Poster No 1037

Harry Potter meets Markov: Detecting event boundaries in narrative reading by a data-driven model

Huidong Xue¹, Filipp Dokienko², Giovanni Menon¹, Francesco Gentile¹, Bernadette Jansma¹

¹Maastricht University, Maastricht, Limburg, ²Imperial College London, London, Greater London

Introduction: In narrative reading, we integrate a series of words into meaningful mental representations, so-called events. Recent neuroimaging studies applying data-driven analysis have shown a temporal cortical hierarchy of event structure during movie watching and story listening¹². How event segmentation takes place within the neural reading network remains elusive. A Hidden Markov model-based event segmentation technique allows inferring unobserved temporal event structure from neuroimaging data without annotations¹. We applied this data-driven model to fMRI data acquired during reading of a Harry Potter story to detect the event boundaries within the neural reading network, and compared the obtained event structure with the human annotation.

Methods: We used public-release fMRI data of eight volunteers reading chapter nine of the book “Harry Potter and the Sorcerer’s Stone”³ (Figure 1). Around 5200 words were presented in four runs by rapid serial visual presentation with 0.5s presentation duration per word. Imaging data was acquired using a T2*-weighted echo planar imaging pulse sequence with repetition time (TR) of 2 seconds. Wehbe et al. preprocessed the data in SPM8 with slice-time and motion correction, 3 × 3 × 3mm isotropic spherical Gaussian kernel smoothing, and detrending². We extracted fMRI data from six ROIs, namely the Angular Gyrus (AG), Posterior temporal lobe (PTL), Anterior temporal lobe (ATL), Middle frontal gyrus (MFG), Inferior frontal gyrus (IFG), Inferior frontal gyrus orbital (IFGorb) according to the reading network mask⁴ in subject space. To reduce data dimensions and align the fMRI data across subjects, we used the shared response model to project all subject’s space data into shared 90-dimensional space for each ROI⁵. We obtained the human annotations by asking five independent volunteers to read the chapter and to mark boundaries of scenes with shifts in topic, location, time, or other crucial elements. In order to detect the event boundaries for each ROI, we applied a HMM-based event segmentation model in BrainIAK software⁶. We evaluated the model using the leave-one-subject-out method. The optimal number of events for each region was determined by computing the maximum t-distance (t-value), defined as difference in distributions between within-event and across-event correlations⁷. We investigated the temporal alignment of the event boundaries across regions using optimal number of events. The alignment of HMM boundaries and human annotations were tested using the human annotations as upper limit in the model. Significance of alignment was computed by means of permutation testing.
Results: Human annotation unveiled 58 events on average, with 31 events being common across individuals. The HMM detected 37 (MFG) to 67 (AG) events across ROIs (Figure 2A). Their boundaries were significantly aligned with each other (Figure 2B). ATL (p=0.013) and AG (p=0.042) boundaries were aligned with human annotation (Figure 2C&D). Interestingly, in the first run, all regions showed a higher alignment with human annotation (p value for each: AG=0.009, PTL=0.087, ATL=0.016, MFG=0.022, IFG=0.015, IFGorb=0.044), and only the AG (p=0.015) showed significantly aligned in the fourth run (Figure 2D).

Conclusions: The present results show a nested event structure in the narrative reading network with shorter events in AG and longer events in frontal and temporal areas, and high-frequency boundaries partially nested in low-frequency boundaries. Results of ATL and AG support their role in conceptual representation. Their event boundaries were aligned with human annotation, suggesting a link between conceptual relevance and event structure. The AG shows good tracking with human annotation along the entire reading time, suggesting an involvement in context integration over time. These findings provide neuroscientific insight into event segmentation in narrative reading.

References
ABSTRACTS

Poster No 1038

The Representational Dynamics of Speech Prosody: An MEG Study

Seung-Cheol Baek¹, Seung-Goo Kim¹, Burkhard Maess², Maren Grigutsch³, Daniela Sammler¹

¹Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Hesse, ²Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony

Introduction: Speech prosody is crucial for communication as it conveys meaning, such as intentions, beyond the propositions. Prosody is processed in a bilateral frontotemporal network (Belyk & Brown, 2014), and is thought to involve multiple steps along the ventral auditory stream (Schirmer & Kotz, 2006). These steps are likely to include the sensory analysis in bilateral posterior temporal areas, the identification and evaluation of prosodic forms in right anterior temporal and frontal areas. Additionally, right premotor cortex (PMC) as part of the dorsal auditory-motor stream was found to play a causal role in prosody categorization (Sammler et al., 2015). However, it remains to be shown where and when speech prosody is actually represented in its acoustic and/or abstract categorical form, and if prosodic representations are dominant in the right hemisphere.

Methods: We collected magnetoencephalogram (MEG) data from 29 native Germans while they listened to single words that gradually varied in prosody and word-initial phoneme along orthogonal continua generated by audio morphing (Fig. 1A). Participants categorized these words into either prosody (statement vs. question) or phoneme (/b/ vs. /p/) in alternating blocks (Fig. 1B). The MEG data were analyzed in source space (eLORETA) by time-resolved representational similarity analysis to explore the dynamics of prosodic representations (Kriegeskorte et al., 2008). We first defined ten regions of interest (ROI) based on a multimodal cortical parcellation (Glasser et al., 2016; Fig. 2A), including the bilateral primary auditory (PAC), anterior and posterior superior temporal (a/pSTC) cortices, PMC and inferior frontal gyri (IFG). Per ROI, time-varying neural dissimilarity patterns (window size/step = 24/4ms, Crossnobis distance) were computed over different morphing levels of prosody and compared with dissimilarity models of their acoustic forms and perceived categories (behavior; Fig. 1C). Then, we estimated the variance of neural dissimilarity patterns explained by a non-negative linear combination of acoustic and categorical models, and the unique variance explained by each model. Fisher-Z-transformed variance explained was inferred against baseline (-0.2-0s) by cluster permutation tests. The same analysis was carried out for phoneme representations. In case representations were significant in only one of the homologous ROIs, the difference between these ROIs was tested to examine hemispheric lateralization.

Fig. 1. (A) Spectrograms of the original single word recordings (“Bar” [bar], “Paar” [pair], in the middle) and examples of the experimental stimuli (400ms on average, outside) morphed in five steps in terms of pitch contour (statement – question) or voice-onset time (/b/ – /p/). (B) Schematic illustration of one experimental run. Prosody and phoneme identification tasks alternated over six experimental runs, and the identical set of stimuli was repeated in both tasks. (C) Behavioral results of the prosody (red) and phoneme (blue) categorization tasks along the five morph steps of a relevant feature. Individual behavioral responses were used to model perceptual dissimilarity patterns that encoded abstract categories of speech prosody or phonemes.
Results: Combined acoustic and categorical representations of prosody emerged first in bilateral PAC and a/pSTC around 300ms after word onset, followed by left IFG and right PMC. Phoneme representations emerged earlier (from 70ms) and only in the bilateral temporal areas. The unique variance analysis showed that acoustic representations of prosody emerged earlier (340ms; Fig. 2B) than categorical representations (480ms) in bilateral PAC and pSTC (Fig. 2C), followed by the right aSTC (420ms) and left IFG (464ms), both significantly lateralized (Fig. 2B). Notably, PMC exhibited additional categorical representations which were right-lateralized during word presentation (384ms) and bilateral after word offset (532ms; Fig. 2C). These temporal and interhemispheric dynamics substantiate the representational abstraction of prosodic pitch contours along the ventral auditory stream (Schirmer & Kotz, 2006), and a two-staged role of PMC in the perceptual categorization of prosody and motor-based decision-making (Liebenthal & Möttönen, 2018). While early auditory and late decision-making processes were bilateral, intermediate perceptual processes in aSTC and PMC showed right-hemispheric predominance, in line with cue-dependent models of prosody perception (van Lancker & Sidtis, 1992).

Conclusions: This study draws a comprehensive picture of the dynamic frontotemporal representations of speech prosody. At the network level, the representational transfer will be further investigated by a directed information transfer analysis.

References
Microstructural asymmetry of the planum temporale guides lateralization of speech processing

Peipei Qin1, Qiuhui Bi2, Gaolang Gong3

1Beijing Normal University, Beijing, Hiadian,Beijing, 2Beijing Normal University, Beijing, Beijing, 3State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Resea, Beijing, Beijing

Introduction: A classic neuroscience hypothesis posits a fundamental role of structural asymmetries in functional lateralization1, but the empirical evidence remains scarce. As a well-known structurally asymmetric region2, the planum temporal (PT) is involved in speech processing3, a lateralized function. Thus, this region has been much studied to elucidate the relationship between structural and functional asymmetries, but the results are mixed4,5. The present study aims to revisit this important issue using both macrostructural and microstructural imaging approach with a large cohort of healthy young adults.

Methods: We included 907 right-handed subjects from HCP S1200 release (Mean age ± SD: 28.8 ± 3.7 years, 507 females and 398 males)6. The study manually outlined the PT and manually determined the type of the Heschl's gyrus (HG) (single or duplicated) by two trained raters7. Functional activation was assessed for three contrasts (‘story – baseline,’ ‘math – baseline,’ and ‘story - math’) in a story-telling task, which were then factor-analyzed into two components: speech perception and speech comprehension. The modified LI-toolbox8 was then used to calculate the functional activation and its asymmetry index (AI). Structural metrics of PT, including macrostructural (surface area, thickness) and microstructural metrics (myelin content, neurite density index(NDI), and orientation dispersion index(ODI)9), were calculated. Structural AIs were defined as (Left - Right) / (Left + Right). We tested the correlation between the 5 structural and 2 functional AIs using 5*2 general linear models (GLM), with the functional AI as the response variable and structural AI as the fixed effect in the model. Furthermore, intra-hemispheric structural-functional correlations were examined by another 2*5*2 GLMs, with the functional activation as the response variable and structural metric as the fixed effect in the model. Covariates included age, sex, brain size, and HG type in each GLM. Significance levels were Bonferroni-corrected P < 0.05.

Results: As shown in Figure 1, the functional AI for speech perception was positively correlated with the AI of myelin (R=0.26, PFWE <10-12), NDI (R=0.13, PFWE<10-2), and ODI (R=0.22, PFWE<10-9). On the other hand, the functional AI for speech comprehension was significantly correlated with the AI for surface area (R=0.21, PFWE<10-9), myelin (R=0.20, PFWE<10-8), and NDI (R=0.11, PFWE<0.01). As shown, the significant correlations were mainly observed the AI of micro- metrics (myelin, NDI, ODI). The correlations between PT functional activation and structural metrics for each hemisphere are shown in Figure 2. For the activation of speech perception, significant correlations were observed for the myelin (R=0.17, PFWE <10-5) in the left PT, and for the surface area (R=0.11, PFWE <0.02), myelin (R=0.20, PFWE <10-6), NDI (R=0.14, PFWE <0.01) and ODI (R=0.18, PFWE <10-6) in the right PT. For speech comprehension, functional activation was significantly correlated with the NDI (R=0.12, PFWE <0.02) in the left PT, and with the myelin (R=0.16, PFWE <10-5) in the right PT.
Conclusions: Our results revealed significant association of functional PT asymmetries with several microstructural asymmetries, such as intracortical myelin content, neurite density, and neurite orientation dispersion. The PT microstructure per se also showed hemispheric-specific coupling with PT functional activity. These results suggest that microstructural asymmetry guides functional lateralization of the same brain area and highlight a critical role of microstructural PT asymmetries in auditory-language processing.

References
3. Sajid, N. et al. (2023), “Degeneracy in the neurological model of auditory speech repetition,” Communications Biology, vol. 6, no. 1, Art. number 1
ABSTRACTS

Poster No 1041

Speech processing around the auditory cortex: the distinct contribution of gray and white matter

Qiuhui Bi1,2, Peipei Qin1, Gaolang Gong1

1State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Resea, Beijing, China, 2School of Artificial Intelligence, Beijing Normal University, Beijing, China

Introduction: Understanding the structural substrates of functional activity is one of the major challenges in neuroscience. Putatively, the microcircuit within gray matter (GM) serves as the basis of local neural activity, and axons within white matter (WM) supports rapid transfer of information across remote brain regions. Previous studies have revealed distinct contribution of GM/WM structural properties to specific functional activation, depending on brain regions and hemispheres1,2,3. In this study, we aim to ascertain how the underlying GM/WM contribute to functional activity of the planum temporale (PT) and Heschl’s gyrus (HG) during auditory speech tasks, with respect to different hemispheres and speech processing component.

Methods: Subjects. 782 right-handed participants with high-quality T1w structural MRI, diffusion MRI and language fMRI from the human connectome project (S1200 release) were included. ROI delineation. The ROIs of PT/HG (Fig 1A) were manually delineated following a well-established procedure by Altarelli et al4. Functional measures. We applied a widely-used LI toolbox5 approach to quantify functional activation of left and right ROIs and the asymmetry indexes (AIs). For three contrasts in the language processing task, factor analysis was performed on the PT/HG activation left, right, and AI across the three contrasts, separately, resulting two main factors: speech perception and comprehension. Structure measures. For GM, the total surface area, average thickness, myelin content, neurite density index (NDI) and orientation dispersion index (ODI) across all vertices were calculated for each ROI. For WM, tractography of the long and posterior segments of the arcuate fasciculus (AF) was conducted using MRtrix36 with multiple ROIs (Fig 1B, C), separately for PT and HG. Average fibre length, NDI and ODI were calculated for each tract. The AI of structural measure was computed as (L – R) / (L + R) Statistical analysis. General linear models were applied to each functional activation of PT/HG, with left/right activation and functional AI as the dependent variable, and structural left/right measures and AIs as the independent variables. Dominance analyses were performed to evaluate the contribution (general dominance weight, GDW) of structural measures to the variance of functional measures. To determine whether the degree of GM/WM measures’ contribution to functional measure differ between the left and right hemisphere, as well as between the ipsilateral PT and HG, permutation tests were then performed.

Fig 1. (A) The manual delineation of planum temporale (PT) and Heschl’s gyrus (HG) on individual pial surface. (B) The location of inclusion ROIs used for the tractography of arcuate fasciculus (AF) on HCP-1055 standard FA image. (C) The tractography initiated from the PT4G ROIs, only streamlines traversing the inclusion ROIs in the specified sequence were accepted. Specifically, streamlines originating from PT4G ROI and sequentially travelling through ROE3 – ROE1 – ROI2 were identified as long AF segment. Streamlines travelling through ROI3 – ROI4 were included as posterior AF segment.
Results: The explained variance for each structural measure is illustrated in Figure 2A. As shown, GM measures of the left ROIs consistently explained a larger proportion of the variance for the speech perception, but a less proportion of the variance for the speech comprehension. Particularly, the model of speech comprehension was dominated by the fibre length of long AF segment in both left PT and HG, accounting for 41.9% and 47.6% of the all explained variance separately. In contrast, GM and WM measures of the right ROIs explained similar amount of variance for both speech perception and comprehension. For the speech comprehension, WM measures explained significantly greater proportion of variance of the left ROI than the right ROI (Fig 2B): PT, L-R=0.07, P<0.001; HG, L-R=0.03, P<0.01. The permutation test further revealed greater explained variance of WM measures in the left PT, compared with the left HG for both speech perception (PT-HG=0.04, P=0.01) and comprehension (PT-HG=0.05, P=0.01). In addition, PT WM asymmetric measures captured a higher proportion of the variance of speech comprehension lateralization (PT-HG=0.03, P=0.03), compared with the HG (Fig 2B).

![Image](image_url)

Conclusions: The present study demonstrated distinct contribution of GM and WM structural measures to speech processing activity around the auditory cortex, depending on the selected region of interest, hemisphere, and functional components.

References

![Graph](graph_url)
Involvement of Auditory Dorsal Stream in Processing of Spectrally Degraded Speech Examined with iEEG

Kirill Nourski¹, Mitchell Steinschneider¹, Ariane Rhone¹, Joel Berger¹, Emily Dappen¹, Hiroto Kawasaki¹, Matthew Howard¹
¹The University of Iowa, Iowa City, IA

Introduction: Cochlear implants (CIs) are the treatment choice for severe to profound hearing loss. Despite the tremendous progress in CI technology, including hardware and processing strategies, there remains a considerable variability in speech perception outcomes following implantation (Geers, 2006; Pisoni et al., 2017; Carlyon and Goehring, 2021). The function and plasticity of central auditory pathways are major contributing factors to this variability (Moberly et al., 2016; Glennon et al., 2020; Pavan & Bottari, 2022). Assessing auditory processing at the cortical level in CI users is methodologically difficult. However, spectrally degraded sounds presented to normal-hearing individuals can approximate the input to the central auditory system provided by the CI (Shannon et al., 1995). This study used intracranial electroencephalography (iEEG) to investigate cortical processing of spectrally degraded speech.

Methods: Participants were 15 adult neurosurgical epilepsy patients. Stimuli were utterances /aba/ and /ada/, spectrally degraded using a noise vocoder (1-4 bands) or presented without vocoding (Fig. 1a; Nourski et al., 2019). The stimuli were presented in a two-alternative forced choice task. Cortical activity was recorded using depth and subdural iEEG electrodes (2051 contacts). Electrode coverage included Heschl’s gyrus (HG), superior temporal gyrus (STG), dorsal and ventral auditory-related areas, prefrontal and sensorimotor cortex. Analysis focused on high gamma (70-150 Hz) power augmentation and alpha (8-14 Hz) suppression, measured at 250-500 and 500-750 ms after stimulus onset, respectively.

Results: Chance task performance occurred with 1-2 spectral bands and was near-ceiling for clear stimuli (Fig. 1b). Performance was variable with 3-4 bands, permitting segregation of good from poor performers Fig. 1c). There was no relationship between task performance and participants’ demographic, audiometric, neuropsychological, or clinical profiles. Several patterns were identified based on high gamma response magnitude and differences between stimulus conditions (Fig. 2a). Within HG, responses were typically strong to all stimuli, while more diverse patterns emerged on the lateral STG. Good performers typically had strong responses to all stimuli along the dorsal auditory processing stream, including posterior STG, supramarginal, and precentral gyrus (Fig. 2b). Additional recruitment of the dorsal stream for the difficult (vocoded) stimuli manifested as vocoded-preferred responses. In poor performers, clear-specific responses in the dorsal stream were more common, suggesting that within the dorsal stream, vocoded stimuli were not processed as speech. In contrast, poor performers engaged the ventral stream (posterior middle temporal gyrus, MTG) to a greater extent than good performers. Patterns of alpha suppression were generally less diverse than high gamma augmentation; differences between good and poor performers paralleled those seen in high gamma responses.
Conclusions: Responses to noise-vocoded speech provide insights into potential factors underlying CI outcome variability. The results emphasize differences between good and poor performers in the balance of neural processing along the dorsal and ventral stream, identify specific cortical regions that may have diagnostic and prognostic utility, and suggest potential targets for neuromodulation-based CI rehabilitation strategies.

References
Decoding the ‘silent’ neural symphony: unraveling the intricacies of lip-reading in the brain

Joanna Beck1,2, Jakub Wojciechowski1,2, Hanna Cygan1, Martyna Bryłka1, Tomasz Wolak1
1Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, Kajetany, Poland, Warsaw, Poland, 2Nencki Institute of Experimental Biology PAS, Warsaw, Poland

Introduction: Lipreading (LR) is the ability to extract speech information from the movements of a speaker’s lips and face. It is an essential skill for individuals with hearing loss (Bernstein et al., 2022) and those who work in noisy or distracting environments (e.g., Erber, 1969; Middelweerd & Plomp, 1987). Visual information from the talker’s face helps fill in the missing auditory information. Articulatory lip movements enable it to recognize visemes (the visual equivalent of phonemes), and supplement degraded auditory information during speech perception. Despite its practical importance, the neural and cognitive mechanisms underlying lipreading still need to be better understood. Neuroimaging studies have shown that the brain regions involved in LR overlap with those involved in auditory speech processing, suggesting that lipreading relies on neural mechanisms similar to those involved in normal hearing (Calvert, 2001; Skipper et al., 2007). Generally, studies on the correlates of LR point to different areas relevant to this skill; these differences may be due to the different fMRI paradigms used in each study. The goal of our study was to examine G1. Aspects of language processing during LR in a robust manner G2. Mechanisms involved in learning LR

Methods: To answer question G1, we tested 51 right-handed subjects using a lip-reading task during fMRI. The task used 20-second clips of an actor speaking on various topics (cuisine, style, sports, weather). The paradigm included four conditions: clips with sound, clips without sound, clips backward, and a static face without sound. Half of the blocks presented entire sentences, and the other half presented only words. In the G2 study, 60 healthy right-handed subjects underwent a month-long lip reading course, with three 45-minute sessions of fMRI neurofeedback or sham neurofeedback, with scanning before and after the course. To assess the influence of the factors, a rmANOVA was conducted.

