hyperparameter con
figurations during model development. We show that this 
pipeline, which we call stable multivariate lesion symptom 
mapping (sMLSM), not only produced more accurate pre
dictions than conventional multivariate symptom mapping 
(MLSM) or a model that only contained lesion size as a pre
dictor (lesion size only model, or LSO), but also focused on 
more complex patterns of brain damage and assigned fea
ture importance more consistently over different data par
titions. This performance advantage was validated in an in
dependent acute stroke dataset while training models to 
predict overall stroke severity using a similar sample size as 
well as a much larger sample size. 
On closer inspection of the features that drove model 

performance, we found that sMLSM was able to capture 
the significant associations revealed by univariate lesion 
symptom mapping (LSM) while still implicating some of 
the many additional regions that were highly influential in 
MLSM. Overall, sMLSM more clearly captured regions pre
viously associated with aphasia severity in the lesion map
ping literature. For example, sMLSM more strongly impli
cated the superior temporal gyrus81 and unlike MLSM, it 
supported the role of inferior parietal cortex, which was 
also highlighted by LSM in our study as well as prior work.66 

Our MLSM models strikingly placed higher emphasis rela
tive to the other methods on frontal regions, which have 
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been implicated in prior MLSM work.38,67,82 These obser
vations suggest that sMLSM can potentially provide more 
meaningful insight into brain-behavior relationships. 

1. LESION SIZE AS A ROBUST PREDICTOR OF 
APHASIA SEVERITY IN SMALLER SAMPLE SIZES 

At first glance, it may seem surprising that lesion size, a rel
atively crude stroke feature that lacks information about lo
cation of brain damage, sufficed as a remarkably accurate 
and consistent predictor of both aphasia severity in chronic 
stroke and overall severity in acute stroke. Indeed, when 
we randomly subsampled our chronic stroke dataset to un
derstand the influence of sample size on our models, we 
found that the LSO model tended to produce substantially 
lower prediction error than either sMLSM or MLSM models, 
up to a sample size of approximately 75, after which only 
sMLSM began to outperform LSO, particularly as sample 
sizes approached 155. This finding aligns with recent work 
in a much larger sample of acute stroke patients (N=753), 
which has found lesion size to slightly underperform com
pared to MLSM for predicting stroke severity, and to per
form as well as MLSM in sample sizes of 50 and 150.49 

While our findings in chronic stroke are slightly less opti
mistic about the value of lesion location in MLSM, we note 
that our results indicate the pattern of worse performance 
can be explained by strong sensitivity to partitioning noise. 
That is, despite producing on-average higher prediction er
ror across repeats of nested cross-validation, MLSM mod
els did not demonstrate significantly higher prediction er
ror when aggregating predictions across all repeats in an 
ensemble-like fashion. Thus, our results suggest that in 
larger sample sizes, MLSM can perform as well as LSO pro
vided that the variance introduced by partitions is taken 
into account. Reassuringly, our sample size simulations in 
chronic stroke indicate that larger sample sizes provide a 
substantial boost to sMLSM performance across repeats of 
cross-validation. Consistent with this, our external valida
tion of models in acute stroke showed similar patterns of 
performance in a sample size of 275 but saw MLSM out
perform LSO and perform marginally though significantly 
worse than sMLSM in a much larger sample size of 1000. 
The performance we achieved in the acute stroke dataset 
aligns with results from other recent work predicting stroke 
severity in a similar sample size.49 

A common explanation for the robust performance of le
sion size as a predictor of aphasia severity is that larger le
sions will tend to impinge on larger portions of the lan
guage network, resulting in more severe language 
impairment (DeMarco & Turkeltaub37 but see Sperber83). 
From first principles, larger lesions are more likely to in
clude critical nodes for modular functions, as well as in
clude sufficient degradation for distributed processing. 
However, because patients may exhibit a similar degree of 
language impairment while having problems with different 
aspects of language that are localized to different portions 
of the language network, lesion location may play a greater 
role in models that seek to predict more specific language 
deficits than we focused on here.66 At the same time, apha

sia results from damage to the language network, suggest
ing that lesion location should provide some information 
about the deficit. Our work confirms this general claim, but 
only when models are exposed to a large enough sample 
size and a smaller set of reliable features is identified for 
modeling. Indeed, we highlight the exciting prospect that 
lesion mapping studies are only now achieving the kinds of 
sample sizes that are necessary to start successfully lever
aging information about lesion location. In contrast, we 
found that lesion size tends to perform similarly across dif
ferent sample sizes, implying that it may be a better stroke 
biomarker in smaller studies. 