Results: Both G1 and G2 results showed that the lexical vs. non-lexical factor revealed the presence of numerous language-related regions (e.g., STG, MTG, TP). The “words” vs. “sentences” factor produced clusters in the left ATL and bilateral pMTG/TPJ. The effects found in the anterior and inferior temporal poles indicate a differential role for semantic information retrieval (Binder et al., 2011) in reading word and sentence text, likely due to the complexity and difficulty of the linguistic material. Additionally, ATL plays a central role in integrating semantic and syntactic information and is particularly sensitive to meaningful sentences (Visser et al., 2010). In contrast, the TPJ’s differential involvement in reading words and sentences may be due to the high cognitive demands during sentence recognition and the involvement of extensive attentional resources in analyzing lip movements. The results also showed that during lip reading (vs. observation of non-linguistic lip movements), participants were actively engaged in phoneme and lexical encoding. They were also involved in the retrieval of the semantic lexicon. Form G2, longitudinal, pre- and post-scanning analysis showed changes in the mentioned areas, and the pattern of differences was driven by the baseline level of lip-reading ability.

Figure 1. Whole-brain results for lip-reading sentences vs. words effect
ABSTRACTS

Figure 2. Whole-brain results for lip-reading lexical sentences vs non-lexical sentences effect

Conclusions: Our study identifies shared and unique neural activity patterns in lip reading, expanding on existing literature. Uncovering task-specific activations that have not previously been reported contributes to a more nuanced understanding of lipreading mechanisms. The cortical regions revealed in our analysis suggest that both cognitive abilities related to language comprehension and language production are engaged in lip reading. This insight holds promise for enhancing support for individuals with hearing disabilities or undergoing cochlear implantation, paving the way for targeted interventions and improved accessibility.

References

Poster No 1044

Prosodic Pitch Perception in Right Premotor Cortex: A Transcranial Magnetic Stimulation Study

Daniela Sammler¹, Gesa Hartwigsen²

¹Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Hesse, ²Leipzig University, Leipzig, Saxony

Introduction: Speech perception is believed to recruit (pre)motor cortex (PMC) in the left dorsal auditory stream (Liebenthal & Möttönen, 2018). Articulator-specific involvement of left PMC has been found for the perception of phonemes (D’Ausilio et al., 2009) and lexical tones (Liang et al., 2023). However, PMC’s role for prosody-the melody of speech-still lacks investigation. Motor control of prosodic pitch contours is anchored in the right (and left) PMC (Dichter et al., 2018). This kindles questions of hemispheric lateralization, reminiscent of auditory asymmetries (Zatorre et al., 2002). Moreover, the role of PMC in supporting either perceptual or response-related processes is still a matter of debate (Hickok, 2010). The present study used repetitive transcranial magnetic stimulation (rTMS) and behavioral drift diffusion modelling to (i) assess the causal role of right PMC in prosodic pitch categorization, compared to left PMC and a non-prosodic pitch control task (speaker gender categorization), and to (ii) disentangle the weighting of perceptual vs. response-related biases in PMC contributions.

Methods: In two separate sessions, 24 listeners (M ± SD = 27 ± 3.4 years) categorized prosodic pitch contours (question vs. statement) and speaker gender (male vs. female) of monosyllabic words while receiving neuronavigated inhibitory or sham rTMS of left or right PMC (MNI: ±45, 5, 40 mm, based on Sammler et al., 2015) using co-registered individual T1-weighted
images. A 5-pulse train of 10 Hz rTMS at an intensity of 100% individual resting motor threshold was delivered in each trial, time-locked to word onset, using a focal figure-of-eight-shaped coil (CB-60, 7.5 cm outer diameter) connected to a MagPro X100 stimulator. Sham rTMS was delivered by a second coil placed in a 90° angle over the first coil. The order of sessions (left/ right PMC) and blocks (prosody/gender task, sham/effective rTMS) was counterbalanced across subjects (Fig 1A). Single trial response times and accuracies were analyzed with the drift diffusion model (DDM; Ratcliff, 1978; fast-dm: Voss & Voss, 2007) to decompose latent processes that lead to a decision. Parameters v (drift rate; rate of evidence accumulation), a (threshold separation; indicating response biases), and t0 (non-decision time; decision-independent time for stimulus encoding and button press) were compared between tasks (prosody/gender), stimulation (effective/sham), and hemispheres (left/right) using rmANOVAs. Multiple regressions were used to predict Δv (effective–sham) in both tasks from individual ratings of (i) perceptual focus on prosodic contour, (ii) on mean pitch, (iii) amount of subvocal rehearsal, and (iv) stimulated hemisphere, controlled for (v) years of musical training and (vi) perceived task difficulty.

Results: Drift rate v in the prosody task dropped after effective compared to sham stimulation of right (but not left) PMC, and more strongly in participants who were biased to focus on the prosodic contours (Fig 1B). No such effects were found for parameters a and t0 or the categorization of speaker gender. Neither amount of subvocal rehearsal, nor years of musical training or perceived task difficulty influenced Δv.

Conclusions: The combined findings extend the modulatory role of PMC in speech perception from phonemes and tones to speech prosody. In particular, the results highlight the causal role of right PMC in pitch contour categorization, in line with auditory cortical asymmetries (Zatorre et al., 2002). The absence of rTMS effects on parameter a denoting response biases, and the stronger modulation of performance in case of a stronger perceptual bias towards pitch contour suggests a role of PMC in perceptual rather than solely response-related processes. Future studies should investigate the time-course of PMC involvement during prosody processing using chronometric protocols to substantiate this conclusion.

References
Cortical tracking of the speech and music acoustic signals under naturalistic conditions

Sergio Osorio\(^1,2,3\), M. Florencia Assaneo\(^4\)

\(^1\)Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile, \(^2\)Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, \(^3\)Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, \(^4\)Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Queretaro, Mexico

Introduction: Music and speech are quasi-rhythmic acoustic signals that not only encode hierarchically organized structural complexity, but also convey emotional and semantic expressiveness in human communication. These signals are also characterized by temporal modulations around 2Hz and 4Hz correspondingly, reflecting their mean note and syllabic rates (Assaneo et al., 2018; Ding et al., 2017; van Noorden et al., 1999). Studies using both non-invasive and invasive electrophysiological techniques in humans have shown that brain signals within the Slow Frequency Band range (SFB, 1-8Hz) and the High Frequency Gamma Band (HFB, > 70Hz) align with such temporal modulations in the incoming acoustic input (Harding et al., 2019; Doelling et al., 2015; Nozaradan, 2014; Herff et al., 2020). However, whether cortical tracking of acoustic signals in the SFB and HFB is modulated by stimulus type, or whether this effect can be mapped to distinct cortical areas remains poorly understood.

Methods: Here, we present data from a subset of 30 individuals (mean age = 27.33, SD=15.28; n elecs = 1,858, mean = 61.93) within a publicly available Electrocorticography (EcoG) dataset (Berezutskaya et al., 2022) who passively watched a film with interleaved segments of naturalistic music-only or speech-only auditory stimuli. Electrode locations were transformed to the MNI space and plotted in the ICBM-152 cortical template using the Brainstorm toolbox. Electrophysiological data was bandpass-filtered between 1-8Hz (SFB) and 70-120Hz (HFB), re-referenced, and epoched into music and speech segments using the fieldtrip toolbox. The cross-correlation was estimated for each electrode between the cochlear envelopes (Chi et al., 2005) of music and speech and the brain signals in the SFB and the power of the HFB. Significant correlation values and their corresponding temporal lags were identified via permutations along with density-based clustering analysis (Ester et al., 1996).

Results: Results showed a higher number of electrodes tracking speech compared to music in both frequency bands. In the SFB, electrodes tracking music and speech concentrate around middle and superior temporal gyri (MTG/STG), and lower portions of the sensorimotor cortices (music: mean r = 0.09, SD = 0.006; speech: mean r = 0.11, SD = 0.001). For the HFB, electrodes tracking music converge in middle and posterior portions of the MTG and STG, inferior parietal, and prefrontal areas (mean r = 0.096, SD = 0.013). In contrast, tracking of speech in the same frequency band concentrates in parabelt regions and inferior frontal gyrus, IFG (mean r = 0.10, SD = 0.023). Interestingly, while temporal lags for music in the SFB and HFB, and speech in the HFB concentrate around zero, thus suggesting time locked brain responses to the acoustic stream, temporal lags for speech in the HFB shows positive lags (mean lag = 87 ms, SD = 120 ms), suggesting that brain responses follow the speech signal with a delay of ~100 ms. Mixed effect modeling showed that HFB activity predicted higher correlation values (F(1, 161.81) = 7.406, p = 0.0072) for music. For speech, significantly higher r values were found for SFB in IFG (p < 0.0001), MTG (p = 0.022) and somatomotor regions (p < 0.0001) and for HFB in the STG (p = 0.016). For speech, delays in cortical tracking in the HFB were higher in STG (mean = 135.30ms, p < 0.0001), somatosensory cortex (mean 85.50ms, p = 0.004), MTG (mean = 80.7ms, p < 0.0001) and somatomotor cortex (mean = 48ms, p = 0.004) compared against the same regions in SFB range. HFB tracking was also statistically higher in STG compared to all other identified cortical regions within the same frequency band.
Conclusions: Early and late delays across conditions and frequency bands potentially reflect both predictive processes, responses driven by acoustic features and, potentially, information retrieval processes. We discuss our findings in the context of the affordances and limitations inherent to the use of uncontrolled naturalistic stimuli.

References

Poster No 1047
A dissociated neural index of speech perception and understanding in background noise
Qingqing Meng¹, Angela Wong¹, Jennifer Clemesha¹², Jorge Mejia¹
¹National Acoustic Laboratories, Sydney, NSW, Australia, ²Cochlear Limited, Sydney, NSW, Australia

Introduction: Human brain activity measured with magnetoencephalography (MEG) has been shown to track the hierarchical linguistic units embedded in connected speech (Ding et al., 2016). In addition, the responses at hierarchical levels that are dissociated from any acoustic cues to them, such as phrase and sentence level, can be directly modulated by changes in speech intelligibility caused by spectral degradation or immediate prior knowledge on speech signal (Meng et al., 2021, 2022).

Methods: In the current study, we introduce background noise and manipulate its sound level relative to the target speech to reduce the Signal-to-Noise Ratio (SNR) and speech intelligibility. We hypothesis that the tracking responses can be simultaneously but differently modulated by the variations in SNR and associated changes in speech intelligibility. Continuous Electroencephalography (EEG) responses to isochronous speech sentences presented alone and together with a multi-talker babble noise at three different levels were measured in nineteen normal hearing participants. Subjective ratings of speech understanding were also collected from individual participant after each stream of sentences presentation, across all
background noise conditions. Sensor level coherence between the EEG recordings and the temporal regularities of multi-level linguistic units were calculated and mapped back to the cerebral cortex using a whole-brain frequency domain beamforming technique (Gross et al., 2001).

Results: Results showed that concurrent brain responses to hierarchically nested linguistic structure in connected speech can be reliably measured using EEG, even in the presence of background noise. Driven by the reduction in speech intelligibility, cortical activities coherent to “abstract” linguistic units with no accompanying acoustic cues (phrases and sentences) were reduced relative to the “no noise” condition, and lateralized to single cerebral hemisphere. In contrast, brain response tracking word units that are aligned with syllable/acoustic onsets, were bilateral and exhibited a systematic reduction as the noise level increased (SNR decreased) across conditions.

Conclusions: This dissociated result suggests that brain processes of encoding linguistic information during speech perception are directly affected by speech intelligibility, which in turn are powerfully shaped by acoustic properties of the speech signal. Subjective rating scores on speech understanding differed significantly across all conditions and correlated with the magnitude of EEG tracking responses at all linguistic levels. These results provide an objective and sensitive neural level index of speech intelligibility and speech perception which has the potential to be further developed into clinical applications for the assessment of speech-in-noise performance among hearing impaired population, such as hearing aid users and cochlear implant recipients.

References

Poster No 1048
ECoG Gamma-band Modulations Induced by Cognitive-linguistic Tasks during Awake Craniotomy

Sujit Prabhu¹, Israt Tasnim², Priscella Asman¹, Matthew Hall², Chandra Prakash Swamy³, Giuseppe Pellizzer⁴, Kyle Noll¹, Sudhakar Tummala¹, Nuri Firat Ince³

¹The University of Texas MD Anderson Cancer Center, Houston, TX, ²University of Houston, Houston, TX, ³Mayo Clinic, Rochester, MN, ⁴University of Minnesota, Minneapolis, MN

Introduction: Intraoperative functional language mapping using Direct Cortical Stimulation (DCS), the gold standard for defining eloquent language areas, has uncertainty in predicting language functions and post-surgical outcomes¹. Moreover, DCS mapping can potentially induce seizure with prolonged usage. Here, we study the feasibility of intraoperative functional mapping using gamma-band modulations of electrocorticogram (ECoG) induced by linguistic tasks having different complexity levels during awake craniotomy.

Methods: Seven subjects with left temporal lobe glioma underwent resection surgeries involving awake language mapping using a 4x8 ECoG electrode grid (2.3mm contact exposure and 10mm pitch). A MATLAB/Simulink based real-time software system running on a portable laptop computer was used to map task-induced gamma-band modulations as 2D heat maps (Fig. 1). Tasks included verbally responding to individual words versus tones categorization, picture naming (object/nouns, action/verbs), written descriptive and auditory naming (AN) respectively⁴. Auditory stimuli were provided during word versus tone categorization (duration 300~500ms) and auditory naming tasks (> 1s). Other naming tasks provided visual stimuli (line drawings or written phrases). Bipolar DCS (2/4/6 mA, 60Hz, 2s) was applied at different electrode pairs while repeating the naming tasks.
Results: The electrodes having strongest gamma-band modulations (ERS power > 2dB for >=200ms) were distinct for different tasks across subjects (Fig. 2). Cortical regions activated by word stimuli and the AN task were similar; superior and middle temporal gyri (STG, MTG). Gamma band modulations with tone stimuli were observed early (<200ms post stimuli onset) in the STG. Whereas with word and AN stimuli additional late activated (>200ms) contacts were observed. Visual naming tasks modulated posterior MTG (pMTG), written naming induced additional long latency activations (>500ms) around STG, indicating STG involvement in higher level cognitive-linguistic processing. DCS induced reproducible speech arrests occurred during different naming tasks while stimulating specific electrode pairs, responsive electrodes were not necessarily those with strong task-specific gamma-band activations. Considerable inter-personal variability of language areas identified with DCS was observed, despite the similarity of task-specific gamma-band modulated regions across subjects.
Conclusions: Intraoperative language mapping guided by gamma-band ECoG modulations induced by simple word versus tone categorization task exhibited similar patterns to more complex naming tasks, suggesting this task may be a viable approach to localize functional cortex, especially in patients unable to reliably perform more difficult paradigms. With this task-based activations in conjunction with DCS mapping guided by visual naming tasks, eloquent cortical language areas may be better preserved, thereby reducing post-operative language deficits.

References

Poster No 1049
Language Switching Training Reveals an Adaptive Cerebellar Network for Bilingual Language Control
Qianwen Chang¹, Taomei Guo²
¹Beijing Normal University, China, Beijing, ²Beijing Normal University, Beijing, Beijing

Introduction: When bilinguals speak in one of their two languages, both languages are activated. Language control is recruited to select the appropriate language and inhibit interference from the other language. Previous studies have revealed that the cerebellum, especially the posterior cerebellum, plays an important role in bilingual language control. According to the Adaptive Control Hypothesis, neural correlates underlying bilingual language control exhibit adaptive changes to meet the demands in different language contexts. However, most past work has focused on the plasticity of the cerebral regions. In the present study, we examined the involvement of the cerebellum in bilingual language control and the plasticity of the intracerebellar network using short-term language-switching training.

Methods: Two groups of Chinese-English bilinguals performed language switching task in the pre-test and post-test sessions during functional magnetic resonance imaging (fMRI) scanning. After the pre-test, only the training group received an 8-day training in language switching. MRI data were collected by a 3T Siemens Trio Tim MRI scanner. Functional scanning with a T2-weighted gradient EPI sequence was acquired. After functional scanning, a high-resolution T1-weighted anatomical scanning was obtained. Whole-brain images were preprocessed using the DPABI toolbox. We used the SUIT toolbox to isolate the cerebellum from the whole-brain image. At the group level, a paired-sample t-test was performed to compare the cerebellum activation patterns between the pre-test and post-test in both groups with FDR correction. To further investigate the network-level changes after training, we constructed the networks in the pre-test and post-test using the euSEM method. The seven cerebellar sub-regions obtained in the activation analysis were selected as ROIs. Network measures including global efficiency, local efficiency, transitivity and betweenness centrality were calculated using the Brain Connectivity Toolbox. We performed specification curve analysis (SCA) with a 1000-time bootstrapping to further reveal the influence of network plastic changes on language control performance.

Results: For the training group, a significant increase in language control performance (switch cost) was observed after training, t = 3.388, p = 0.003. For the control group, there was no significant change after training, t = 1.832, p = 0.082. Activation analysis showed reduced activation in the bilateral lobules IV-V and VI, vermis IV-V, the right Crus I and VII after training for the training group. In contrast, there was no significant change for the control group. Intra-cerebellar language control networks in the pre-test and post-test for the training group are shown in Fig 1. Paired sample t-tests showed a significant increase in global efficiency, mean local efficiency, transitivity and betweenness centrality after training, ps < 0.001. Furthermore, SCA showed a significant negative relationship between the change of betweenness centrality of the hub node (right lobule IV-V) and the switch cost in the post-test (Fig 2).
Conclusions: Bilingual language control activates an intra-cerebellar network including multiple posterior cerebellar sub-regions as well as the anterior cerebellum (i.e. lobules IV-V). Furthermore, the intra-cerebellar network exhibited adaptive changes by enhancing local neural efficiency and network connectivity after training. The reorganization of the intra-cerebellar network in the present study might be associated with better coordination in speech production. Global and local properties of the network were also modulated by training. For the first time, our study revealed the plasticity of the intra-cerebellar network in bilingual language control.

References
Rhythmic Cues Influence Neural Oscillations Differently in Adults and Children

Yanni Liu¹, Amanda Hampton Wray², Shanley Treleaven¹, Valeria Caruso¹, Erica Lescht¹, Emily Garnett¹, Soo-Eun Chang¹
¹University of Michigan, Ann Arbor, MI, ²University of Pittsburgh, Pittsburgh, PA

Introduction: Understanding neural dynamics in speech processing is crucial for uncovering speech and language production mechanisms. Beta frequency (13-30 Hz) neural oscillations are key in sensorimotor processing and speech preparation, showing reduced power (i.e., more desynchronization) before movement, reflecting motor planning and intended speech output (Gehrig et al., 2012; Pfurtscheller & Lopes, 1999). Beta power modulation changes with age, increasing from childhood to early adulthood and further during the transition to late adulthood (Gaetz et al., 2010; Rossiter et al., 2014). Beyond coordinating sensorimotor systems, beta oscillations encode temporal predictions, decreasing after rhythmic tone onsets but not in non-rhythmic sequences (Fujioka et al., 2012; Chang et al., 2019). This study explores beta power patterns preceding speech onset, examining age-related differences across brain regions in response to rhythmic and non-rhythmic cues during word production tasks.

Methods: 29 adults (mean age=27.8 ± 8.6) and 40 children (mean age=10.3±1.7) with no neurological conditions participated in a spoken word task (Fig.1) while EEG data were recorded. They heard rhythmic (presented with a constant 400 ms interval) or non-rhythmic (variable 200-600 ms interval) auditory tones, followed by word prompts and a speech cue to repeat the word. EEG data were recorded using 64 electrodes. Analysis of beta power (low beta,13-20 Hz; high beta,21-30 Hz) focused on the time periods immediately before [-400 0 ms] and after [0 400 ms] the speech cue. We assessed rhythm effects (rhythmic vs. non-rhythmic) and developmental differences (Adult vs. Child) in speech preparation (before and after speech cue) using repeated-measures ANOVAs. Speech latency, defined as the duration between the cue to speak and the onset of speech, was also assessed using an ANOVA. Post-hoc analyses were conducted following any observed significant (p<0.05) main effects or interactions.

Results: Findings revealed a significant reduction in speech latency in the rhythmic compared to the non-rhythmic condition (544 ms vs. 475 ms, p<0.001), indicating faster speech initiation times across all age groups. Regarding beta power (See Fig. 2), before the speech cue, there was noticeable low-beta desynchronization, particularly in the frontal areas compared to central and parietal regions (p<0.05), and the left hemisphere showed more desynchronization than the right (p<0.05). Rhythm effects were seen in frontal and central areas but not in parietal regions. The two age groups showed rhythm effects in distinct brain regions: left frontal and right central regions for adults, and bilateral central regions for children (Fig. 2). After the speech cue, parietal regions exhibited larger desynchronization compared to central and frontal regions (p<0.05), and the left hemisphere showed more desynchronization than the right (p<0.05). Adults consistently had higher low-beta desynchronization than children (p<0.001). Rhythm effects were only seen in adults, with increased low-beta desynchronization in the rhythmic condition compared to the non-rhythmic condition (p<0.01); children did not show this difference. For high-beta desynchronization, effects were similar before and after speech cues with no significant regional differences. Adults consistently showed higher desynchronization than children (p<0.001), with rhythm effects only observed in adults, particularly in the right hemisphere (p<0.01) (Fig. 2).
Conclusions: These results underscore the influence of rhythmic auditory cues on speech latency and beta oscillation dynamics across participants of different ages. The distinct neural responses between adults and children highlight the developmental disparities in processing rhythmic cues during speech tasks. These findings hold potential implications for understanding the neural bases of speech development and of clinical disorders associated with speech timing deficits (e.g., stuttering).

Poster No 1051

Degeneracy in the neurological model of auditory speech repetition

Noor Sajid1, Andrea Gajardo-Vidal2, Justyna Ekert1, Diego Lorca-Puls3, Thomas Hope4, David Green4, Karl Friston1, Cathy Price1

1Wellcome Centre for Human Neuroimaging, University College London, London, London, 2CICS Centro de Investigación en Complejidad Social, Universidad del Desarrollo, Concepción, N/A, 3Sección de Neurología, Departamento de Especialidades, Universidad de Concepción, Concepción, N/A, 4Experimental Psychology, University College London, London, London

Introduction: The neurological language model1 posits that auditory speech repetition engages four left hemisphere brain regions sequentially: primary auditory cortex (A1), Wernicke’s area (WA), Broca’s area (BA), and primary motor cortex (M1), with the arcuate fasciculus mediating information relay. Recent studies challenge this, emphasising the importance of areas near WA and BA (2). Here, we investigate the bilateral interaction amongst these and their involvement with A1 and M1 during auditory speech repetition. Using previously identified activations2 we estimate effective connectivity (i.e., directed interactions) across these areas using Dynamic Causal Modelling (DCM)3. Our findings reveal variable effective connectivity across word or pseudoword repetition, indicative of functional degeneracy.

Methods: We studied 59 right-handed native English speakers during auditory speech repetition using 3T fMRI scanning runs with 40 stimuli in 4 blocks. The stimuli had an average syllable count of 1.68 (words) and 1.5 (pseudowords) and pre-scan training ensured accuracy. Data processing included spatial realignment, unwarping, normalisation, and smoothing. Activation timeseries were extracted from peak responses (p<0.05 FWE-corrected) in anatomical constrained regions (Figure 1A): Te1.0 & Te1.2 for A1, rostro-posterior superior temporal sulcus (pSTS) for WA, Broca’s area (BA), and primary motor cortex (M1), with the arcuate fasciculus mediating information relay. Effective connectivity amongst these was estimated using participant3 and group-level5 DCM hypothesising input from A1, A1’s connections to all regions barring M1, connection from pSTS to pOp, and M1 as the output region (Figure 1B). The winning group-level model quantified estimated connection strengths (posterior probability>0.75) after Bayesian model comparison over 256 models.

Results: The winning models revealed excitatory connectivity from A1 to pSTS, pSTS to M1, A1 to pOp, and pOp to M1 (Figure 1C-D); positive extrinsic connections were excitatory & inhibitory if negative). There were inhibitory connections from M1 to A1,
pSTS to A1, and surprisingly, between pSTS and pOp. The results were consistent across task and subregional configurations. To investigate the unanticipated effective connectivity from pSTS to M1, we evaluated individual models (Figure 2A). Each model was assigned given estimated connectivity from pOp or pSTS to M1: A had excitatory connections from both to M1; B only from pSTS to M1; C only from pOp to M1; and D had an absence of significant connections. More than half the models were assigned to Group A, 20% to Group B and D and <5% in Group C (Figure 2C). Importantly, only 2% of models were consistent with the neurological model (pSTS->pOp->M1). We measured degeneracy via high intra-subject variability in how M1 was influenced by pSTS and/or pOp (Figure 2B). Connectivity variability was quantified by assigning participants to groups A-D. Entropy measurement, reflecting functional degeneracy, showed an average entropy in individual group membership of 0.49 (word) and 0.55 (pseudoword). 73% were assigned to ≥2 groups, indicating the ability to execute auditory speech repetition in diverse ways, exemplifying degeneracy.

Conclusions: We used fMRI DCM to evaluate the effective connectivity between pSTS and pOp, and with A1 and M1. Contrary to the neurological model, we show that pSTS drives M1 independently of pOp, there is bilateral inhibitory connectivity between pOp and pSTS, and participants vary in the degree to which M1 activity is driven by pSTS or pOp. This demonstrates a distributed, functional architecture between pSTS and pOp, implying alternative pathways for auditory speech repetition (degeneracy), and serve to generate hypotheses about how auditory speech repetition can be maintained or recovered after brain damage.
Mapping individual and shared cortical language representations during real-time natural dialogues

Zaid Zada1, Samuel Nastase1, Sebastian Speer1, Laetitia Mwilambwe-Tshilobo1, Lily Tsoi2, Shannon Burns3, Uri Hasson1, Diana Tamir1

1Princeton University, Princeton, NJ, 2Caldwell University, Caldwell, NJ, 3Pomona College, Claremont, CA

Introduction: How is language encoded in the brain during everyday conversations, and how is that linguistic encoding shared across interlocutors? Typical studies of the neural basis of language present subjects with predetermined, isolated words or sentences (Price, 2010), and do not consider the role of spontaneous language production nor linguistic neural coupling (Garrod & Pickering, 2004). Here, we aim to address both gaps and map brain areas involved in both speech production and comprehension during natural dialogue.

Methods: We developed a hyperscanning paradigm to collect simultaneous fMRI data in 30 dyads (60 subjects, 41F) as they freely discussed 10 topics across 5 runs (Fig 1A) (Speer et al., 2023). Topics were presented as a starting point, but each dyad was free to pursue the discussion in different ways. Our goal was to characterize the linguistic content encoded in the brain within subjects. To that end, we estimated voxel-wise encoding models to predict held-out BOLD signals during speech production or comprehension from 6 feature spaces: nuisance task structure regressors, mel-spectral features, phonetic articulatory features, head motion parameters, and word embeddings extracted from the GPT-2 language model (Fig 1B) (la Tour et al., 2022). To account for turn-taking during natural conversations, we split all regressors into separate sets for speaking and listening, and fit both submodels jointly using banded ridge regression; this allows the model to learn different weights for each process, and allows us to quantify the relative contribution of each submodel. Then, we correlated the actual and predicted BOLD activity for left-out runs in each voxel only from the language model word embedding, quantifying the extent of linguistic content in the signal for production or comprehension time points separately (Fig 1C).
Results: We found strong encoding performance bilaterally throughout the language network—superior temporal cortex, middle frontal gyrus, inferior frontal gyrus, and angular gyrus—as well as somatomotor and precuneus areas. When evaluating the feature sets separately, we found that the task structure, spectral, and articulation features all recruited the somatomotor cortex during speech production, while speech comprehension more strongly recruited the superior temporal cortex (Fig 2C). While head motion features predicted a typical halo in the superior area. With that variance accounted for, the language model embeddings predicted posterior temporal cortex and middle frontal regions the most (Fig 1A). Surprisingly, we found better overall accuracy in the right hemisphere than left, and the right angular gyrus is heavily recruited for production. The superior temporal region depicted a ventral accuracy gradient for comprehension only (orange), to joint processing (white), and then only production (blue). In order to test for linguistic coupling across dyads, we developed a model-based coupling method where we correlate the production/comprehension model predictions of one subject to the comprehension/production responses of their partner. We found that model-based predictions can generalize between subjects in several hubs across the language network from the early auditory cortex, to temporal regions, and to precuneus (Fig 2B).
Conclusions: Our findings lay the foundation for assessing model-based, brain-to-brain coupling between speakers and listeners. We showed that cortical language representations during interactive natural dialogues can be predicted by language model embeddings, revealing both shared and selective encoding for speaking and listening. While this concurs with existing literature for language comprehension (Caucheteux & King, 2022; Schrimpf et al., 2021), we also show this in production during dialogue (Goldstein et al., 2023; Yamashita et al., 2023). We further extend the production–perception relationship by formally modeling the shared speaker–listener alignment on linguistic features (Zada et al., 2023).

References
Deep Speech-to-Text Models Capture the Neural Basis of Spontaneous Speech in Everyday Conversations

Ariel Goldstein¹, Haocheng Wang², Leonard Niekerken², Zaid Zada², Bobbi Aubrey², Tom Sheffer³, Samuel Nastase², Mariano Schain³, Harshvardhan Gazula², Aditi Singh², Aditi Rao², Gina Choe², Catherine Kim², Werner Doyle⁴, Daniel Friedman⁴, Sasha Devore⁴, Patricia Dugan⁴, Avinatan Hassidim³, Michael Brenner³, Yossi Matias³, Orrin Devinsky⁴, Adeen Flinker⁴, Uri Hasson²

¹Hebrew University, Jerusalem, Israel, ²Princeton University, Princeton, NJ, ³Google Research, Mountain View, CA, ⁴New York University School of Medicine, New York, NY

Introduction: One of the most distinctively human behaviors is our ability to use language for communication during spontaneous conversations. Here, we collected continuous speech recordings and concurrent neural signals recorded from epilepsy patients during their week-long stay in the hospital, resulting in a uniquely large ECoG dataset of 100 hours of speech recordings during spontaneous, open-ended conversations. Deep learning provides a novel computational framework that embraces the multidimensional and context-dependent nature of language (Goldstein et al., 2022; Schrimpf et al., 2021). Here, we use Whisper, a deep multimodal speech-to-text model (Radford et al., 2022) to investigate the neural basis of speech processing.

Methods: We separately extracted “speech embeddings” from the Whisper encoder network based on continuous speech inputs and “language embeddings” from the decoder network based on transcript inputs. To test whether embeddings extracted from Whisper can capture neural activity during natural conversations, we developed linear encoding models based on speech and language embeddings separately. We built electrode-wise encoding models for each lag ranging from -2000 ms to +2000 ms relative to word onset. To evaluate encoding model performance, we calculated the correlation between predicted and actual neural signal for held-out test words using ten-fold cross-validation.

Results: We observed encoding patterns indicating a distributed cortical hierarchy of speech processing (Fig 1A, 1B): Electrodes in superior temporal gyrus (STG) and somatomotor areas (SM) demonstrated higher correlations with speech embeddings, whereas higher-level language areas like inferior frontal gyrus (IFG), posterior medial temporal gyrus (pMTG) and angular gyrus (AG) were better correlated with language embeddings. Furthermore, we observed a spatial distribution of electrodes preferentially engaged in speech production versus speech comprehension. High-level language areas showed a mixed selectivity, indicating a shared neural mechanism between speech production and comprehension (Fig 1C). During speech production, we observed double encoding peaks occurring before and after word onset for some electrodes. We trained encoding models on comprehension data and tested prediction performance on production data. The ‘flipped’ encoding models learned a comprehension-specific mapping and successfully predicted the neural signal after word onset for speech production (Fig. 1D). Evaluating encoding models at each lag relative to word onset allows us to trace the temporal flow of linguistic information across speech-related ROIs. We observed a temporal encoding pattern where language encoding in IFG peaks significantly earlier than speech encoding in STG during speech production (Fig. 2A), and vice versa during speech comprehension (Fig. 2B).
Conclusions: Our encoding models identify a distributed cortical hierarchy where auditory and sensorimotor areas in the brain were better aligned with speech embeddings and high-level frontal and parietal language areas were better aligned with language embeddings (Fig 1). These findings are in line with established theories about the cortical hierarchy of language processing (Hickok & Poeppel, 2007). At the same time, electrode-wise selectivity for speech or linguistic information was mixed across most brain areas. This mixed selectivity is common in both biological and artificial learning systems that are “directly” fit to the complex structure of their inputs (Hasson, Nastase, & Goldstein, 2020). We identified shared mechanisms between speech production and comprehension (Fig. 1C, 1D) and mapped the temporal flow of information during spontaneous speech production and comprehension (Fig 2A, 2B). This study demonstrates that deep language models are a powerful computational tool to build comprehensive models of speech processing in the brain, without compromising the rich dynamic and contextual qualities inherent in everyday language.

References

Poster No 1054

Distinct subgroup-level functional connectivity in stuttering and non-stuttering children

Soo-Eun Chang1, Yanni Liu1, Fiona Höbler1, Hannah Becker1, Valeria Caruso1, Michael Angstadt1, Adriene Beltz1

1University of Michigan, Ann Arbor, MI

Introduction: Developmental stuttering (DS) emerges during a heightened period of speech motor skill development, manifesting as blocks, prolongations, or repetitions on the initiation of speech sequences. DS has been modelled as a systems-level impairment1,2, with structural and functional anomalies identified in the basal ganglia-thalamo-cortical (BGTC) circuits that support planning and execution of speech motor sequences3,4,5. Yet, past studies have predominantly focused on select brain areas or connections through research with adult participants6,7, without leveraging analytical advances of network-based approaches. The aim of this study was to test hypothesized impairments in the speech network’s motor and planning circuits among children who stutter, using the Group Iterative Multiple Model Estimation (GIMME)8 that allows deriving of group- as well as individual-level connectivity measures. We hypothesized that functional connectivity patterns detected with GIMME would show distinct subgroup-level network differences between stuttering and control groups in the (i) planning loop (ii) motor loop (iii) broader network defined in an established neurocomputational model of speech production (Gradient Order Directions Into Velocities of Articulators, GODIVA)9,10, encompassing feedback and feedforward structures.

Methods: We used confirmatory subgrouping (CS-GIMME)11,12, a recent extension of GIMME, to estimate subgroup-level connections for priori known groups (stuttering, control). Connectivity results are derived at the group as well as at individual level, which allows examining subject-specific heterogeneity in connectivity. CS-GIMME can detect paths between nodes (“edges”) that are consistently present for individuals within stuttering and control groups, thus facilitating our interpretation of the heterogeneous connectivity maps and allowing for subgroup-specific inferences. Resting state fMRI (rsfMRI) data were acquired from 73 children who stutter (CWS) and 76 age- and gender-matched children who do not stutter (CNS) (mean age=72 ± 22 months, age range from 38-129 months, 34 CWS girls, 40 CNS girls). Stuttering severity (SSI) range was 2-37 (17.8±6.3) (very mild~very severe). Data were processed using standard methods in SPM12. Subjects were eligible to be included if they had at least 4 minutes of useable data (after motion censoring at FD>0.5mm) and a usable T1 image. Participant-specific time series (164 functional volumes) from 17 regions of interest (ROIs) were extracted. The ROIs and their locations were selected according to regions defined in the DIVA model (Tourville & Guenther, 2011). CS-GIMME was run using a threshold of 75% for group-level edges and 50% for subgroup-level edges.

Results: Group differences in network density were observed in the posterior inferior frontal sulcus (pIFS) within the Planning loop (Fig 1): 1) control group showed greater connectivity between the left pIFS and the caudate; 2) CWS showed greater connectivity of the left pIFS with the ventral later thalamus (VL) within the Motor Loop. Overall, there was a greater number of
connections within the planning loop structures for controls relative to CWS (Fig 2). No group differences were observed in network connectivity found for motor loop or among DIVA structures.

Conclusions: These results show that CS-GIMME can derive functional connectivity results that differentiate stuttering from non-stuttering groups in pathways predicted by a neurocomputational model of speech processing (GODIVA, DIVA). The current findings suggest that stuttering may be associated with impaired planning of speech sounds in their sequential order. We plan to further apply CS-GIMME to examine persistent vs. recovered groups within the stuttering group. In future research, we will further apply GIMME to derive data-driven subgroups within the group of children who stutter to examine whether this method can help predict specific subtypes, or eventual persistence and recovery in developmental stuttering.

References
Poster No 1055

Internal production reveals the spatiotemporal neural dynamics of speech

Joan Orpella1,2, Francesco Mantegna1, M. Florencia Assaneo3, David Poeppel1,4
1New York University, New York, NY, 2Georgetown University, Washington D.C., DC, 3Universidad Nacional Autónoma de México, Santiago de Queretaro, Mexico, 4Ernst Strüngmann Institute, Frankfurt, Germany

Introduction: Speech production models converge on a sequence of necessary stages (e.g., phonological retrieval, phonetic encoding)1,2. Establishing the neural substrates for these stages has proven surprisingly challenging, primarily due to the correlational nature of most experiments. While recent ECoG studies3,4 overcome this limitation by using machine-learning to decode speech from neural data, their spatial coverage remains limited. Here, we used MEG with its excellent temporal resolution and whole-brain coverage along with a decoding approach to track participants’ sequence of speech representations over time and brain space. To avoid data artifacts from muscle activity during the preparation and execution of speech, we used internal speech, which closely mirrors overt speech5,6.

Methods: 31 subjects participated; 22 (mean age=28.19(6.57)) were tested on syllables pa-ta-ka and 9 (mean age=23(7.94)) on ta-tu-ti. Participants either internally produced or passively viewed one of three visually presented syllables (Fig 1A). We estimated the onset of subjects’ internal productions based on their productions in an overt version of the task. To determine whether/when each internally produced syllable can be decoded from the noninvasive neural data, we trained and tested a linear classifier at each millisecond for each of the possible pairwise syllable contrasts and for each participant/condition. The average time course of decoding performance for these contrasts per participant was subjected to a permutation test to determine the times of significant decoding (Fig 1B). To establish the neural sources of syllable decoding, we projected each participant’s sensor data to source space and performed a decoding analysis for each source and pairwise syllable contrast, taking as input features the times corresponding to each identified peak (trough to trough; Fig 1B). The averages within participant of the pairwise syllable decoding results for each source were morphed to a standard source space and subjected to a permutation test to determine spatial clusters of significant syllable decoding for each peak (Fig 1C). We acquired electromyographic data from participants’ upper lip and jaw to confirm that the MEG signals were not contaminated by micromovements.
Results: Fig 1B shows that the identity of syllables—differing only by the onset stop consonant and internally planned/produced by participants—can be robustly recovered from the MEG data with high temporal resolution. The succession of decoding peaks suggests that a sequence of distinct neural representations underlies internal syllable production. This succession is markedly different from that obtained from passively viewing the syllables (Fig 1B). We sought to determine the neural sources of syllable decoding corresponding to the identified peaks. Fig 1C shows the resulting sequence of neural speech representations decoded from the planning and internal production of speech. The sequence, which includes robust decoding from left speech motor/auditory areas immediately preceding/following the expected syllable onset time (based on subjects' overt productions), adheres to current processing models. Data from the ta-tu-ti cohort validated these results and extended them by revealing a greater presence of auditory (vs motor) representations for this set.

Conclusions: Subtle phonemic contrasts can be recovered from the neural substrates identified by current models for each stage of the speech production process. These results resolve longstanding questions regarding the informational content of previously reported dynamic brain activity patterns for speech production. The data also provide direct evidence for the generation of precise sensory predictions during speech production, so far only inferred from speaking induced suppression or responses to altered feedback and supports the close parallels between core processes for internal and overt speech.
Premotor-hippocampal connectivity and sense of agency during encoding predicts reliving of events

Nathalie Heidi Meyer1, Baptiste Gauthier1, Lucas Burget1, Jevita Potheegadoo1, Juliette Boscheron1, Elizabeth Franc1, Florian Lance1, Olaf Blanke1

1EPFL, Geneva, Switzerland

Introduction: Autonoetic consciousness (ANC), the ability to re-experience a personal past event has been theorized to link episodic memory and self-consciousness in the act of remembering (Klein and Nichols, 2012; Tulving, 1985). Although the sensory and the self-conscious aspects of ANC have been investigated separately, multiple pieces of evidence point towards an association of self-consciousness and sensory information when modulating ANC. Bodily self-consciousness (BSC), defined as a unitary sense of self within the bodily boundaries, has been shown to arise from multisensory and sensorimotor perceptual mechanisms of specific bodily signals (Blanke et al., 2015), and has been argued to be the missing link joining sensorimotor and self-conscious context during encoding with later re-living of the encoded event and ANC (Brecht et al., 2019). However, how BSC and its related subjective experience at encoding affect ANC remains unknown. In this study, we addressed this question by modulating sensorimotor context and sense of agency (SoA) of participants during the encoding of virtual scenes while simultaneously recording brain activity using fMRI.

Methods: We tested 73 young healthy right-handed participants, of which 24 participated to the experiment in the MR scanner during encoding. Participants encoded three different scenes in immersive virtual reality. Each scene was associated with a different BSC condition with a different level of visuomotor and perspectival congruency to modulate the SoA (1PP synchronous – SYNCH1PP, 1PP asynchronous – ASYNCH1PP, 3PP asynchronous – ASYNCH3PP). We assessed ANC one week later using a 28 items questionnaire. We applied a linear mixed model to investigate whether we could explain the ANC by the interaction between the experimental conditions and the SoA score. We then computed a generalized psychophysiological interaction analysis (gPPI; using the CONN toolbox v20b) to investigate whether the encoding functional connectivity between the left hippocampus and left dorsal premotor cortex (dPMC), two regions previously found to be sensitive to our BSC manipulation (Meyer et al., 2023), differ between conditions. Finally, we investigated whether ANC could be explained by the functional connectivity between left dPMC and left hippocampus and its interaction with SoA using a linear mixed model. To control that the effect was specific to our experimental condition, we applied the same analysis using the regions reversed on the right hemisphere (using lmCalc from SPM12).