2. IMPROVING MODELS TRAINED ON 
NEUROIMAGING DATA THROUGH 
IDENTIFICATION OF STABLE FEATURES 

The sMLSM method improved prediction of impairment by 
selecting reliable features for model training. Random se
lection of features matched for size performed significantly 
worse than sMLSM as well as MLSM, indicating that se
lected features better predicted impairment than chance, 
and that MLSM was able to exploit limited information 
about lesion location. Further, we found sMLSM to be less 
sensitive to redundancies in the data, showing similar per
formance when a large degree of multicollinear synthetic 
lesion data is introduced. Notably, feature selection algo
rithms are not guaranteed to improve models. The effec
tiveness of traditional feature selection algorithms signifi
cantly diminishes in relatively smaller sample sizes. This is 
due to their tendency to overfit, which results in selecting 
features that perform well on specific small datasets but 
poorly on others. In such cases, the chance of these algo
rithms consistently identifying the truly relevant features 
is markedly low.84 Stability-based feature selection offers a 
compelling solution to this problem. These methods prior
itize the repeatability of feature selection across different 
subsets of the data and various modeling techniques, iden
tifying features that consistently contribute to the model’s 
predictive power across different data splits and modeling 
scenarios. The repeated affirmation of a feature’s impor
tance reduces the impact of random noise and peculiari
ties present in small datasets, leading to a more reliable 
and generalizable selection of features.85 This ensemble 
approach to feature selection shares conceptual similarity 
with the influential bootstrap aggregating method for im
proving model prediction accuracy by averaging out the bi
ases of many individual models.86‑88 Further, by focusing 
exclusively on prediction error, most feature selection ap
proaches fail to consider that their solutions may be diffi
cult to interpret because different subsets of features can 
result in similar prediction error. In contrast, feature sta
bility is an indicator of biomarker reproducibility,85 and 
stability-based feature selection methods have been highly 
successful in microarray analysis and chemometrics,89‑92 as 
well as other applications 93. Here, we contribute to this 
body of work in the context of lesion mapping, showing 
that the identification of stable features can improve mod
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els trained on this kind of data provided they have access to 
adequate sample sizes. 
A small group of neuroimaging studies have previously 

leveraged stability analysis with success outside of lesion 
mapping and our approach may be relevant to other modal
ities.46,48,73,94‑97 While many of these prior studies diverge 
from our approach, either because they operationalize sta
bility analysis outside of the stability selection framework 
or use stability selection outside of a regression or classifi
cation model building procedure (e.g., for discovering fea
tures), some share many similarities. For example, Rond
ina and colleagues48 found that in a functional MRI dataset 
that contained roughly 916 features for each sample, stabil
ity selection was too stringent and proposed a substantially 
modified procedure. Here, we demonstrated that after at
las-based dimensionality reduction, stability selection was 
able to retrieve stable feature sets that improved model per
formance. Moreover, we tested whether varying the per-
family error rate, which controls the stable set size, had 
a substantial impact on model performance, finding that 
while a successful approach was to tune this parameter us
ing out-of-sample error, any selection where fewer than all 
of the features were possibly false positives tended to result 
in improved prediction accuracy by removing some noise. 
In many cases, the most accurate models we trained 

maintained a low but not the lowest per family error rate 
possible. This aligns with observations that there can be a 
tradeoff between stability and accuracy in models, and that 
models may perform best when these measures are consid
ered together.94,96,98 It is also consistent with our exper
iments in adding varying degrees of synthetic lesions un
correlated with impairments to our data. Although stability 
selection could retrieve the majority or all strongly corre
lated lesion features at the lowest per-family error rates, 
it tended to quickly accumulate false positives in a way 
that outstripped its estimate of false discoveries, despite 
still providing a way to eliminate most noise features. Thus, 
tuning this error rate parameter using out-of-sample error 
can be particularly effective as it evaluates how well the 
model used for estimation in sMLSM can handle varying 
degrees of false positives while balancing efforts to retain 
as much reliable signal as possible. In smaller datasets than 
we have focused on, it may be helpful to bias sMLSM tun
ing towards smaller per family error rates as such datasets 
are more likely to produce unreliable estimates of model 
error.79,99,100 potentially swaying selection towards feature 
sets more likely to cause overfitting. We attempted such an 
approach but found it only had an insignificant positive in
fluence in the chronic stroke dataset and a deleterious in
fluence on the much larger acute stroke dataset. 
In a study that bears some similarity to ours, Jollans and 