Results: At the behavioral level we found that the SoA during encoding predicted ANC score at 1 week (significant interaction between SYNCH1PP and ASYNCH3PP with SoA; estimate = -0.15, t = -3, p = 0.003). Post-hoc analysis applied separately on SYNCH1PP and ASYNCH3PP revealed a significant correlation between SoA and the ANC score, but only with preserved-normal visuomotor and perspectival congruency (SYNCH1PP: estimate = 0.13, t = 2.05, p = 0.04, ASYNCH3PP: estimate = -0.06, t = -1.27, p = 0.21). Compatible with the behavioral results, we found that the functional connectivity between the left hippocampus and left dPMC during encoding significantly differed between the SYNCH1PP and the ASYNCH3PP condition (Figure 1B, estimate = -0.099, t = -2.47, p = 0.02). Finally, we found a significant interaction between SoA and the functional connectivity of the left hippocampus and dPMC when we applied it to explain ANC scores (estimate = 4.8, t = 2.39, p = 0.02). Posthoc analysis of the interaction revealed that the positive relationship between SoA and ANC only holds when the functional connectivity is strong. We found no significant relationship between SoA and ANC when applying the same models with the functional connectivity of the right dPMC and hippocampus (estimate = 0.31, t = 0.55, p = 0.58).

References
Conclusions: These results link the self in the present (BSC) with self in the past (ANC), through premotor-hippocampal functional connectivity at encoding.

References
1. E. Tulving, Memory and consciousness. Canadian Psychology / Psychologie canadienne 26, 1–12 (1985)

Poster No 1057
Common regularities between different memory types link motor network excitability to word learning
Alberto Failla¹, Martina Bracco², Edwin Robertson¹
¹Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, Glasgow, United Kingdom, ²Sorbonne Université, Paris Brain Institute, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, Ile de France

Introduction: A common regularity can structure different types of information (actions vs. words). These common features allow information to be shared between otherwise segregated memory systems (Robertson, 2022). We sought to understand how common regularities alter brain networks to allow information to be shared between different memory types (actions vs. words). Network excitability has been linked to memory processing, for example, it is critical in determining the allocation of memories to particular circuits (Cai et al., 2016, Rashid et al., 2016).

Methods: We measured motor network excitability by applying single pulses of transcranial magnetic stimulation to the right motor cortex, and measuring the amplitude of the elicited motor evoked potentials (with electromyography - EMG; Figure). Excitability was measured at baseline prior to the motor sequence learning task, throughout word-list learning (after each iteration of the list; t1 to t5), and at subsequent free recall (t6; Figure). Along with excitability, we also measured the performance on both memory tasks. Both tasks had a repeating serial structure (sequences) of either actions (skill learning) or words (word-list learning), each of 12 items. The motor sequence consisted of four different finger movements (1,2,3,4) and the word-list of four different semantic categories (transport, vegetable, furniture, clothing) with three words from each category (to give a 12-item word list). The movement sequence constrained the subsequent word-list through a simple mapping between the four elements within the motor sequence and the four semantic categories within the word-list (Figure). When this mapping was maintained the sequences with different content had a common abstract structure (same, n=25) whereas, when this mapping was violated, the sequences had different structures (different, n=25).
Results: We found that both serial word recall and excitability during word-list learning was significantly affected by the memory tasks having the same or different structures. The change in serial recall performance during word-list learning was greater when the memory tasks had the same rather than different structures (unpaired t-test with estimated marginal means: t2 to t5, p<0.05). This difference between the groups was maintained at the subsequent free recall (t6; same vs. different; unpaired t-test: t6, t(49)= 2.91, p=0.005). Similarly, motor network excitability during word-list learning was significantly greater when the memory tasks had the same rather than different serial structures (unpaired t-test with estimated marginal means: t1 to t5, p<0.05). Not only did excitability increase when the memory tasks had the same structure, it was significantly correlated with the enhanced serial recall during word-list learning (repeated measure correlation: r=0.25, p=0.01). By contrast, when the tasks had different structures there was no significant correlation between excitability and serial recall during word-list learning (r=0.15, p=0.12). Excitability was specifically linked to learning. We found no increase in excitability during the free recall of the word-list (same vs. different; unpaired t-test: p=0.23), and no correlation between the excitability and free recall (Spearman correlation; Same: r=-0.01, p=0.96; Different: r=-0.01, p=0.96).

Conclusions: A common task structure caused an increase in motor network excitability, which was linked to enhanced serial recall. The network became embedded within the declarative learning of a list of words when it had previously experienced the same abstract serial regularity. This allowed previous experience of the serial regularity within the context of actions to enhance learning within a new context (words). These results provide insight into how the segregation between memory systems breaks down and supports the generalization of knowledge across different contexts (actions vs. words).

References
Hippocampal Morphology and Stress Levels in Medical and Non-Medical Students: Implications for Learn

Ashwag Alruwaili¹, Sumyah Alnajashi¹, Afnan Alwasedi², Sara Albraihi³, Ross Keenan³, Tracy Melzer³, Mustafa Almuqbel⁴

¹King Saud University, Riyadh, Riyadh, ²King Saud University, Riyadh, Riyadh, ³New Zealand Brain Research Institute, Christchurch, Christchurch, ⁴Pacific Radiology Group, Christchurch, Christchurch

Introduction: The presence of hippocampal atrophy has been consistently identified in studies involving stress imaging. Maintaining overall mental health is crucial for sustaining this ability. Even seemingly trivial factors such as apprehensive thoughts regarding potential threats or anxieties about the future have the potential to disrupt our well-being (WHO, 2004). In this study, we investigate the impact of academic stress on hippocampal volume. This study aimed to investigate the role of stress on academic students.

Methods: A cohort of 20 medical and 20 non-medical female students underwent assessment for stress and anxiety levels during the examination period using the Kessler Psychological Distress Questionnaire (K10). Following this assessment, magnetic resonance imaging (MRI) scans of the brain were conducted on our 3-Tesla (Siemens Spectra) MRI scanner (Iselin, NJ). For each participant, we acquired a three-dimensional T1-weighted MPRAGE dataset. The data were collected in sagittal plane with a FOV=256mm, voxel size = 1.0x1.0x1.0mm, TR=1900ms, TE=2.42ms, TI=900ms, rBW=220Hz, FA=90, and an acquisition time of 04:23 minutes. Hippocampal segmentation and volumetric quantification were assessed using the FreeSurfer software package. All participants’ T1-weighted MR images were processed using the freely available FreeSurfer 7.1.0 (http://surfer.nmr.mgh.harvard.edu) standard cross-sectional processing pipeline. Following that, the dedicated FreeSurfer hippocampal subfields pipeline was employed on all data sets. Briefly, the algorithm for segmentation of individual sub-regions uses Bayesian inference based on observed image intensities and a probabilistic atlas built from a library of in vivo manual segmentations and ultra-high resolution (~0.1 mm isotropic) ex-vivo labelled MRI data. Details of these steps are described by Iglesias and colleagues (Lee et al. 2009, Iglesias et al. 2015, Brown et al. 2020). The hippocampal subfield segmentation module resulted in volumetric estimation of the hippocampal head, body, and tail for each hemisphere. Estimated total intracranial volume (eTIV) generated by FreeSurfer was used as an estimate for intracranial volume (ICV) in this study. All the processed data were visually inspected for artifacts; no manual editing was performed on the data. The estimated right and left volumes of the hippocampal head, body, and tail were used in the statistical analysis. Figure 1 demonstrates the hippocampal subfields segmentation in one of the study subjects. Demographic data and imaging metrics were subjected to rigorous statistical analysis using the R software.

Results: Our findings revealed a notable disparity in stress levels between medical and non-medical students, with the former experiencing significantly higher stress level. Contrary to expectations, medical students had larger hippocampal head volumes, with no significant differences in hippocampal body and tail volumes between the two groups. Discussion: Medical students’ rich learning environment and cognitive demands may have contributed to larger hippocampal volumes, as head region plays a vital role in encoding information and building associations based on learning and memorization. The hippocampal head region has been associated with declarative memory, learning, and visual associations, which are highly relevant to medical students who constantly face novel information and body organ imagery. The lack of a significant correlation between hippocampal volume and stress may be due to a shorter duration of stress exposure, as chronic stress may require an extended period to induce structural changes.

Conclusions: This research underscores the potential role of learning over stress on brain morphology and, subsequently, the overall well-being of students. As a result, educators should consider implementing strategies to equip students with effective stress-coping mechanisms to mitigate the risk of enduring long-term and potentially irreversible consequences.
References

Poster No 1059

10-Hz Flicker Boosts Early Consolidation of Visual Perceptual Learning via Augmented Glx/GABA Ratio

Xin-Yue Yang1,2,3,4, Qing He5, Chuyue Zhao6,7, Zhentao Zuo6,7,8, Fang Fang1,2,3,4

1School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China, 2Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, China, 3IDG/McGovern Institute for Brain Research, Peking University, Beijing, China, 4Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China, 5State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China, 6Institute of Biophysics, Chinese Academy of Sciences, Beijing, China, 7University of Chinese Academy of Sciences, Sino-Danish College, Beijing, China, 8Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China

Introduction: Visual perceptual learning (VPL) refers to the phenomenon where certain aspects of vision obtain sustainable enhancement after extensive training, constituting an important form of neural plasticity in the visual system1. VPL consists of multiple stages with different neural substrates2, among which the stage of early consolidation immediately after training, though documented to be active and plastic3,4, remains largely elusive. Multiple means of intervention have been used to interfere with early consolidation (disruption5, facilitation6). Repetitive visual stimulation (RVS), as a means of behavioral intervention, was found to evoke LTP-like activities when administrated at alpha (8-12 Hz) frequencies and LTD at 1 Hz6,7. Little is known as to how RVS acts on neuronal activation/inhibition and whether it can be harnessed to influence early consolidation of VPL in a directed manner. To probe the neural mechanisms underpinning early consolidation, we implemented RVS immediately after training on a parfoveal orientation discrimination task (ODT). We used 3T functional magnetic resonance imaging (fMRI) to map out the activated area and used 3T magnetic resonance spectroscopy (MRS) to measure the concentrations of excitatory neurotransmitter glutamate (Glx: glutamate and glutamine) and inhibitory neurotransmitter γ-aminobutyric acid (GABA) in this area during VPL.

Methods: We conducted a between-subject, single-blind study where 30 healthy volunteers with normal or corrected-to-normal vision were allocated to a 10-Hz (H), 1-Hz (L), or non-frequency (S) flicker group and went over 10 blocks of ODT training...
(session 1) and 25 minutes of RVS, took a break of 4 hours, and then finished 6 blocks of ODT post-test (session 2). In ODT, two embedded-in-noise gabor patterns with different orientations appeared in succession in the peripheral. Participants answered whether the rotation between gabors was clockwise or counter-clockwise by pressing keys placed under index fingers. In RVS, a sinusoidal grating was flashed in the same location as the gabors at the frequency of each group. Before sessions 1 and 2, we presented a localizer and acquired fMRI data to determine the activation locale corresponding to the gabor location, based on which we defined the field of view (2×2.5×2.5 cm3) in MRS. MRS was acquired using the MEGA PRESS sequence through sessions 1 and 2. Data were analyzed using R, a customized Gannet toolbox, and SPSS 24.

Results: Repeated measures ANOVA of behavioral results showed that group and session had significant interaction (Finteraction(2,26) = 6.364, p = 0.006). 10-Hz flicker in the RVS session resulted in improved orientation discrimination in the post-test, while 1-Hz RVS resulted in detriments to task performance (simple main effect of session with Bonferroni adjustment: pH = 0.009, pL = 0.034, pS = 0.936. Fig. 1). We subsequently analyzed the E/I ratio, calculated as Glx/GABA, using linear mixed effect (LME) models. E/I decreased along VPL training (Fbatch(4,51) = 0.322, p = 0.024), indicating that the excitation-inhibition balance shifted to the inhibition side with training participation. Lastly, we found that E/I ratio increased after 10-Hz but not 1-Hz RVS or S-RVS (simple main effect of session: pH = 0.022, pL = 0.426, pS = 0.893. Fig. 2).

Conclusions: Training-involved neural circuits and newly founded/strengthened neural connections remain plastic for at least 25 minutes after initial encoding in VPL training. The plastic stage of early consolidation opens the opportunity for intervention. 10-Hz RVS upscaled excitatory activities in the task-recruited areas and facilitated early consolidation, while 1-Hz RVS disrupted consolidation. At last, training alone shifted the E/I balance in the inhibitory direction, possibly through sensory adaptation.
This study analyzed band power during a 3-second encoding period, finding significant differences in Theta, Alpha, and Gamma bands between successful and failed memory trials across all conditions (p < 0.05). Notably, significant differences were observed only in the No alarm condition, emphasizing the importance of hippocampal theta oscillations in successful encoding. When examining the impact of alarms on encoding, band power during the 1.8-second interval post-alarm revealed significant differences in mean theta power between successful and failed trials for all conditions. Alarms were triggered when average theta power during an 800ms interval fell below a threshold, demonstrating significant differences in Theta and Beta band power for all conditions. Using theta band power for alarm triggering significantly enhanced memory accuracy, particularly in the Theta-based alarm condition compared to No alarm and Random alarm conditions (p < 0.05). These findings robustly support the hypothesis that alarms based on hippocampal theta power lead to improved memory performance.

Conclusions: This study introduces a groundbreaking use of intracranial electroencephalography (iEEG) to target the human hippocampus and enhance real-time hippocampal theta power for the purpose of improving memory performance. Unlike previous neurofeedback studies primarily relying on non-invasive methods like EEG, this study presents novel real-time neurofeedback specifically based on hippocampal theta power. We employed the Hjorth activity method to compute hippocampal theta power in real-time, delivering alarms in case of a decrease, with the goal of improving memory performance. The study confirmed the hypothesis by showing that hippocampal theta power was not decreased in response.
to theta-based alarms compared to no alarm or random alarm conditions. Simultaneously, associative memory has been shown to improve. This novel approach is expected to significantly contribute to our understanding and improvement of human memory mechanisms, offering potential strategies for preventing memory-related neurological and mental health disorders.

References

Poster No 1061
Role of M1 in schema-mediated motor memory consolidation assessed with fMRI and disruptive TMS
Serena Reverberi1, Nina Dolfen2, Mareike Gann3, Koen Cuypers4, Bradley King5, Genevieve Albouy1

1Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium, 2Department of Psychology, Columbia University, New York, NY, 3Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 4Neurologic Rehabilitation research group, Hasselt University, Diepenbeek, Limburg, 5Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT

Introduction: New information is rapidly learned when it is compatible with previous knowledge1-3; this memory effect, termed the “schema effect”, has been widely studied in the declarative memory domain, and recently demonstrated in the motor memory domain4. However, its underlying neural substrates remain unknown. In this study, we first investigated the neural substrates of schema-mediated motor memory consolidation with fMRI (Experiment 1, E1); then, we aimed to provide causal evidence for the involvement of the identified substrates in this process using disruptive TMS (Experiment 2, E2). Given the critical role of striatal-cortical networks in motor memory5, we hypothesized that these regions would be involved in schema-mediated motor memory consolidation, and that their disruption via TMS would affect the integration of new motor information into available motor schema.

Methods: E1 - 60 young healthy participants performed 2 experimental sessions, approximately 24 hours apart. During Session 1 (S1), all participants learned a bimanual, eight-element motor sequence through repeated practice. During Session 2 (S2), participants learned a novel sequence whose structure (i.e., schema) was either highly compatible (COMP group) or highly incompatible (INCOMP) with that learned in S1 (see Fig.1). Eight runs of fMRI data were collected during S2 task practice (TR=2s, TE=30ms, voxel size= 2.5x2.5x2.5mm; Philips Achieva 3T MR scanner) and processed with SPM12. Brain activity related to task practice was extracted and contrasted between experimental groups using two-sample t-tests. E2 – 48 young healthy participants performed 2 experimental sessions, approximately 24 hours apart. The task was identical to that of E1,
but during S2 all participants performed the compatible (COMP) sequence. Prior to task performance in S2, disruptive TMS (COMP STIM group) or sham stimulation (COMP SHAM group) was applied to the left primary motor cortex (M1), as identified in E1. Disruptive TMS was performed using continuous theta-burst stimulation consisting of 3 pulses at 50 Hz repeated every 200ms for 40s, delivered at an intensity of 80% of the resting motor threshold. Motor-evoked potentials (MEPs) were collected from the right first dorsal interosseous muscle prior to and post-task learning in S1, and prior to and post-TMS in S2.

Results: E1 - The COMP group displayed enhanced performance during S2 compared to the INCOMP group (i.e. lower response time during pre-scan test; group effect p=0.03, Fig. 2A) suggesting a beneficial effect of schema compatibility on overall performance. FMRI analysis showed that this effect was supported by greater activity in the left M1 in the COMP – as compared to the INCOMP – group during task practice (Fig. 2B). E2 – Performance of the COMP STIM and COMP SHAM groups did not differ in either S1 or S2 (see Fig. 2C), suggesting that TMS did not disrupt memory integration at the group level. In S1, we detected a significant decrease in corticospinal excitability post explicit SRTT learning across both groups (p=0.02), as in previous research6. Within the COMP STIM group, although no overall significant MEP suppression was detected post-TMS, greater MEP suppression significantly correlated with decreased accuracy at S2 training (r²=0.2, p=0.03, Fig. 2D). In the COMP STIM group, greater MEP suppression in S1 was also correlated with greater suppression in S2 (r²=0.25, p=0.01) and with decreased accuracy at S2 training for learned movement transitions (r²=0.16, p=0.05).
Conclusions: Overall, our results suggest that the left primary motor cortex supports schema-mediated motor memory consolidation. The data show that the greater the TMS-induced decrease in corticospinal excitability, the greater the decrease in movement accuracy during schema-compatible practice. Our findings therefore provide novel insights into the role of M1 in schema-mediated integration of new movements into memory.

References

Poster No 1062

Passive Spatial Learning in Humans: Neural Alignment during Naturalistic Navigation

Xinyu Liang1, Joern Alexander Quent1, Liangyue Song1, Yueting Su1, Deniz Vatansever1
1Institute of Science and Technology for Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China

Introduction: Learning of spatial environments plays a vital role in the survival of both animal and human species. Emerging evidence has highlighted a “navigational neural network” in supporting the encoding and internal representation of a cognitive map of our environments during active navigation1. However, the contribution of this network to passive encoding (i.e. observer effect) of spatial environments remains unclear2. Recent work has shown that passive learning from lecture recordings could evoke shared neural representations across participants, with greater alignment to experts’ responses linked to better learning outcomes3. Here, we conducted a virtual reality experiment using 3T fMRI with a naturalistic navigation video to investigate the neural underpinnings of passive spatial learning.

Methods: A total of 48 participants (mean age = 23.69 years, SD = 2.15, F/M ratio = 30/18) underwent 3T fMRI scanning (TR = 0.8 s, TE = 37 ms, 2 mm iso voxels). Participants were asked to learn the locations of 6 different objects while watching a video of an agent navigating within a circular virtual arena (Fig. 1a). Subsequently, participants performed an Object Location Memory (OLM) task within the same arena, in which they actively searched and retrieved the hidden objects. We assessed participants’ passive learning outcomes by analyzing their performance during the initial presentation of all objects, focusing specifically on the accuracy and placement error (Fig. 1b). Based on performance, we defined a fast-learner group comprising of four participants with high accuracy (≥3 trials) and low placement error (<30 vm), categorizing the remaining participants as part of the slow-learner group. The HCP style fMRI data was minimally preprocessed using HCP pipelines (Qunex)4. To calculate the shared neural activity patterns across slow and fast-learners during video watching, we employed an inter-subject pattern correlation framework5. In total, 360 cortical regions from multi-model parcellation6 and 16 subcortical regions from Desikan-Killiany atlas were included. For each region, we derived a neural alignment score to fast-learners by correlating the shared response model (SRM) pattern in each slow-learner with the mean pattern across fast-learners in each time point, and then temporally averaged within each individual (Fig. 1c). To test if the neural alignment could predict learning outcomes, we calculated correlation between alignment scores and average placement error. Statistical significance was assessed using a one-side non-parametric permutation testing.
Results: The neural alignment results revealed shared neural activity patterns centered within the occipital visual, motor, medial orbital frontal and anterior temporal cortices as well as subcortical regions such as the bilateral hippocampus and thalamus (Fig. 1c). When projected onto the cortical connectivity gradient space\(^7\), the effects highlighted the distribution of the neural alignment scores both at the intermediate zones and at the endpoints of the unimodal-to-transmodal gradient. The alignment scores from the bilateral visual pathway, visual motion area, attention and navigation related regions could significantly predict average placement error, indicating better performance (FDRp < .05) (Fig. 2a). Moreover, neural alignment in the hippocampus, amygdala, and other cortical regions involved in cognitive control and navigation also displayed association with improved learning outcomes.
Conclusions: Our results revealed that neural alignment to fast-learners within the hippocampus and visual regions during passive spatial learning could predict subsequent memory performance. Collectively, our findings not only highlight the potential value of using naturalistic navigation in investigating spatial learning and memory, but also provide vital evidence for the neural mechanisms underlying passive learning of spatial environments.

References
Decoding visual predictions in stimulus sequences: concurrent EEG/fMRI study

Ryszard Auksztulewicz

Freie Universität Berlin, Berlin, Berlin

Introduction: Mounting evidence suggests that neural processing of the present (perception) is informed by the past (memory) and aimed at the future (prediction). This notion has been formalised in the predictive processing framework [Friston, 2010]. Canonical models posit that predictions are grounded in memories [Baldeweg, 2006], and evidence from animal models suggests that mnemonic and predictive representations co-occur in the sensory neocortex [Cappotto et al., 2022]. However, recent studies in humans suggest that predictive processing may actually interfere with memory formation, and that the same neural structures may switch from encoding prediction errors to predictions at different stages of memory formation [Aitken & Kok, 2022]. Together with colleagues, we have formulated a hypothesis that memory and prediction are simultaneously implemented via distinctive interactions between sensory neocortex and the hippocampus [Barron et al., 2020]. This study is an attempt to replicate and extend our previous findings in animal models [Cappotto et al., 2022], where sensory memory traces could be decoded from sensory (auditory) cortical activity. Crucially, we could simultaneously decode sensory predictions related to upcoming stimuli. Here, we have translated the study from anaesthetised rodents to awake human volunteers; from the auditory modality to the visual modality; and from direct electrophysiological recordings to simultaneous EEG/fMRI. The aim of the study was to test whether we can decode predictions based on EEG and fMRI recordings in healthy human volunteers, and whether fMRI-based prediction decoding relies on the multivariate activity patterns in the sensory neocortex and/or the hippocampus.

Methods: N=24 healthy human volunteers were exposed to visual sequences comprising repeated triplets of images (Faces, Houses, Tools). A subset of 10% images was replaced with a visual “impulse” stimulus (concentric grating), aimed at reactivating memory/prediction traces for subsequent decoding [Stokes, 2015]. As a control condition, we presented the same stimuli in a random order (Figure panel A). While participants were exposed to sequences, their brain activity was recorded using simultaneous EEG/fMRI. In the analysis, first we used multivariate decoding techniques based on cross-validated Mahalanobis distance and representational similarity analysis (RSA) [Cappotto et al., 2022] to decode prediction traces from EEG signals. Second, we used the same techniques to decode prediction traces from fMRI data. Finally, we correlated single-trial EEG-based decoding estimates with fMRI BOLD amplitudes. In the latter analysis, single-trial EEG-based decoding estimates were treated as a regressor in a mass-univariate analysis based on the general linear model. Correction for multiple comparisons across voxels was based on family-wise error rate.

Results: EEG-based decoding showed that predictions of sequence elements replaced by “impulse” stimuli could be decoded in the predictable blocks (based on repeated stimulus triplets) but not in the control/random blocks (paired t-test, p<.05, corrected across time points). This result was linked to EEG latencies approx. 250 ms after impulse onset (Figure panel B, left). fMRI-based decoding showed the same pattern of results (significant prediction decoding in predictable but not in random blocks; paired t-test, p<.05, cluster-level corrected across voxels). Here, decoding was linked to early visual regions (Figure panel C). Finally, single-trial EEG-based decoding was found to significantly correlate with BOLD activity in the right hippocampus (Figure panel B, right).
Conclusions: In conclusion, while fMRI-based prediction decoding was linked to early visual regions, EEG-based decoding correlated across trials with BOLD amplitude in the hippocampus. These results provide evidence for a neocortical-hippocampal network subserving predictive processing in stimulus sequences.

References
1. Aitken et al. (2022) Nature Communications, doi: 10.1038/s41467-022-31040-w

Poster No 1064
Charting neural representations behind human spatial learning
Liangyue Song1,1, Joern Alexander Quent2, Xinyu Liang3, Yueting Su3, Deniz Vatansever3
1Fudan University, Shanghai, China, 2Fudan University, Shanghai, 3Fudan University, Shanghai, Shanghai

Introduction: Spatial navigation is a core cognitive process that relies on the coordinated activity of a complex and widespread neural circuitry1. Notably, a set of brain regions centered on the medial temporal, parietal and prefrontal cortices are now suggested to exhibit grid-like activity patterns during spatial navigation2, providing mechanistic insights into the use of cognitive maps in the navigation of learned spatial environments. However, there is notable scarcity of research on the encoding of spatial memory and thus the learning process itself. Here, using an ecologically valid virtual reality environment, we aimed to map the neural mechanism underlying the naturalistic encoding of spatial memory in humans.

Methods: A group of 55 participants (mean age = 23.70, SD = 2.21, F/M ratio = 34/21) were scanned at 3T MRI via HCP style data acquisition protocols, while performing two runs of an Object Location Memory (OLM) paradigm. In this task, participants were asked to navigate in a virtual arena in order to learn and memorize the locations of six hidden objects through multiple cycles of memory retrieval and update (Fig. 1a). Memory performance and learning in each trial was measured via placement error i.e. the Euclidean distance between the estimated and correct object location (Fig. 1b), which was subsequently employed as a parametric modulator in a GLM-based analysis of the task fMRI data. Our main analysis of interest was to investigate brain regions which showed greater activity with a reduction in placement error, indicating the ongoing learning process. Results were further interrogated to unveil their distribution across the cortical and subcortical organization of the human brain.

Results: Behavioral results revealed a significant reduction in the placement error within and between runs, demonstrating a learning effect in the memorization of object locations. Using placement error as the parametric modulator, we identified a host of regions responsive to improved memory performance, suggesting their involvement in spatial learning. These results encompassed regions that are highly connected to learning such as the hippocampus, as well as regions associated with grid-like activity patterns during navigation, such as the entorhinal cortex (EC), orbital prefrontal cortex (OFC) and temporal cortex (Fig. 1c). Network partitioning revealed that regions belonging to the Default Mode (DMN) and Somatomotor Networks (SMN) contributed most to the significant clusters (FDRp < 0.05, Fig. 2ai). This was further supported by cortical gradient projection, where significant clusters were positioned along transmodal and somatomotor endpoints of the principal connectivity gradients (Fig. 2aii). In a between-subject analysis, the role that the DMN plays in spatial learning was further highlighted by the significant correlation between modulation of regions within this network and task performance (p<0.05, Fig. 2aiii). While at the subcortical level, the results revealed that the learning related modulation was localized in the bilateral anterior hippocampus, left amygdala, and the ventral striatum (Fig. 2bi). The modulation effect from the left hippocampus positively correlated with performance improvement from Run 1 to Run 2 (cor=0.27, p=0.04), indicating its contribution to spatial learning (Fig. 2bii).
Object Location Memory Paradigm

Press the button when you are at the location of the hidden object.

1. Cue (2s)
2. Search
3. Collect

2 Runs
18 Trials per run
6 repetitions per object

Behavioural Results

Virtual arena in the OLM task

Placement error

Number of times the object was presented

Neural response to spatial learning

Modulation of activity by the placement error during search

Figure. 1. Neural activity patterns underlying spatial learning. a. An Object Location Memory (OLM) virtual reality paradigm was designed with three distinct phases: cue, search and collection. b. Behavioral results revealed improvement in task performance as indicated by a decrease within and between runs. c. The brain activity modulated by placement error during the search period. Regions with positive z-stat values show increased activity when participants perform better. Imaging data was minimally preprocessed using QnEx containerized versions of the HCP preprocessing pipelines and statistically modelled using FSL FEAT routines [3]. Significance was estimated using non-parametric permutation testing via PALM and corrected for gender, age and the button control ability score tested by a pre-scan training. The clusters at the significance level of 0.05(uncorrected) are distributed across orbital prefrontal cortex (OFC), posterior cingulate cortex (PCC), motor cortex, temporal cortex, entorhinal cortex, posterior parietal cortex (PPC) and visual cortices. These are regions associated with learning and memory and grid-like activity patterns from a cognitive perspective and the DMN for a cortical organization perspective. Regions also involve hippocampus, amygdala and ventral striatum in subcortical areas.
Conclusions: Our findings indicate that spatial learning in a virtual reality environment engages medial temporal lobe regions that often exhibit grid-like activity patterns, suggesting a potential role for cognitive map dynamics in this encoding process. Moreover, the additional involvement of regions within the Default Mode Network adds an intriguing layer to our findings, highlighting the active contribution of this transmodal network to spatial learning.

References
Emergence and reconfiguration of modular structure for synaptic neural networks during learning

Shi Gu

University of Electronic Science and Technology of China, Chengdu

Introduction: To study the learning dynamics of HebbFF, we developed a multi-pronged approach examining the dynamic reconfiguration of the networks from different perspectives. We begin with an analysis of the modularity over temporal scales and its relationship to variations in task accuracy and distribution entropy across diverse learning paradigms. We then explored the synchronicity of states during the training phase and its subsequent correlation with accuracy. We show that network modularization enhances with learning, and that network flexibility serves as a robust metric encapsulating model performance, in line with results from neuroscience in biological organisms. We hope that our findings will shed light on the interplay between network modularity, accuracy, and learning dynamics, and ultimately advance our understanding of artificial neural networks and their biological counterparts.

Results: We explored the dynamic reconfiguration of artificial neural networks, focusing on a class of recurrent (RNNs) called Hebbian Feed Forward Network (HebbFF). This network determines the familiarity of a stimulus based on whether it matches a stimulus encountered at a prior time-step. We used a neural network with 120 units in the hidden layer to provide sufficient representation power for encoding the input. A more detailed result can be found at https://arxiv.org/abs/2311.05862.

Conclusions: In sum, our discoveries contribute significantly to the broader aim of intersection between AI and Neuroscience - using AI not only to replicate but also to understand and learn from the intricate workings of the brain. The tools and methods we developed present new opportunities to study learning dynamics in both artificial and biological neural networks. Such cross-fertilization of ideas can potentially lead to more efficient, adaptable, and robust AI systems while providing insights into the neuroscience of learning and memory. We note that our research so far focused on memory tasks, which are well-suited for Hebbian feedforward networks that are inherently amenable to descriptions based on modularization. Future work should expand our approach to other cognitive tasks like multimodal matching, value decision, and perception tasks, as well as to other types of ANNs including RNN and deep feedforward networks. We hope that multimodal continual tasks learned through complex networks could serve as a digital analogue of the brain in terms of cognitive execution and may provide novel insights into how functional modules reconfigure to support complex tasks.

References
Gamma-band sensory stimulation enhances episodic memory retrieval

Benjamin Griffiths¹, Katharina Duecker¹, Daniel Weinert², Ole Jensen¹, Tobias Staudigl²

¹University of Birmingham, Birmingham, West Midlands, ²Ludwig-Maximilians-Universität München, Munich, Bavaria

Introduction: Enhanced gamma activity (30-100Hz) coincides with successful episodic memory retrieval, but it remains unknown whether this oscillatory activity is a cause or a consequence of the retrieval process. We aim to address this question of causality.

Methods: 32 human participants completed a paired associates memory task whilst undergoing visual sensory stimulation (at 65Hz, 43.3Hz and 32.5Hz) during episodic memory retrieval. MEG activity was simultaneously recorded. The impact of sensory stimulation on memory performance was quantified using multi-level logistic regression models. The MEG data was preprocessed to attenuate noise and analysed using two approaches: (i) a standard time-frequency decomposition using wavelets, and (ii) a time-series average computed by locking the MEG data to each light pulse delivered during sensory stimulation. Non-parametric permutation tests were used to assess statistical significance and correct for multiple comparisons.

Results: In the behavioural data, both 68Hz and 34Hz sensory stimulation enhanced memory recall above a baseline condition where no sensory stimulation was applied. Only a small proportion of participants (~10%) could perceive the 65Hz visual flicker, suggesting 65Hz sensory stimulation is imperceptible. In the time-frequency analysis, 68Hz and 44Hz stimulation produced narrowband increases in spectral power within their respective bands over occipital sensors. In contrast, 34Hz stimulation produced narrowband increases in power at both 34Hz and 68Hz over occipital sensors. In the analysis of the peak-locked time-series data, the 34Hz condition produced two oscillations superimposed over one another: a 34Hz oscillation that principally arose over occipital sensors, and a spatially- and statistically distinct 68Hz oscillation over parietal sensors.

Conclusions: These results suggest imperceptible sensory stimulation enhances recall, providing a novel and entirely unintrusive means of tackling mnemonic issues. This appears to be achieved by 34Hz and 68Hz stimulation both enhancing an endogenous 68Hz gamma oscillation, suggesting that this gamma activity plays a causal role in episodic memory retrieval. Furthermore, the observation that subharmonic frequencies can modulate endogenous gamma activity suggests that non-linear interactions exist between endogenous brain activity and exogenous stimulation, opening new avenues for future neuro-stimulation interventions.
Poster No 1068

Own-Body Perception in the Encoding and Retrieval of Memories for Naturalistic Events

Heather Iriye¹, H. Henrik Ehrsson²

¹Karolinska Institutet, Solna, Select a State, ²Karolinska Institutet, Stockholm, Select a State

Introduction: The vivid, coherent perception of one’s own body (i.e., body ownership) during memory encoding facilitates retrieval (Bergouignan, Nyberg, & Ehrsson, 2014; Iriye, Chancel & Ehrsson, In Press; Iriye & Ehrsson, 2022). Yet, the underlying mechanism explaining how perception of our bodies contributes to memory is unclear. Body ownership may act as a contextual memory cue since it is typically a constant feature of both encoding and retrieval. Alternatively, body ownership may be a privileged type of information that supports memory beyond contextual memory effects, given its high self-relevance.

Methods: Here we measured patterns of activity in core brain areas involved in contextual memory (i.e., the angular gyrus, parahippocampus, hippocampus, and medial prefrontal cortex; Preston & Eichenbaum, 2013) as we manipulated body ownership during the encoding and retrieval of immersive videos (Figure 1). We predicted that consistent strong body ownership between encoding and retrieval would impact the strength of a memory trace in the medial prefrontal cortex, as this region uses contextual information to bias the selection of memory details during retrieval5. We immersed healthy participants (N = 25) within videos seen through virtual reality glasses, which depicted lifelike events that included a first-person view of a mannequin’s reclining body aligned with participants’ real bodies during fMRI scanning. Participants saw an object touch the mannequin and synchronously felt touches on the corresponding location of their real body, which created an illusory sense of ownership over the mannequin. As a control condition, we disrupted the illusion by delivering seen and felt touches asynchronously in half of the videos. 1 week later, participants were re-immersed within videos depicting the mannequin receiving dynamic visuotactile stimulation overlaid on still-frames of the previously seen videos during fMRI scanning. We again manipulated feelings of ownership over the mannequin, which was either congruent or incongruent with how a video was encoded, while participants retrieved memories for the videos. Participants completed ratings of emotional intensity, vividness, reliving and belief in memory accuracy to assess subjective remembering.

Results: Peak skin conductance response magnitudes to bodily threats directed towards the mannequin were greater in the synchronous versus asynchronous condition (p = .006), demonstrating greater ownership over the mannequin’s body. Using a multivariate classifier and region-of-interest approach, we found that patterns of activity during memory retrieval in the angular gyrus, parahippocampal cortex, hippocampus, and medial prefrontal cortex predicted current body ownership perception in the context of body ownership perception during encoding (p’s < .003). Next, we used encoding-retrieval pattern similarity to test whether patterns of activity during encoding were reinstated more at retrieval for memories formed and recalled with strong body ownership perception, considering subjective remembering measures of emotional intensity, vividness, reliving, and belief in memory accuracy. We compared patterns of neural activity in the medial prefrontal cortex to a target dissimilarity matrix weighted for congruent strong body ownership perception at encoding and retrieval and increasing levels of subjective remembering measures (Figure 2A). Consistent strong body ownership perception at encoding and retrieval combined with increasing levels of emotional intensity led to stronger memory reinstatement (i.e., higher encoding-retrieval pattern similarity) in the medial prefrontal cortex (p = .008).

Conclusions: Together, our results suggest that the influence of own-body perception on our ability to remember past events cannot be solely attributed to contextual memory effects. Rather, strong consistent body ownership perception during encoding and retrieval may calibrate patterns of activity in medial prefrontal regions to support remembering.
Figure 1. Experimental protocol. Participants watched videos of naturalistic events (6 per condition) while receiving either synchronous visuotactile stimulation to induce strong body ownership over the mannequin, or asynchronous visuotactile stimulation to reduce it. 1 week later, they retrieved memories for the videos while receiving visuotactile stimulation that was either congruent or incongruent encoding. We then tested the strength of the full-body illusion induction. Subjective memory ratings and a cued recall test were completed after each session. N = 25.

References
Poster No 1069

Memory Ability Following Brain Stimulation and Lesions Reveals Potential Neuromodulation Targets

Simon Kwon1, JoshuaSiegel2, MelissaHebscher3, MollyHermiller4, EyreYe5, Joel Voss3, JordanGrafman6, Maurizio Corbetta7, Shan Siddiqi4

1Brigham and Women’s Hospital, Boston, USA, 2Washington University St Louis, St Louis, USA, 3University of Chicago, Chicago, USA, 4Florida State University, Tallahassee, USA, 5Beijing Normal University, Beijing, China, 6Northwestern University, Chicago, USA, 7University of Padova, Padova, Italy, 8Harvard Medical School/Brigham and Women’s Hospital, Boston, USA

Introduction: The key aim in memory research is to enhance memory ability in healthy individuals and patients with neurocognitive deficits. Previous research involving transcranial magnetic stimulation revealed memory performance to be enhanced following stimulation of the key brain network target, parietal-hippocampal network (Wang et al., 2014). Those neuromodulation studies nevertheless involve only healthy volunteers, providing little insight into potential brain stimulation target with which to facilitate neurocognitive recovery in patients with brain lesions. We sought to find those potential neuromodulation targets.

Methods: Lesion-symptom mapping analysis approach often reveals brain regions essential for neurocognitive functions (Fox 2018). We adapted this analysis approach by including brain-behavioral data stemming from three groups of people (total N = 570). The first dataset consists of neuropsychological scores from 179 patients with penetrating head injury, whose lesions are primarily in prefrontal cortex (Grafman 1986a). We also included 113 patients with lesions primarily in medial region, following stroke, aiming to detect key brain regions important for memory function in medial regions as well (Corbetta et al., 2015). We sought to assess if lesion-symptom maps stemming from patients resemble those stemming from healthy volunteers following a virtual lesion or ‘brain stimulation’. We therefore included data from 278 healthy volunteers following stimulation of the parietal-hippocampal network target stimulation (Wang et al., 2014 and subsequent replication studies).

Results: The lesion-symptom mapping analysis revealed brain-memory maps in health and brain lesions. Those neurocognitive maps tend to resemble each other (n = 570, r = 0.625, p < 0.001). Those maps converge at the potential neuromodulation target, inferior temporal gyrus (MNI = -53, -63, -19). Stimulation of this target might come to facilitate neurocognitive recovery in patients with brain lesions. Sometimes, however, those lesion locations might include inferior temporal gyrus and therefore yield no meaningful neuromodulation effect. In such cases patients may recover by adapting to draw on functioning of neurocognitively similar contralateral regions. Direct comparison between brain-memory relationships in the ipsilateral and contralateral regions of interests did indeed reveal neurocognitive symmetry between the regions (r > 0.246, p < 0.05).

Conclusions: Current findings point to potential neuromodulation targets, inferior temporal gyrus and contralateral regions of interest. Neuromodulation of those targets might come to facilitate memory ability recovery in patients with brain lesions.

References

Poster No 1070

Learning from quantified episodic prediction errors: On the neural basis of gist revision

Nina Liedtke1,2, Marius Boeltzig1,2, Ricarda Schubotz1,2

1University of Muenster, Muenster, NRW, 2Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany

Introduction: Episodic memories do not always accurately reflect our past experiences, but can be changed through new input. It is hypothesized that such changes are driven by mnemonic prediction errors which arise when an expectation based on memory representations does not match the actual experience (Sinclair & Barense, 2019). Further research suggests that
there might be a qualitative difference in brain responses and memory performance after prediction errors that affect the gist of an episode (gist modifications) compared to ones that leave the gist intact (surface modifications; Siestrup & Schubotz, 2023). However, it remains unknown whether the magnitude of prediction errors is related to the likelihood of memory updating. It has been suggested, that especially prediction errors of medium strength might lead to changes in memory (Ritvo, 2019). Therefore, we elicited surface and gist prediction errors of different strengths to investigate their distinct effects on brain activity and memory.

Methods: The sample consisted of forty-three healthy, right-handed participants (36 women, age 18-32 years, M= 22.66 years). The study used short dialogues as highly naturalistic and meaningful stimuli and it was designed as a five day paradigm. Day one to three were functional Magnetic Resonance Imaging (fMRI) sessions, day four and five took place on the computer. On the first day, 30 dialogues were presented for the first time in the MR scanner and a second time outside of the scanner. On day two, 24 of the presented dialogues were partly modified, while six remained unchanged. The modification was either on the surface level (i.e., synonyms or different phrasings) or on the gist level (i.e., changing the meaning of the utterance) and designed to be either low or high in degree. For each dialogue, each participant listened to only one modification. On day three, the fMRI session from day one was repeated. Imaging on the first three days was conducted on a 3T Siemens Prisma MR tomograph (TR/TE= 2000/30ms, FOV= 192x192mm2, 33 slices, slice thickness= 3mm). Recognition tests and cued recall were conducted on day four to assess memory for both the original versions and the heard modifications. On day five, participants rated to what extent the original and modified versions differed. FMRI data were preprocessed (slice time correction, realignment, co-registration of functional to structural scans, normalization, and smoothing) and analyzed with SPM12 using a general linear model.