colleagues46 predicted functional outcomes in a large co
hort of individuals wat high-risk of psychosis and recent-
onset depression using a combination of real and simulated 
functional and structural MRI data. These authors report 
that using an external feature selection step that involved 
stability analysis as well as evaluation of out-of-sample er
ror improved model performance in some cases, but partic
ularly when sample sizes were relatively smaller and there 

were many features. Our findings are compatible even 
though their study only considered linear effects during 
modeling and feature selection was not multivariate. We 
found the sMLSM pipeline to bring most benefit to datasets 
with moderate sample sizes (N > 75). However, we also show 
that it may continue to offer some smaller improvement in 
much larger datasets (i.e., N = ~1000). This is because sta
bility selection helps exclude features that may influence 
the model only as an artifact of sampling variability, which 
happens to be higher in smaller datasets. It is worth point
ing out then, that stability selection can have a greater im
pact in larger datasets if the number of features increases. 
Thus, we expect sMLSM to benefit regional lesion mapping 
in typical sample sizes and voxelwise lesion mapping in the 
kinds of large-scale stroke datasets that are only now be
coming available. 
In the context of the type of data analyzed here, sMLSM 

may more effectively detect subtle clinically relevant pa
tient features and characteristics that improve prediction of 
patient outcomes, and which might not be as apparent in 
smaller datasets. Furthermore, even the smaller improve
ments that sMLSM can afford may become more significant 
as large datasets become more granular, increasing the 
richness and number of collected measures. 

3. CONSIDERING DATA DIMENSIONALITY FOR 
SMLSM 

Some prior work has studied whether MLSM is sensitive 
to different strategies of feature selection, including func
tional and structural atlases as well as data-driven dimen
sionality reduction performed over voxels.53 Although we 
described a very different method for feature selection 
grounded in stability analysis that improved MLSM perfor
mance, our results broadly support that choice of atlas has 
at most a small impact on model accuracy.53 In MLSM, we 
found that functional and structural atlases with relatively 
few features (<76 represented features) produced results 
comparable to functional atlases with many more features 
(>250 represented features). While we observed markedly 
better performance with MLSM when using a very high-res
olution functional atlas (>400 represented features), a sim
ilar improvement was not found for sMLSM, where most 
functional atlas sizes resulted in comparable performance. 
The meaning of this is unclear as there is no overall rela
tionship between atlas size and performance, and it may 
simply be the case that this particular functional atlas hap
pened to be a better fit to our data. In contrast, sMLSM 
tended to perform slightly better with functional atlases, 
however, we cannot exclude the possibility that perfor
mance simply plateaued when a functional or structural at
las contained at least 176 features. Ultimately, it is possible 
that functional atlases may better represent localized im
pairments by less closely following the topographic bias of 
lesions towards vascular territories53,83 and more work is 
required to understand how atlases generated from groups 
can be better fit to individuals to potentially improve model 
accuracy.101 
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4. A TOOLBOX FOR STABILITY SELECTION AND 
CODE FOR SMLSM 

One of the exciting aspects of the stability selection ap
proach that we have employed in this study is that it is 
highly flexible, and its settings can be automatically tuned 
to produce well-performing models while lowering the bur
den on users. As an ensemble feature selection method, it 
may be used to fuse multiple complementary feature selec
tion approaches to identify more unique subsets of features 
than we were able to investigate here. While recent pack
ages have been implemented for stability selection in R102 

and python (https://github.com/scikit-learn-contrib/stabil
ity-selection), much of the neuroimaging community re
lies on MATLAB for preprocessing and analysis.103 We have 
publicly published a MATLAB toolbox for stability selection 
that implements 20 different classification and regression 
algorithms in MATLAB’s statistics and machine learning 
toolbox. We acknowledge that MATLAB itself is not open 
source. However, given its popularity in the neuroimaging 
community, we hope our implementation can facilitate the 
adoption of what we believe to be a powerful analysis tool 
that can benefit many researchers in the community. 
We additionally see this package as an opportunity to 

highlight to researchers the dangers of data leakage that 
have become problematically common in neuroimaging 
studies,74,104‑113 and package our toolbox with a variety 
of tutorials for implementing appropriate cross-validation 
with feature selection. This includes a live code notebook 
containing code for replicating the MLSM and sMLSM 
pipelines that we have presented here. 