Results: For surface modifications compared to non-modified dialogues we found activation in the inferior frontal gyrus, left dorsal premotor cortex, left (pre-) supplementary motor area and in the right anterior as well as left middle superior temporal sulcus (p<.005, FDR corrected). Gist modifications also caused activations in these regions, but compared to surface modifications we found additional brain responses in medial frontal areas, the ventral precuneus, the posterior cingular cortex and the temporo-parietal junction (p<.005, FDR corrected). In the recognition test, participants recognized low gist modifications less confidently than other modification types (F(1,1050) = 5.02, p = .025). In accordance with that, modeling the BOLD response with participant-rated degree of difference revealed brain activation in both parahippocampal gyri for lower compared to stronger gist changes (p<.001, uncorrected).

Conclusions: We demonstrated that gist modifications differ from surface modifications not only quantitatively but also qualitatively. While there were no effects for the strength of surface modifications, we found a behavioral effect of low gist modifications on new learning and the original memory. This could possibly reflect the postulated particular effect of medium-strength prediction errors, which was also associated with specific parahippocampal activity.

References

gist > surface

Note: FDR-corrected (p < .005) t-map for the gist > surface contrast. Activations were found in the ventral precuneus (PCU), posterior cingular cortex (PCC), medial frontal cortex (MFC), temporo-parietal junction (TPJ), superior temporal sulcus (STS), inferior frontal gyrus (IFG) and in the cerebellum (CER). Sagittal cuts were made at x = 57 (left), x = -4 (middle) and x = -50 (right).
The neural correlates of different sources of surprise: Evidence from two naturalistic fMRI studies

Dominika Varga¹, Petar Raykov², Elizabeth Jefferies³, Aya Ben-Yakov⁴, Chris Bird¹

¹University of Sussex, Brighton, United Kingdom, ²MRC CBU, Cambridge, United Kingdom, ³University of York, York, United Kingdom, ⁴The Edmond and Lily Safra Center for Brain Sciences (ELSC), Jerusalem, Israel

Introduction: In general, we experience surprise when an observation contradicts expectations based on our past experiences. However, we can be surprised for different reasons, depending on the source of our expectations. Expectations can be flexibly drawn from either our general knowledge about how the world works or memories of specific episodes in the past. Because current leading theories on how surprising events are processed do not account for this complexity in sources of predictions, it is unclear if surprise based on different sources of expectations engage the same or distinct neural processes. A currently prominent view is that the hippocampus acts as a comparator between prior experience and incoming information, and plays an important role in detecting events that mismatch our expectations (e.g. Kumaran & Maguire, 2007; Barron, Aukstulewicz, Friston, 2020). However, this idea stems from work in which participants learned arbitrary associations which were violated after minimal delay. For example, violating the temporal order or spatial arrangement of recently experienced items (e.g. Kumaran & Maguire, 2006; Duncan et al., 2012). In short, these studies have demonstrated a role of the hippocampus in processing surprise based on episodic-like memories. However, outside of the laboratory we often rely on our general semantic or schematic knowledge to predict what is likely to happen in a given situation (Elman & McRae, 2019). While some theories predict increased hippocampal engagement when there is a mismatch between prior schematic knowledge and current experience (e.g. SLIMM framework, van Kesteren et al., 2012), there is no direct evidence to support this idea.

Methods: Across two fMRI experiments (Experiment 1 N=36; Experiment 2 N=33; Fig. 1), we tested the hippocampus’ role in processing unexpected events based on general knowledge or episodic memory-based predictions. We created 34 pairs of custom made video clips that showed actors carrying out sequences of actions in a range of everyday situations. Each pair of clip included an Unexpected version, where the actor carried out an unexpected sequence of actions (e.g., putting flowers into a washing machine), and a corresponding Expected version, where the unexpected action was replaced by an expected, context-congruent action (e.g., putting clothes into a washing machine). In both experiments we showed 17 Unexpected and 17 Expected clips in the scanner. Crucially, we manipulated participants’ pre-scan exposure to the clips, either having no pre-exposure and only showing clips inside the scanner (Expt 1), or showing all clips in the Expected version before scanning (Expt 2). This meant that Experiment 1 participants could be surprised only based on their general knowledge of everyday situations, while Experiment 2 participants could also be surprised based on their memory for the specific clips.
Results: A significant action-expectedness by prediction-source interaction showed that hippocampal univariate activity increased to Unexpected relative to Expected actions when predictions relied on memory for specific clips (Expt 2), but not when predictions relied on general knowledge (Expt 1), suggesting that this region does not have a general role in processing unexpected events. Exploratory network analyses showed increased response to Unexpected actions in the Semantic Control and Multiple Demand Network in both experiments, suggesting that these networks have a role in processing information incongruent with the general context. Conversely, activity in the Default Mode Network increased to Unexpected actions only in Experiment 2, suggesting that this network is involved when input violates internally stored representations of specific contexts. See Fig. 2.
Conclusions: We show that differentiating expectation sources is crucial in studying neural responses to surprise. Our results contradict a general role for the hippocampus in processing unexpected events, informing updates to models of mismatch detection.

References

Poster No 1072
Decoding personal mental images with an fMRI model of general semantic features
Andrew Anderson1, Leonardo Fernandino1, Lisa Conant1, Bill Gross1, Hernan Rey1, Jeffrey Binder1
1Medical College of Wisconsin, Milwaukee, WI

Introduction: People simulate their own personal experiences through imagination and understand descriptions of others’ experiences via language. Although both processes are anchored in experience, it remains unclear whether autobiographical simulations and language comprehension are encoded in common brain systems. For instance, automated meta-analyses1 and popular renditions of the brain’s language2 or semantic3 network exclude medial cortical zones that underpin autobiographical simulations, whereas other fMRI studies have implicated these medial cortices in encoding semantic features of language4-7. However, demonstrating feature encoding in medial cortices does not entail that the same features underlie the content of autobiographical imagery. We hypothesized that this would be the case and that the encoding of autobiographical-imagery and sentence semantics would overlap in a shared neural feature space. To test this, we evaluated whether the content of autobiographical imagery could be decoded from corresponding fMRI activity using a pre-trained decoder built from...
a separate fMRI data set in which participants read sentences. Such decoding would not be possible if autobiographical imagery and sentence semantics were encoded in separate neural systems or different feature spaces.

Methods: See Fig 1. (1) Mental imagery data from 50 participants were reanalyzed. 20 generic scenario cues (e.g. party, exercising, wedding) were read to each participant, who vividly imagined themselves experiencing each scenario. Participants rated each mental image on 20 sensory, motor, affective, social, cognitive and spatiotemporal features of experience (0-6 scale). Participants then underwent fMRI as they re-imagined the same scenarios in random order on written prompt. Preprocessing produced a single fMRI volume for each mental image per person that was standardized in Schaefer atlas space. (2-3). A semantic feature fMRI decoder was built from a sentence reading dataset scanned as 14 other participants read 240 sentences. Sentences were third person and 3-9 words long, e.g. “The child broke the glass at the shop”. Sentence semantics were modeled via crowd-sourced ratings of the same 20 features above. A cross-participant decoder was built using ridge regression to map the entire sentence fMRI dataset onto the 20 crowdsourced feature ratings. (4) To test whether the personal content could be reconstructed from the fMRI data, we applied the pretrained semantic feature decoder to reconstruct participants’ feature ratings. To establish that the reconstructed features reflected personal content rather than general semantics of the stimuli, we ran an individual-differences analysis. This selected 2 participants at a time, and cross-correlated the reconstructed rating matrices with the genuine ratings. Discrimination was scored a success if the sum of the two congruent coefficients exceeded the sum of the two incongruent coefficients. This was repeated for all participant pairs. Statistical significance was evaluated with permutation testing.

Results: See Fig 2. Top: The individual-differences analysis revealed that autobiographical simulations from different participants were discriminated with 70% accuracy, p<1e-4. To evaluate which features contributed most to discrimination, we repeated the individual-differences analysis with individual feature vectors, which revealed that social- and speech-related features contributed the most. Bottom: To test whether the encoding of mental images and sentence semantics overlapped in medial cortices we used ridge regression to fit a model-to-fMRI encoder on the sentence data. We then used it to predict mental image fMRI data from participants’ feature ratings. fMRI data were accurately predicted in medial cortices.
Conclusions: 1. Autobiographical simulations and third-person sentence semantics overlap in a shared neural feature space. 2. Personal mental states can be discriminated from fMRI data with a pre-trained decoder.

References

Poster No 1073

Cerebral reflections of memory modification following episodic prediction errors

Sophie Siestrup1,2, Ricarda Schubotz1,2, Benjamin Jainta3, Sen Cheng3

1University of Münster, Münster, Germany, 2Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Münster, Germany, 3Ruhr University Bochum, Bochum, Germany

Introduction: Episodic memories do not always accurately reflect our experiences, but can be modified in favor of new information. Such changes are potentially fueled by mnemonic prediction errors which arise when there is a mismatch between what was expected based on memories and what is experienced in a new situation1,2. While it is believed that such
memory changes allow us to maintain valid predictions in a dynamic environment, little is known about how the brain adapts existing memories in response to such prediction errors. Therefore, the aim of the present study was to identify brain regions which are involved in the establishment of updated episodic representation.

Methods: Thirty-six healthy female participants (age: 22 ± 2.78 years), all right-handed, took part in the study. First, participants encoded 24 different episodes by playing short toy stories in the laboratory. During two further sessions, one day and one week after the encoding, participants went through further video-based retrieval sessions to aid memory consolidation. Another week later, participants returned for a functional Magnetic Resonance Imaging (fMRI) session, during which episodic retrieval was cued by videos showing the original episodes or slightly modified versions thereof to induce prediction errors. Modified videos deviated from originally encoded ones by a single aspect which was either the order of action steps or an individual object. Imaging was conducted on a 3T Siemens Prisma MR tomograph (TR/TE= 2000/30 ms, FA= 90°, FOV= 192 x 192 mm², 33 slices, slice thickness= 3 mm). Lastly, participants completed a post-fMRI memory test during which each video was presented in the original and one modified version in pseudo-randomized order. Participants were asked to indicate on a four-point Likert scale (with 1= yes to 4= no) whether or not each video showed an episode that had been originally encoded. FMRI data were preprocessed (slice time correction, realignment, co-registration of functional to structural scans, normalization, and smoothing) and analyzed with SPM12 using a general linear model. Behavioral data were analyzed using R Studio.

Results: In the post-fMRI memory test, participants were significantly more prone to falsely accept modified episodes as truly encoded when they had experienced prediction errors during the fMRI session (p = .001). Additionally, they also had an increased tendency to reject originally encoded episodes as such (p < .001). Together, these behavioral findings demonstrate that as expected, memories were modified in response to prediction errors. To investigate the neural effects of memory modification, we analyzed the parametric increase in brain activation to modified episodes that later elicited false alarms in the post-fMRI memory test. On the whole-brain level, increasing activation was detected in several areas, including ventrolateral prefrontal cortex, precuneus, anterior and posterior cingulate cortex, and middle temporal cortex (p < .01, FDR corrected). Further, we performed region of interest analyses in areas which are involved in memory formation, hippocampus and parahippocampal gyrus. In hippocampus, a significant increase of activation was detected for later false alarms (p = .01). In parahippocampal gyrus, we detected a significant decrease in activation for later correct rejections in the post-fMRI memory test (p = .04) and additionally found that contrast estimates were significantly higher for later false alarms compared to later correct rejections (p = .034).

Conclusions: The findings of the current study support the idea that episodic memories can be modified in response to prediction errors. For the first time, we demonstrated that false alarms in an episodic memory test were preceded by parametric increases in brain activation during the processing of prediction errors. Consequently, we suggest that this activation might be reflective of the establishment of updated episodic representations.

References

Poster No 1074
Task-based functional connectivity during mnemonic discrimination and cognitive training effects
Panagiotis Iliopoulos1, Jeremie Güsten1, Eoin Molloy2,3, Anne Maass2, Emrah Düzel1
1 Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany, 2 German Center of Neurodegenerative Diseases (DZNE), Magdeburg, Germany, 3 Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University, Magdeburg, Germany

Introduction: Successful memory relies on the process of mnemonic discrimination (MD) to establish distinct representations. Despite extensive research on the role of medial temporal lobe (MTL) areas in MD, little is known about MTL interactions with prefrontal (PFC) and visual (VIS) areas and the impact of cognitive training on functional communication
and MD performance. Here, we investigated the task-based functional connectivity underlying MD, focusing on major MTL-PFC-VIS areas, in addition to the effects of a 2-week cognitive training intervention on connectivity and behavior.

Methods: In a longitudinal study, 54 young adults (M = 23.76 years, SD = 3.35, 61.11% female) underwent a cognitive task differentiating similar objects and scenes (‘lures’; correct response: ‘new’) from repeated items (‘repeats’, correct response: ‘old’). Stimuli were presented in 12-item sequences with the first six being new images, while each of the subsequent six could be either a lure or a repeat trial (Fig.1). Data were acquired on a 3T-MRI Siemens scanner, using a BOLD-EPI (2 runs x 12 min; resolution 2 mm isotropic, TR= 2.2 secs) and MPRAGE sequence (1 mm isotropic), pre- and post- a 2-week web-based cognitive training intervention (three 45-minute sessions per week). Participants were divided into an experimental group (n=26) that underwent training using a web-based version of the task, and an active control group (n=27) that was presented with the same set of stimuli but performed a psychomotor task clicking on moving icons on top of the images. Data were preprocessed using the fMRIPrep pipeline, denoised and modeled with generalized psychophysiological interaction (gPPI) analysis. All fMRI analyses focused on the MD contrast (correct lures versus repeats). First, we performed a hypothesis-driven region of interest (ROI)-to-ROI analysis on the whole-sample pre-training data. Major MTL, PFC, VIS regions were used as ROIs. Time x Group interaction analyses (ANOVA) assessed cognitive training effects on memory performance and the task-based functional connections identified in the previous step. Gender and age were used as covariates.

Results: In the whole-sample pre-training analysis, we identified three significant connectivity clusters during successful MD (cluster-based inference p < .05 p-FDR): 1) reduced VIS-to-VIS and VIS-MTL connectivity, and increased 2) VIS-PFC and 3) hippocampal-PFC connectivity (Fig.2A). Focusing on the individual connections within these three clusters, we found a significant training effect (MD contrast, Time x Group interaction: F(1,49)=10.00, \(\eta^2_p = .170\), p-FDR=.016) observing post-training increase in task connectivity specifically from the lateral occipital cortex (LOC) to the occipital pole (OP) (Fig.2B, 2C). Notably, Time x Group interaction analyses indicated that the training group exhibited improved memory performance after training, reflected in higher discriminability (A') (F(1,49) = 9.34, \(\eta^2_p = .160\), p=.004) and improved correct lure performance (F(1,49) = 15.73, \(\eta^2_p = .243\), p<.001) compared to the control group (Fig.2D).
Conclusions: Our results highlight the role of VIS-to-VIS, VIS-MTL, VIS-PFC, and PFC-hippocampal connectivity during successful MD. They extend previous findings that involve wider networks in MD1,7, suggesting a role of MTL-PFC-VIS connectivity. A brief 2-week cognitive training not only enhanced MD performance but also increased LOC-OP task-based functional connectivity. This suggests improved functional communication from higher to lower-order visual areas, indicating a potential enhancement in neural visual processing. Our findings demonstrate that even a short-duration intervention can induce neural changes, boosting memory performance. Future investigations may test whether more prolonged training yields broader functional alterations in MD.

References

The extraction and application of temporal structures: a fMRI study

Linda Sempf, Peter Vavra, Toemme Noesselt

1Institute of Psychology, Otto-von-Guericke-University, Magdeburg, Saxony-Anhalt, 2Center for Behavioral Brain Sciences, Magdeburg, Saxony-Anhalt, Germany

Introduction: The comprehension of recurrent temporal structures in our environment allows us to recognize causal relationships between events and build expectations about the timing of future ones. Previous studies on temporal attention have often used symbolic cues to indicate the probability of a target to appear at a particular moment in time. However, temporal expectations can also be based on unconscious perceived probability distributions - for instance, a recurrent temporal interval between two stimuli. After statistical learning, the first of two stimuli can then be used as a meaningful cue to predict the moment when the second stimulus will occur. While this memory-based predictive mechanism is often used to optimize everyday behaviour and has been studied behaviorally, it is not fully understood, how the brain recognizes, extracts, and neuronally represents temporal relationships and utilizes them to guide attention to specific points in time. Here, we characterized the neural underpinnings of statistical learning and utilizing temporal structures with functional magnetic resonance imaging (fMRI).

Methods: In a longitudinal fMRI study participants (n=36) were exposed to audiovisual cue-target combinations. Targets appeared either at early (500ms) or late (1500 ms) time points after the cue and the probability of the two cue-target intervals was manipulated block-wise (1:4 or 4:1, early : late ratio). The two blocks alternated and each consisted of a likely and an unlikely interval (e.g. early likely and late unlikely). On day 1 participants passively observed the AV-combinations inside the scanner (4 runs), on day 2 and 3 they were trained on visual target detection outside the scanner and on day 4 they first passively observed the pairings (4 runs) before they actively detected targets again inside the scanner (4 runs). fMRI-data (voxel size: 2.2 mm3, 66 slices, 250 volumes/run) was collected on a 3T Prisma scanner. After preprocessing (slice timing, realignment, normalization, smoothing) and first level modelling (with hemodynamic response function plus derivatives for all experimental conditions (early/ late & likely/ unlikely)) and realignment parameters) second level models (flexible factorial designs) were used for population level inferences.

Results: Behaviorally, participants responded faster to early targets when they were more likely confirming that temporal expectations were formed to guide behaviour. Neurally, targets in the early-likely context elicited enhanced responses in the left hippocampus (CA1 region) already during passive viewing on day 1. During the active task left inferior parietal lobule (IPL), bilateral prefrontal gyrus and retrosplenial cortex (RSC) showed enhanced fMRI-responses for likely>unlikely trials. In IPL this effect was more pronounced for likely early than likely late targets. In addition, the fMRI response in this area correlates significantly with subject-specific mean response times. In contrast, unlikely-likely events modulated visual areas and right temporo-parietal junction, in accord with previous findings on prediction-error processing.

Conclusions: Our results indicate that the processing of temporal context and potentially the extraction of temporal structures is initially associated with activity within the CA1 hippocampal subregion, even during passive observation. In keeping with this, neurophysiological animal studies have reported that the CA1 region contains time-sensitive neurons. When temporal expectations have been established, IPL and RSC are more engaged during likely trials, reflecting the use of temporal expectancies during active task performance. Similar activation patterns have also been observed during episodic memory processing, as confirmed by an association test (Yarkoni et al., 2011). These results conform with the notion of an engagement of episodic memory when learning and using temporal information (Frings et al., 2020).

References

Organizational principles of semantic control in the human brain

Kaixiang Zhuang, Xinyu Liang, Cheng Liu, Theodoros Karapanagiotidis, Jonathan Smallwood, Elizabeth Jefferies, Deniz Vatansever

1Fudan University, Shanghai, Shanghai, 2Southwest University, Chongqing, Chongqing, 3University of Sussex, Sussex, Sussex, 4Queen’s University, Ontario, Canada, 5University of York, York, United Kingdom

ABSTRACTS
Introduction: The human semantic system affords a multi-dimensional conceptual space through which we ascribe meaning to various words and objects around us. Notably, accessing concepts that are more remotely connected in this space is suggested to require higher levels of demand for semantic control. However, the precise neural signature of semantic control, and its distributed organization within the cortical hierarchy remains unclear. By combining an fMRI-based semantic retrieval task, a natural language processing model and multivoxel pattern analysis (MVPA), here we captured a neural signature associated with varying demands for semantic control and charted its distribution within the cortical connectivity gradients. We demonstrate that semantic control requires the engagement of multiple brain networks, dispersed along two principal gradients relevant to different aspects of semantic processing. This offers new insights into how the brain’s functional networks are architecturally specialized to support semantic cognition.

Methods: A group of 46 healthy young adults (mean ± standard deviation = 21.31 ± 0.25 years old, ratio of Word List A to B) completed a 3-alternative forced choice semantic retrieval fMRI task, in which they were probed with a cue word and asked to select the most conceptually associated target word amongst two other distractors across 80 trials. Crucially in each trial, semantic distance between word pairs, defined by the cosine distance within 300-dimensional GloVe vectors, were used to systematically manipulate the demand for semantic control (Fig. 1a-b). Next, we employed thresholded partial least squares T-PLS and GLM single derived single-trial beta maps to identify a whole-brain multivariate signature of semantic control (Fig. 1c), which served as a predictive model for semantic distance during semantic retrieval. After a series of rigorous assessments, the feature weights of semantic control signature were projected onto a continuous 2D space of functional connectivity gradients in order to characterize its organizational principles within the large-scale cortical hierarchy.

Results: The identified neural signature of semantic control spanned areas sensitive to both high and low-demand semantic decisions (e.g. left IFG, pMTG, mPFC, PCC), as well as bilateral anterior insula and primary visual cortices (Fig. 1c). In addition to demonstrating high accuracy and generalizability (Fig. 1d-e), the semantic control signature distinguished subtle differences between word pairs (Fig. 1f), and accurately captured the response speed of participants during semantic retrieval (Fig. 1g). Furthermore, the identified semantic control signature exhibited spatial correlations with two out of 10 principal gradients (Fig. 2a). Specifically, we observed clear boundaries in the 2D space constituted by Gradients 6 and 10, which demarcated positive and negative feature weights of the neural signature (Fig. 2b). Based on the NeuroSynth meta-analytic decoding, we further revealed that both gradients were closely related to semantic cognition (Fig. 2c). While Gradient 6 arranged brain regions in a cognitive continuum from “low to high demand semantic cognition”, Gradient 10 arranged brain regions from “verbal to visual semantic cognition”.

Conclusions: Based on a semantic retrieval task and machine learning approach, we revealed a robust and generalizable neural signature sensitive to varying levels of semantic control demands. Notably, the identified signature was constrained by two functional connectivity gradients, both of which related to different aspects of semantic cognition. Together, our findings demonstrate how disparate regions within the cortical organization unite within a lower dimensional space to facilitate the control of semantic cognition.
Figure 1. Experimental procedure and model evaluation. (a) Experimental procedure. A group of healthy young adult participants took part in an fMRI session designed to probe semantic memory retrieval utilizing a 3-alternative forced choice (3-AFC) paradigm. T-PLS was employed to identify a whole-brain neural signature of semantic control. (b) Distribution of semantic distance. 300 dimensional GloVe word vectors were employed to quantify semantic distance between the cue and target word pairs. (c) Semantic control signature. The maps was thresholded using a 5,000-sample bootstrap procedure at FDR p < 0.05. (d) Evaluation of model accuracy. Subject-level prediction-outcome correlation: \(r = 0.46 \pm 0.12 \) SE; group-level prediction-outcome correlation: \(r = 0.46 \). (e) Evaluation of model generalizability. Subject-level prediction-outcome correlation: \(r = 0.46 \pm 0.09 \) SE in the generalization of A-to-B, group-level prediction-outcome correlation: \(r = 0.47 \) in A-to-B. (f) Word level prediction for semantic distance. The identified neural signature was used to predict semantic distance between word pairs. The beta maps corresponding to each word pair were averaged across all trials. Correlation between signature response and semantic distance: \(r = 0.47 \). (g) Word level prediction of reaction time (RT). The identified neural signature was used to distinguish the differences in RT between word pairs. The beta maps and RTs corresponding to each word pair were averaged across all trials. Correlation between signature response and RTs: \(r = 0.81 \).

Figure 2. Semantic control signature within low-dimensional cortical connectivity gradients. (a) Relationship between semantic control signature and functional connectivity gradients. The t-statistic method was used to correct for potential confounding effects of spatial autocorrelation, \(r = 0.46 \) for gradient 6, \(r = 0.29 \) for gradient 10. FDR, p-scrain < 0.05. (b) Projection of semantic control signature onto the specific 2D gradient space. Gradient scores were adjusted according to the correlation direction of each gradient with the semantic control signature. (c) Distribution of correlation coefficients for the three brain patterns of interest in the NeuroSynth feature matrix. Top 30 cognitive terms (features) from the NeuroSynth database are displayed for both the positive and negative extrema of each brain pattern.
Poster No 1077

Verbal memory outcomes after temporal lobe resection in pediatric epilepsy

Freya Prentice1,2, Maria Eriksson1,2, Sara Shavel-Jessop1,2, Patricia Martin-SanFilippo1,2, Frederique Liegeois1,2, Torsten Baldeweg1,2

1University College London, London, UK, 2Great Ormond Street Hospital, London, UK

Introduction: Verbal memory deficits are consistently documented in adults after left temporal lobe resection (TLR) for intractable epilepsy (Lee et al., 2002) but not in children. This may reflect less lateralized memory networks in the developing brain as well heterogeneity in the use of neuropsychological measures of verbal memory across pediatric studies. The task specificity model (Saling, 2009) suggests that tests which involve the delayed recall of unrelated word pairs are more sensitive to hippocampal functioning due to the specific role of the hippocampus in binding unrelated information. It would, therefore, be expected that decline on this measure would be greatest after left TLR including hippocampal removal (TLR+H). In this retrospective study, we aimed to replicate previous findings (Law et al. 2017; Danguecan & Smith, 2019) that declines in word pair recall in children are more likely after left TLR with hippocampectomy (TLR+H) compared to without and right TLR. Secondly, we sought to identify additional clinical and neuroimaging predictors of word pair decline.

Methods: We included 44 children who underwent TLR for intractable epilepsy at Great Ormond Street Hospital between 2000-2022 and had pre- and postoperative assessments on the Children’s Memory Scale (CMS). Change scores were calculated from the difference between pre- and postoperative scores and decline was defined based on published Reliable Change Indices (Busch et al., 2015). The extent of TLR was coded based on surgical reports and confirmed by the visual inspection of the MRI scan by an experienced neuroanatomist. Where patients had a preoperative language fMRI, a laterality index was calculated in a frontal region of interest for a verb generation task.

Results: Rates of RCI-defined declines on the word pairs subtest of the CMS differed between all four groups (see Table 1; X2=9.14, p=.027), with decline only demonstrated in those who underwent left TLR+H. Within the left TLR+H group, greater postoperative decline in word pairs was associated with higher preoperative word pair scores (r=-0.48, p=.039) and an older age at surgery (r=0.66, p=.002), but not postoperative seizure freedom (t(1.17)=0.14, p=.909; see Figure 1). Preoperative left language lateralization was significantly correlated with an older age at surgery (r=0.61, p=.026, N=13), but not word pair decline (r=-0.52, p=.069, N=13). A final linear regression model including preoperative word pair scores and age at surgery explained 46% of the variance in word pair decline (adjusted r2=0.46, p=.003).

Table 1. Episodic characteristics and neuropsychological scores in TLR groups

<table>
<thead>
<tr>
<th></th>
<th>Left TLR</th>
<th>Right TLR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hippocampus removed (n=9)</td>
<td>Hippocampus spared (n=13)</td>
</tr>
<tr>
<td>Age at seizure onset (years)</td>
<td>5.3 (3.3)</td>
<td>7.2 (3.8)</td>
</tr>
<tr>
<td>Age at surgery (years)</td>
<td>11.8 (2.3)</td>
<td>12.3 (3.0)</td>
</tr>
<tr>
<td>Language lateralization (typical/unusual/unknown)</td>
<td>3/0/6</td>
<td>9/2/0</td>
</tr>
<tr>
<td>Seizure free (Y/N/unknown)</td>
<td>16/6/1</td>
<td>7/4/0</td>
</tr>
<tr>
<td>Delayed word pair recall score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>8.6 (3.7)</td>
<td>9.1 (4.7)</td>
</tr>
<tr>
<td>Postoperative</td>
<td>7.6 (3.8)</td>
<td>10 (4.7)</td>
</tr>
<tr>
<td>Proportion demonstrating decline in word pair recall (%)</td>
<td>32</td>
<td>0</td>
</tr>
</tbody>
</table>

References
Conclusions: We replicated previous findings that decline on the delayed word pairs subtest was specific to patients with a left TLR+H, with 32% of this group experiencing a clinically meaningful decline. Within the left TLR+H group, all patients who experienced a decline had surgery after 12 years of age and an older age at surgery was associated with decline. This may reflect increasingly lateralized verbal memory functions with age, resulting in greater verbal memory deficits after left TLR+H, similar to those observed in adults. Left language lateralisation was associated with an older age at epilepsy surgery, however, language lateralisation was not predictive of word pair decline. The power of this analysis was likely limited by a small and entirely left-lateralized group. Larger fMRI samples are needed to examine whether the greater word pair declines seen with an increasing age at surgery partially reflect increasing left lateralisation of language and memory networks over development.

References

Poster No 1078
A gradient of spatial novelty and familiarity along the hippocampal long axis
Joern Alexander Quent1, Xinyu Liang1, Liangyue Song1, Yueting Su1, Kaixiang Zhuang1, Deniz Vatansever1
1Fudan University, Shanghai, China

Introduction: Recognition of novelty constitutes a vital aspect of our ability to encode and navigate our surroundings. Though extensively studied e.g. in the context of item novelty, human neuroimaging studies of spatial novelty and its impact on long-term memory formation remains relatively scarce. Limited reports show that spatial novelty can boost long-term memory [e.g. 2] and is associated with distinct responses along the cortical surface and hippocampal long axis3,4, which requires further investigation. Here, we assessed participants during navigation of a virtual reality environment using ultra-high field 7T fMRI to chart the neural representation of spatial novelty.

Methods: A group of 56 healthy participants (20 - 37 years, M = 24 years, SD = 2.8 years, F/M ratio: 35/21) were scanned at 7T MRI (MB-BOLD, TR = 1.0 s, TE = 22.2 ms, 1.6 mm isotropic voxels) while navigating within a grassy circular environment enclosed by a wall and surrounded by landmarks (e.g. trees, buildings, mountains). Across two runs of an object location memory task, participants were asked to navigate to the locations of 6 cued objects in order to collect them and memorise...
their location for subsequent retrieval. To analyse spatial novelty, the environment was divided into hexagonal sectors. Events were defined as time points that the participants spent in those sectors, which were weighted by a novelty score based on a) the number of times the sectors were visited and b) how much time passed since the last visit of the sector. The HCP-style fMRI data was pre-processed and analysed\(^5\)\(^6\) as a GLM-based parametric modulation of events by spatial novelty using FSL FEAT routines. Statistical significance was assessed via non-parametric permutation testing based on PALM (voxel-wise cFDRp < .05). Results were projected onto cortical connectivity-based gradient space for interpretation purposes\(^7\). A spatial gradient analysis was also performed to further interrogate effects within the hippocampal long axis. Each voxel was assigned a value between 1 and 6 based on the novelty response\(^8\), which were then projected on to the average shape of the hippocampi (Fig. 2a). A slope was calculated for predicting the classification based on the projection, which was finally compared to a permutation-derived null distribution.

Results: Behaviourally, novelty scores displayed an expected decrease over time due to exploration: Run 1 \(\beta = -0.48\) (95 % CI [-0.56, -0.41]) and Run 2 \(\beta = -0.71\) (95 % CI [-0.75, -0.66]). At the neural level, fMRI analyses across the cortical surface revealed positive modulation (greater activity for novelty) mainly centred on regions distributed across the visual and frontoparietal networks. On the other hand, negative modulation (greater activity for familiarity) was observed within somatosensory/motor and default mode areas (Fig. 1b). We also found significant negative modulation effects within the bilateral amygdala and anterior hippocampus. Notably, a significant spatial novelty-familiarity gradient was observed along the hippocampal long axis, where the posterior to anterior portions of the right hippocampus preferred to process novel to familiar sectors respectively, \(p < 2e-06\). However, no significant spatial novelty gradient was present in the left hippocampus, \(p = .53\) (Fig. 2a).

Conclusions: Collectively, our results highlight an extensive set of cortical and subcortical brain regions contributing to the neural representation of spatial novelty, including a novelty-familiarity gradient along the hippocampal long axis. Further work will be required to provide a more detailed mapping of the functional roles played by these regions, which will be crucial to further advance our mechanistic understanding of the novelty signature and spatial cognition in humans.
Coordinated slow oscillations between human hippocampal subfields

Zhipeng Li¹, Xia Liang¹

¹Harbin Institute of Technology, Harbin, Heilongjiang

Introduction: The hippocampus is a heterogeneous brain structure, comprising histologically distinguishable subfields including the dentate gyrus (DG), CA3, CA1, subiculum (SUB). Interactions between these hippocampal subfields play a critical role in memory consolidation. Non-rapid eye movement (NREM) sleep, multiple brain oscillations (e.g., slow wave, spindle and ripple) have been shown to be involved in the computation and distribution of hippocampal information. However, it remains elusive how these oscillations interact to regulate information routing within the local hippocampal circuit. Here, using human intracranial recordings (iEEG), we found that DG/CA3 displays strong cross-frequency coupling (CFC) with CA1 and SUB, but CA1 and SUB show a more precise event-based coupling. We also showed that hippocampal synaptic plasticity, as indexed by delta slope, is modulated by spindle and ripple.

Methods: We obtained iEEG data from 25 epilepsy patients writing the informed consent, and used pre-MRI and post-CT to locate electrode contacts. NREM was identified by low delta (<2 Hz), spindle (12-16Hz) and high frequency band (70-200Hz) power. Power spectral density (PSD) was calculated by 4 s window Welch method, and was normalized. Phase-amplitude coupling (PAC) calculated by mean vector length method was z-standardized to a shuffled distribution. We extracted spindle and ripple events, and used preferred PAC phases to measure the event-based coupling. Then, ripple power was grouped according to the SO-spindle coupling phase to measure the triple coupling of delta-spindle-ripple. Correlation between spindle/ripple and delta slope was calculated by spearman correlations.

Results: The PSD results revealed high delta and spindle power in all hippocampal subfields (Fig.1A). PAC analysis revealed that DG/CA3 not only exhibited robust within-region delta-ripple and delta-theta coupling (Fig.1B), but also showed strong delta-ripple coupling with the CA1 and SUB (Fig.1C). During PAC analysis, we did not identify any significant delta-spindle or spindle-ripple coupling in any of the four hippocampal subfields. We thus proceeded to examine event-based coupling between the subfields. Interestingly, we found that both delta-spindle and spindle-ripple coupling were evident in CA1 and SUB regions (Fig. 1D and E). Furthermore, our assessment of the relationship between delta-spindle coupling phase and ripple power indicated that the ripple power was significantly modulated by the coupling phase between delta and spindle in the CA1 (Fig. 1F), suggesting triple coordination among the delta, spindle and ripple oscillations in this subfield. Prior studies have demonstrated that synaptic plasticity could be reflected in the alteration of slow wave slope. We therefore measured the delta slope in each hippocampal subfield (Fig.1G) and evaluated its changes as a function of the spindle or ripple power. The results demonstrated a significant correlation between delta slope and spindle power across all hippocampal subfields (Fig.1H). In contrast, ripple affects the delta slope only at the maximum power (Fig.1I, top), which is where the ripple event occurs (Fig.1I, bottom).
Conclusions: Our findings suggest that the different hippocampal subfields may play different but complementing roles in regulating information during NREM sleep. Specifically, DG/CA3 region communicated globally with CA1 and SUB through delta-ripple coupling, while CA1 and SUB exhibited local event-based coupling, presumably to enable further processing and transmission of critical information. Furthermore, the spindle and ripple functioned at different temporal scales to regulate the delta slope, which could reflect important synaptic changes within hippocampus. Overall, these findings provide valuable insights into the circuitry of the hippocampus during NREM sleep and enhance our understanding of how it facilitates memory consolidation.
ABSTRACTS

References

Poster No 1080
Predicting Medial Temporal Lobe Integrity and Memory from Thalamic Microstructure Using Radiomics
Rowan Lawrence¹, Daniela Montaldi¹, Alex Kafkas¹
¹University of Manchester, Manchester, Greater Manchester

Introduction: Dual-process episodic memory models posit separation of recall (recognition with additional retrieval) and familiarity (simple recognition without further recall) in the medial temporal lobes (MTL). The MTL is functionally connected to other structures including nuclei of the thalamus (Aggleton et al., 2023), together supporting episodic memory. FMRI evidence suggests anterior nuclei support recall, while the medial / mediodorsal nuclei support familiarity (Kafkas et al., 2019).

Radiomics, a recently-developed image analysis method, posits that images such as MRI contain microstructure and disease process information which can be extracted by mathematical transforms, providing high-dimensional datasets of quantitative features (Lambin et al., 2017). Features include shape, such as elongation and sphericity; features derived from the voxel intensity histogram; and higher-order features which quantify texture, reflecting spatial relationships of voxels in a region (Li et al., 2023). We used radiomics to establish relationships between thalamic integrity, episodic memory, and MTL damage in a large sample of patients with selective memory deficit.

Methods: T1 images (0.83mm isotropic) were used to produce volumes of MTL structures using stereology, following a custom protocol based upon histological evidence (Insausti et al.,1998; Kivisaari et al., 2020). Patient volumes were compared to age-matched controls. Resulting Z-scores categorised patients as either hippocampal (HC N = 8), MTL cortical (MTLc N = 19), or both (MTL+ N = 43). T1 images were processed with FreeSurfer 7.2.0, and thalamic nuclei segmented with segmentThalamicNuclei (Iglesias et al., 2018). In-house Python scripts extracted radiomics features with the PyRadiomics library (van Griethuysen et al., 2017). Feature selection for each outcome variable was conducted with LASSO regression, with lambda hyperparameter tuned using leave-one-out cross-validation (LOOCV). Model fit was assessed with assess.glmnet (glmnet 4.7-1).

Fig. Transverse slice through T1 of a Control subject showing thalamic nuclei ROIs following segmentation via FreeSurfer. Masks were collapsed into their respective nuclei groups before feature extraction.
Results: Patients did not differ on tests of executive (Brixton; H(3) = 0.84, p = .840), semantic (Pyramids & Palm Trees; H(3) = 4.87, p = .182), or visuospatial (VOSP; H(3) = 2.95, p = .400) function, suggesting selective memory deficit. LASSO identified 35 features with non-zero coefficients which classified controls from patients, with accuracy of 87% (Fig. 2). A model fit to classify patient subtype (HC, MTLc, MTL+) showed prediction accuracy of 51%. 9 features with non-zero coefficients were related to recall memory. The model was overall significant F(9, 141) = 3.89, p <.001, Adj. R2 = .148 - two anterior thalamic features were significantly predictive of recall (both p <.05). 11 features were related to familiarity memory. The model was overall significant F(11, 101) = 6.53, p <.001, Adj. R2 = .352. An anterior thalamic texture feature was significantly predictive of familiarity (p = .040). 12 features were identified related to hippocampal volume, with a significant linear regression model F(12, 138) = 6.61, p <.001, Adj. R2 = .310. Multiple anterior and medial thalamic nuclei features were individually significant, including sphericity, elongation, size zone nonuniformity, and coarseness (anterior); and surface-volume ratio and elongation (medial).

Conclusions: We used radiomics-derived thalamic shape and texture information to characterise relationships between thalamus integrity, recall, familiarity, and upstream hippocampal atrophy in a dual-process episodic memory context. Despite primarily MTL damage and normal cognitive profile, patients could be classified based upon thalamic features suggesting downstream microstructural changes, which were additionally related to episodic memory performance. Future work will investigate microstructural bases of features using diffusion imaging, and attempt to improve subgroup classification with the use of image filters prior to feature extraction.

References
Poster No 1081

Characterizing hippocampal activation with magnetoencephalography using the Mnemonic Similarity Task

Pei Robins¹, Jessica Gilbert², Zhi-De Deng¹

¹National Institutes of Health, Bethesda, MD, ²NIMH/NIH, Bethesda, MD

Introduction: The hippocampus is crucial for memory formation and consolidation, and aspects of emotion regulation such as depression. The Mnemonic Similarity Task (MST) is a pattern separation task that can be used to measure hippocampal function. This study aims to determine the feasibility of magnetoencephalography (MEG) to characterize hippocampal activation during the MST in a cohort of healthy participants.

Methods: Sixteen healthy participants completed the MST, comprising of two phases. In the encoding phase, 120 pictures of everyday objects were presented. In the retrieval phase, 360 pictures comprised of 120 each of repeated, new, and similar pictures were presented, and participants were asked to categorize them. Pattern separation performance was measured by the Lure Discrimination Index (LDI) and Recognition (REC) score. MEG data was recorded on a 275-channels CTF system. The data was filtered and artifacted using Independent Component Analysis (ICA) to remove cardiac, blinking, and movement artifacts. Source reconstruction was performed using the linearly constrained minimum variance beamformer method.

Results: The mean LDI was 0.35±0.20. The mean REC was 0.61±0.12. Participants were significantly faster in recognizing old objects compared to identifying similar objects (t=-5.6, p<.001). MEG revealed peak hippocampal activation approximately 200ms post-stimulus onset during both encoding and retrieval phases. The peak activation is observed in anterior hippocampus.

Conclusions: Our results demonstrate that MEG during the pattern separation task can detect hippocampal activation during the memory encoding and retrieval phases. Future directions include using this task to assess hippocampal function in depressed patients receiving electroconvulsive therapy.

References

Poster No 1082

Hippocampal Development during Adolescence in Episodic Memory and Its Interaction with Anxiety

Kahyun Choi¹, Jiook Cha¹, Dongil Chung², Grace Chung¹, Jae Won Kim³,⁴, Sang Ah Lee¹

¹Seoul National University, Gwanak-gu, Seoul, ²UNIST, Ulsan, NA, ³Seoul National University College of Medicine, Jongno-gu, Seoul, ⁴Seoul National University Hospital, Jongno-gu, Seoul

Introduction: Adolescence is a period of transition from childhood to adulthood, marked by the development of biological and higher-order cognitive function⁵. Hippocampus, which is critically involved in cognitive abilities such as episodic memory, develops rapidly from infancy, with distinct trajectories along the anterior-posterior axis¹, with protracted development in its connections with cortical regions across adolescence²,⁵. However, mixed results have been reported regarding the effects of cortico-hippocampal functional maturation on spatiotemporal episodic memory, and the effects of mental health measures in adolescence. In the present study, we aimed to investigate the interaction between developmental changes in the hippocampal memory network during adolescence, their influences on episodic memory, and the individual differences that may be explained by measures of depression and anxiety.