5. LIMITATIONS AND FUTURE DIRECTIONS 

The sMLSM pipeline that we have introduced has not been 
tested on a wide range of datasets. Therefore, it is uncertain 
whether it would perform as well in the context of other be
havioral impairments or imaging modalities, particularly as 
the impairment measures we focus on here are quite broad, 
capturing many different types of impairments, even when 
constrained to the domain of language function. While we 
have taken care to select reasonable settings for stability 
selection and have explored the impact of some settings 
on model performance (e.g., per family error rate), much 
work is needed to address how other settings may influence 
the results (e.g., feature selection algorithm, prediction al
gorithm, number of data perturbations, resampling tech
nique, proportion of data selected in each sample, hyperpa
rameter ranges for consistently adequate feature selection, 
etc). For example, a range of cutting-edge feature selection 
methods have been successfully used in a broader neu
roimaging context than we have focused on here and may 
be implemented within the stability selection frame
work.114,115 

Future work aimed at understanding these aspects of the 
sMLSM pipeline will benefit from testing even more well-
defined problems with artificial lesion data than we were 
able to here. While stability selection, underpinning our 
sMLSM pipeline, has been applied to a variety of toy and 

real datasets, its behavior in the context of the specific 
problems encountered in lesion symptom mapping is un
clear (e.g., bias towards vascular trunks) and warrants fur
ther, careful, attention. Indeed, our finding that stability 
selection can be too conservative at low per family error 
rates and too liberal at higher rates suggests that this ap
proach may be better suited to analyses where the stable 
set can be refined if false positives are encountered. Work 
on stability selection and error control is ongoing.88,116‑119 

Future studies focused on developing predictive multi
variate lesion symptom mapping models should also make 
use of recently available large-scale stroke datasets like the 
ones we have showcased here. While simulations provide 
a controlled environment for better understanding the be
havior of a pipeline, the ultimate purpose of the pipeline 
is to achieve better prediction accuracy on real-world data, 
representing a more useful understanding of the neural 
correlates of the behavioral impairment under study. We 
emphasize that these approaches are complementary. For 
example, while here we have shown that sMLSM outper
forms the conventional pipeline in the field, it is entirely 
possible that it is less sensitive to certain patterns in the 
data that have low but real predictive value. Simulated sce
narios can more clearly highlight such possibilities and 
help to improve modeling efforts. 
We also note that the additional computational require

ments imposed by stability selection make permutation 
testing for feature importance after model building more 
difficult. In our study, tuning the per family error rate for 
sMLSM was inefficient as we first tuned each stable set 
formed across a range of error rates to investigate sMLSM 
behavior. Future studies can directly tune this parameter, 
particularly using an efficient search strategy such as 
Bayesian optimization, to greatly improve the feasibility of 
permutation testing. 
While sMLSM and feature selection can benefit models 

trained on relatively smaller sample sizes, it is worth noting 
that it may have little impact on larger industry-sized 
datasets, where the edge case outliers and idiosyncrasies 
are ignored due to consistent signal of strong predictors. 
The sample sizes at which sMLSM will no longer be bene
ficial are unclear and inexorably linked to a number of dif
ferent factors, including the number of features available to 
model, the complexity of the model, the task at hand, and 
the amount of signal versus noise in the predictors and re
sponse variable. 
In the current work, we have tried to ensure that our 

models are trained and evaluated on datasets with repre
sentative lesion distributions (i.e., cross-validation strat
ified by lesion size). We are not aware of MLSM studies 
that have previously taken this step, but believe it is im
portant for future work to consider the problem of ran
domly drawing representative datasets for cross-validating 
models more carefully, especially when performing k-fold 
cross-validation with high k, which defines a larger number 
of smaller datasets. Given the small but unique contribu
tion of lesion location to model performance in the current 
work, it is also important to consider covariate shift for all 
predictors. Regression problems dominate lesion symptom 
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mapping and are not commonly associated with stratifica
tion by the response variable, however, this technique may 
also help ensure more representative partitioning of the 
data. Finally, future investigations may benefit from pre
dicting impairments in smaller lesions, which tend to be 
both more difficult to model but also more helpful for un
derstanding the extent to which lesion location can offer 
predictive information beyond lesion size. 

CODE AND DATA AVAILABILITY 

Our MATLAB stability selection toolbox is available at: 
https://github.com/alexteghipco/StabilitySelection. The 
live code notebook showing implementation of MLSM and 
sMLSM pipelines can be found here: https://github.com/
alexteghipco/StabilitySelection/blob/main/Tutorial3_Pre
dictLSM.mlx. See notebook for links to dependencies and 
preprocessed data used for analyses, otherwise the same 
chronic and acute stroke data can be downloaded in BIDS 

format on openneuro using the following links 
https://openneuro.org/datasets/ds004512/versions/2.0.0 
and https://openneuro.org/datasets/ds004889/versions/
1.0.0 
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