Methods: A total of ninety-eight adolescents, ranging from 10 to 17 years of age (mean = 14.62, std = 1.63, 57 females), were recruited for the study. Activation and functional connectivity of the hippocampus were measured through fMRI scans while performing an episodic memory task. In the task, participants watched a 12-second video featuring animal characters emerging from holes in the ground (encoding phase). They were instructed to remember what animals (what) appeared at which locations (where) in what order (when). After a short interference task, participants were instructed to recall the previous events (retrieval phase), and then to re-enact the events using a button box (re-enactment phase). Each trial consisted of a sequence of four animals appearing from various locations in the ground and participants completed 4 runs, each consisting of 2 trials. Additionally, questionnaires, including STAI and CES-D, were collected to assess the adolescents’ mental health.
Results: We observed a general age-related trend in episodic memory accuracy and found development-related correlates of hippocampal engagement in episodic memory. During memory encoding, activation in the hippocampal tail was greater than in hippocampal head, and this tail-head difference increased with age (r=0.34, p<0.001). Specifically, we found that the posterior dominance in activity in the left hippocampus mediates the relationship between age and episodic memory accuracy. Developmental changes and memory-related correlates in connectivity patterns were observed with the anterior hippocampus as a seed region. In particular, functional connectivity with the temporal lobe, including the superior temporal gyrus, decreased with age (T(95)>3.17, p<0.001, unc.), revealing a maturing episodic memory network across adolescence. In general, anterior hippocampal connectivity with temporal, parietal and frontal regions was correlated with memory accuracy; however, better memory performance in early adolescents (age 11-14) was associated with higher connectivity with temporal regions (T(49)>3.26, p<0.001, unc.). In terms of differences in neural activation correlated with anxiety scores, greater activation was observed in the right hippocampus compared to the left hippocampus, particularly in the anterior hippocampus. This was also observed in the amygdala. Functional connectivity between the amygdala and medial prefrontal cortex increased with anxiety, notably in middle adolescence (age 15-17), suggesting that the development of the fronto-amygdala circuit is reflected in the hippocampal network through its connection with the amygdala.

Conclusions: We investigated the developmental aspects of hippocampal engagement and its functional connections during episodic memory encoding in adolescents. These findings suggest that the functional specialization of the hippocampus along the anterior-posterior axis and the development of the cortico-hippocampal network may explain higher cognitive development during adolescence and that this process may interact with adolescents’ mental health.

References
Brain activity at event boundaries during movie watching in ageing and its association with memory

Helena Gellersen1, Yannik Lottes1, Merle Hinz1, David Berron1

1German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany

Introduction: The brain organizes the continuous stream of information we experience through a process termed “event segmentation” where the hippocampus and regions in the posterior-medial network (PMN) show increased activity when changes in a narrative occur1,2. In younger adults, such a boundary-evoked response observed during movie watching correlates with memory recall for movie content3,4. Ageing results in a reduction of these hippocampal boundary responses5, but whether such changes can explain inter-individual differences in memory performance in older adults is unclear. Prior studies also did not investigate boundary responses outside regions in the PMN to test for content-specific associations between boundary responses and memory performance. Here, we examine this relationship between ageing, event segmentation and memory using functional MRI during naturalistic movie watching.

Methods: The study included 18 cognitively unimpaired older adults aged 63 to 84 years in the MRI cohort and 33 older and 18 younger adults aged 18 to 35 in the behavioural cohort. The behavioural cohort watched a 12-minute movie while marking event boundaries. The MRI cohort watched the same movie in a 3T scanner without indicating boundaries for more natural viewing conditions. After watching the movie, all participants answered memory questions about event order, perceptual details, actions, characters and locations in the narrative. High- and low-salience event boundaries were defined based on 50% and 30% agreement across participants, respectively. We contrasted brain activity at event boundaries with activity around the middle of an event (6s windows for sufficient separation of events). We conducted a whole-brain voxel-wise analysis (uncorrected p<.001) and a region of interest analysis in native subject space, extracting beta values from MTL (anterior, posterior hippocampus; entorhinal and parahippocampal cortices), posterior-medial parietal regions (precuneus; posterior cingulate) and the visual ventral stream as a control.

Results: For high-salience boundaries, the whole-brain analysis revealed boundary-related activity in the PMN, including the precuneus and posterior cingulate, retrosplenial, and parahippocampal cortices. Bilateral posterior hippocampal boundary effects were also observed. Anterior hippocampus activity was restricted to the right hemisphere. Ventral temporopolar cortex in the anterior-temporal network and regions in the visual ventral stream also increased their activity at event boundaries. Low-salience boundary responses were only observed in occipital cortex, precuneus, and posterior cingulate, not the hippocampus. Older and younger adults did not differ in terms of the number of boundaries placed but in boundary position (t=3.16, p=.002). Younger adults’ responses were less variable and more tightly clustered around boundaries. An ANOVA showed that older adults had poorer memory for information for specific actions (t=-2.18, p=.037), characters (t=-2.35, p=.026) and perceptual details (t=-2.18, p=.037) but not for the general order of events or locations in the narrative. There was no association between the magnitude of neural boundary responses in MTL, parietal PMN, anterior-temporal network or visual ventral stream regions and memory performance.
Conclusions: The pattern of activation in PMN regions and the hippocampus in older adults aligns with that in younger adults in prior studies, suggesting preserved neural responses to event segmentation3,4. Increased hippocampal activity was not seen with low boundary salience, while occipito-parietal activity increases remained. Ageing is associated with more variability in boundary placement and content-specific memory decline with more forgetting of narrative details. Although no relationships were found between boundary-evoked brain activity and memory, this may be due to our relatively small sample size and will be investigated in a larger lifespan cohort going forward.

References

Poster No 1084
Neural mechanisms of insight during narrative comprehension
Hayoung Song1, Jin Ke1, Yuan Chang Leong2, Monica Rosenberg1
1University of Chicago, Chicago, IL, 2The University of Chicago, Chicago, IL

Introduction: How do we experience insight, or a feeling of “aha”? Behavioral evidence suggests that we experience insight as we comprehend causal structures of events1. A block-design study showed that insight leads to changes in representation patterns in the hippocampus and the medial prefrontal cortex (mPFC)2. Despite initial evidence, however, the cognitive and neural mechanisms of insight during naturalistic and continuous narrative comprehension remain to be studied. This study introduces a novel experimental design to ask how memory retrieval and causal reasoning guide insight during an unfolding narrative.

Methods: We collected fMRI data as human participants (N=36) watched an episode of a TV show, This is Us (41m 40s). To elicit multiple “aha” moments, the episode was segmented into 48 events (each \textasciitilde{}50 secs) and scrambled in temporal order. Scrambled events were grouped into 10 fMRI runs (~5 min each). Participants were randomly assigned to three scrambled-order groups, such that one-third of the participants watched the episode in the same scrambled order (Fig 1A). Participants were instructed to press an “aha” button whenever they understood something new about the show’s events and characters. After watching a set of events, participants were shown screenshots taken whenever they pressed the aha button and were asked to verbally explain their insight at these moments (Fig 1B).

Results: The frequency of aha button presses varied across participants, ranging from roughly 4 presses per minute to one press every 3 minutes. Despite such variability, aha button presses were synchronous across participants (dice coefficient

Figure 1. Stimulus and experimental design. (A) Block order for the three stimulus groups. The episode was segmented into 48 scenes and assigned to one of the 10 blocks (blocks 1-9: 5 scenes in scrambled order, block 10: last 3 consecutive scenes of the episode which contain the big reveal). Twelve participants in each group watched the episode in the same scrambled order. (B) Experimental design of one fMRI run (out of 10 runs in total). Participants pressed the aha button as they watched \textasciitilde{}5 min of scrambled episode. Then, they were asked to verbally recall why they had pressed the button as they watched the screenshots of all the moments they pressed.
ABSTRACTS

compared to chance distribution; \(z = 37.0, p < 0.001\). Coding of verbal responses found that 55.05\% (SD 23.52\%) of participants’ explanations of aha moments mentioned past events, which suggests that insight occurs by retrieving causally related past events in memory.

To identify brain areas that represent the causal structure of events, we correlated an event-by-event causal relationship matrix with an event-by-event voxel pattern similarity matrix that was extracted from each of the 100 cortical parcels\(^3\) (Fig 2B). The causal relationship matrix was created based on participants’ verbal responses; if a past event was recalled at an aha moment, a causal relationship between the pair of events was scored. Voxel activity patterns in the mPFC, retrosplenial cortex, and early visual cortices represented causally related events to be similar to one another and causally unrelated events as dissimilar, when controlling for semantic similarity between events (Fig 2A). Next, we hypothesized that activity patterns in these brain regions would shift at aha moments due to a change in event representation. To test this, we applied a hidden Markov model (HMM)\(^4\) on the voxel activity pattern time series of each parcel. Sudden shifts in representation patterns were observed ~2s prior to aha button presses. The effect was observed throughout the cortex, including bilateral mPFC, where the likelihood of the HMM boundaries significantly increased ~2s prior to button presses (Fig 2C, D). Furthermore, cortico-hippocampal cofluctuation time series\(^5\) showed that representation pattern shifts were accompanied by a transient decoupling between the hippocampus and mPFC\(^6\), again at ~2s prior to button presses (Fig 2E, F). This indicates that moments of insight are characterized by a transient change of event representation in the mPFC, in coordination with the hippocampus.

Conclusions: Insight occurs by retrieving causally related past events in memory. The mPFC represents causal event structures, and shows a shift in representation patterns at moments of insight with dynamic interaction with the hippocampus. The study demonstrates that insight during narrative comprehension involves memory retrieval and causal reasoning as well as dynamic reconfiguration and representational changes in the hippocampal-default mode network circuit.
The neural correlates of attending to external (semantic) and internal (episodic) stimuli

Chen Chen1, Katya Krieger-Redwood1, Elizabeth Jefferies1

1Department of Psychology, University of York, York, United Kingdom

Introduction: Semantic cognition supports different thoughts and behaviours, e.g., making sense of information from the external world, such as comprehension of what we are reading or listening to12, but also generating thoughts and memories that are independent of the external environment3. Using functional MRI, the current study explores how activation changes when participants (i) attend to external information, (ii) generate internally or (iii) ignore external semantic inputs for internally-focused autobiographical recall.

Methods: This study occurred across two consecutive days. On day 1, participants generated personal memories linked to cue words (e.g., gift) outside the scanner. On day 2, participants recalled these memories from the cue word in the scanner, and also read and listened to factual sentences in a comprehension task. The experiment consisted of the following conditions (1) sentence reading; (2) sentence listening; (3) personal memory retrieval ignoring written sentences or (4) spoken sentences; (5) personal memory retrieval (no conflicting sentence presented). After each trial, task focus ratings on a scale of 1 (i.e., not at all focused) to 4 (i.e., highly focused) were collected to index the extent to which participants were able to focus on the current task. 30 participants were recruited (18-23 Years, 24 females, 4 excluded). We performed a univariate analysis using a general linear model (GLM) to identify neural differences across these tasks and parametric effects of task focus.

Results: Behaviorally, the task focus ratings showed that participants were more focused in the comprehension than the recall task and that ignoring auditory input was harder than ignoring visual sentences during recall. Neurally, when participants attended to external information, activation spread along STG for auditory inputs, and along the ventral visual stream for visual inputs. These meaning pathways were activated automatically, even when participants focused their attention internally to recall personal memories, whilst ignoring the external input. When participants did not have to ignore external inputs, activation was higher in medial prefrontal and posterior cingulate cortex. The parametric effects of focus revealed differential engagement of default mode network (DMN) subsystems and control/salience networks. Greater task focus for external auditory or visual information was associated with greater activation in the dorsomedial DMN subsystem, previously shown to be involved in semantic cognition4 and auditory network and increased deactivation in the core DMN, salience and control-B networks. In contrast, greater task focus for internal memory generation, ignoring external information, correlated with increased activation in medial temporal and some core DMN, as well as somatomotor networks, and deactivation in dorsomedial and other aspects of core DMN. In this way, core DMN showed a functional split between task-positive and negative responses. Greater focus on internal generation, regardless of external distractions or not, was correlated with increased deactivation in salience and control-B networks. Compared to internal memory generation, dorsomedial DMN showed a stronger effect of task focus for comprehension of external inputs, while core DMN showed a stronger effect of task focus for recall, relative to comprehension.
Conclusions: Focus on external semantic information is associated with activation in dorsomedial DMN, while activation of core and medial temporal DMN regions is linked to focus on internal memory generation. When participants ignore semantic inputs and increase focus internally, activation increases in medial temporal and core DMN and somatomotor networks, and decreases across control networks. This study finds differential activation and deactivation of DMN subsystems, as opposed to recruitment of control systems, are aligned to our capacity to flexibly focus on internal memory generation and external semantic processing.

References
False Recall is Associated with Larger Caudate in Males but not in Females

Xuhao Shao¹, Ao Li¹, Bi Zhu¹

¹Beijing Normal University, Beijing, Beijing

Introduction: After learning semantically related words, some individuals are more likely than others to incorrectly recall unstudied but semantically related lures (i.e., Deese-Roediger-McDermott DRM false recall). Previous studies have suggested that neural activity in subcortical regions (e.g., the caudate) is involved in false memory (Kurkela & Dennis, 2016). Moreover, there are sex differences in the neural basis of false memories (Slotnick, 2021; Spets, Karanian, & Slotnick, 2021; Spets & Slotnick, 2021; Zhu et al., 2016). However, the sex-specific association between subcortical volume and false memory remains unclear. The current study examined whether sex modulates the relationship between caudate volume and DRM false recall. We tested two hypotheses. First, females should have higher true and false recall than males. Second, sex should moderate the relationship between caudate volume and false recall. To test these two hypotheses, this study measured individual differences in DRM false recall in healthy young adults and then acquired their structural imaging data to measure the volume of subcortical regions.

Methods: The current study recruited 400 Chinese college students (mean age: 21.33 ± 1.97 years [M ± SD]; 211 females and 189 males). In the DRM recall task (Roediger & McDermott, 1995), participants studied 12 lists of 8 semantically related Chinese words (e.g., apple, vegetable, lychee, melon, banana, grape, cherry and pear) during encoding. After a 10-minute filler task (i.e., an anti-saccade task), participants were asked to write down as many words as they could remember on a piece of paper within the next 10 minutes. The raw scores for true, false, and foil recall were the number of recalled targets (studied words), lures (unstudied but semantically related words), and foils (unstudied and unrelated words). To examine the relationship between subcortical volume and memory performance, we used FreeSurfer (version 7.1.1) to obtain subcortical segmentation (i.e., caudate, accumbens, amygdala, hippocampus, pallidum, putamen and thalamus) and total intracranial volume (ICV). In the current study, we used repeated-measures ANOVA to examine sex differences in memory performance, and linear regression models to examine whether sex moderates the relationship between memory performance and subcortical volumes. The Bonferroni method was used to control for multiple comparisons when calculating separate tests for seven subcortical regions.

Results: In terms of sex differences in recall performance, we found that males had lower levels of both true and false recall compared to females. In terms of sex differences in subcortical volumes, the caudate, accumbens, amygdala, hippocampus, pallidum, putamen and thalamus were larger in males compared to females. Importantly, sex moderated the relationship between caudate volume and false memory after controlling for age and ICV. Specifically, larger caudate volume was associated with higher false recall in males, but not in females. This correlation was significant in males after controlling for age and ICV. Except for the caudate, the volumes of the other six subcortical regions were not associated with false recall in males or females. Furthermore, individual differences in true recall were not associated with the volumes of the seven subcortical regions, nor did sex moderate their relationships.

Conclusions: This study found that sex modulates the relationship between caudate volumes and DRM false recall, suggesting that males and females produce false recall in different ways. Specifically, caudate volume was positively associated with false recall in males but not in females. This association was significant both before and after controlling for age and intracranial volume. This study emphasizes the importance of including sex as a moderator when investigating the neural correlates of human memory.

References
Longitudinal association between structural brain change and episodic memory change

Marie Strømstad¹, Didac Vidal-Piñeiro¹, Øystein Sørensen¹, Anders Fjell¹, Kristine Beate Walhovd¹

¹Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway

Introduction: Longitudinal studies are crucial for understanding the intra-individual variability in structural brain changes and their associations with cognitive functions. While correlations between episodic memory decline and gray-matter atrophy have been found (Gorbach et al., 2020, Sele et al., 2021, Oschwald et al., 2019), extensive investigation into these associations are limited, with studies often focusing on specific regions (e.g. hippocampus) and relying on relatively small sample sizes. Hence, here we have harmonized several longitudinal datasets to study the relationship between age-related episodic memory change and regional structural brain changes (cortical thickness and subcortical volumes). We use a mega-analytical to aggregate the different datasets and maintain statistical power (Eisenhauer, 2021). The main aim of the study is to explore the regional brain-memory change associations and their interaction with age.

Methods: Longitudinal neuroimaging and cognitive data from 13 datasets (Lifebrain cohorts and open-sharing datasets, see Figure 1), including 3,763 cognitively healthy participants (1,744 females; mean age = 62.5, age range 16.8-93 years), were analyzed. To harmonize cognitive data, we fitted – in each dataset - memory scores with age, sex, and retest effects as covariates using generalized additive mixed models (GAMM). Structural MRI data was processed with longitudinal FreeSurfer (version 7.1.0, http://surfer.nmr.mgh.harvard.edu), parcellated using the Destrieux and aseg atlases, and fed into a normative modeling pipeline (Rutherford et al., 2022). The slopes of change for both memory and brain data were estimated using linear models per subject using follow-up time as a predictor. The mega-analysis included linear mixed-effects models on each ROI, with memory change as a function of brain change. To account for varying reliability of measurements across datasets, weights derived from squared intraclass correlation coefficient were used in the models (longitudinal reliability estimated as in Fitzmaurice et al., 2012). For the age interaction we applied a GAMM with a tensor interaction of brain change and age on memory change. We also conducted a supplementary analysis with a meta-analytical approach, using the R metafor package (Viechtbauer, 2010). All models were corrected for multiple comparisons using False Discovery Rate (FDR).

Results: 57 memory - brain change associations were significant across several regions (p < 0.05, FDR corrected, see Figure 2a). Specifically, positive associations were found in the medial temporal regions, including the hippocampus, amygdala and parahippocampal gyrus, as well as the medial frontal sulcus, posterior cingulate gyrus, inferior frontal gyrus, and precentral sulcus. We also found significant age interaction effects in many of these regions, including the left hippocampus, amygdala and parahippocampal gyrus, where the effect increased with higher age (see Figure 2b). The meta-analysis results were similar, with highly correlated estimates across regions between the methods (r = .72), although fewer regions survived multiple comparison corrections due to higher error estimates.
Figure 2. Memory-brain change associations. A) Estimates for FDR-significant cortical regions. B) Estimates for FDR-significant subcortical regions. C) Age interaction effects for significant regions.

Conclusions: The results reveal significant change-change correlations between brain and episodic memory in distributed cortical and subcortical regions with known links to memory processing. The strength of these relationships tended to increase with age.

References

Poster No 1088

The Effect of Auditory Misinformation on Eyewitness Memory and its Neural Basis
Ao Li1, Xuhao Shao1, Bi Zhu1

1State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China

Introduction: The misinformation effect refers to changes in an eyewitness’s memory of an original event due to exposure to post-event misinformation (Loftus et al., 1974; Loftus, 2005). It involves three stages. A witness first saw an event, then read or heard narratives about this event (including some misinformation), and finally underwent a memory test based on what he or she saw in the original event. False memory from misinformation refers to the report of misinformation during the memory test of the original event. Previous research has investigated the impact of visually presented text-based misinformation on eyewitness memory of the original event and its cross-stage neural pattern similarity (Okado & Stark, 2005; Shao et al., 2023).
However, it is unclear about the neural representations of the original event when hearing misinformation. Using functional magnetic resonance imaging (fMRI) and neural pattern similarity analysis, the current study investigated the cross-stage neural pattern similarity between the original-event image and the post-event auditory misinformation, and then compares the neural representations between true and false memories.

Methods: In this study, 30 college students viewed 6 events with 300 original-event images (e.g., an image depicting a man taking a blue candy box) and then listened to 300 post-event narratives (e.g., an AI-generated auditory misinformation “the man took a red candy box”) in the fMRI scanner. Finally, they completed the memory test for the original event containing 156 questions (e.g., “What color of candy box did the man take in the original event?”). True memory, false memory, and foil memory refer to trials in which participants selected the original information (blue), misinformation (red), and unpresented information (white), respectively. MRI scans were performed on a 3.0T Siemens Prisma scanner with a 20-channel head-neck coil. The fMRIPrep and FSL were used for image preprocessing and analysis. Using the representational similarity analysis, the neural pattern similarity between the original-event and post-event stages (OP), were calculated for each of two memory types (i.e., true memory and false memory), for the corresponding items and the non-corresponding items in the same event, separately. We conducted the whole-brain searchlight analysis to identify brain regions that show differences in neural representations between true and false memories.

Results: The behavioral results showed that the false memory rate was higher than the foil memory rate, indicating a significant misinformation effect. For true memory, neural pattern similarity between the original-event image and the post-event misinformation for the corresponding items was higher than that for the non-corresponding items in the left inferior frontal gyrus and left inferior parietal lobe, whereas the neural pattern similarity for the corresponding items was lower than that for the non-corresponding items in bilateral occipital cortex. However, no such differences were found for false memory.

Conclusions: When a person hears misinformation, if he or she can restate the original event with gist representations in the frontoparietal cortex (i.e., a semantic match: “the man took a candy box”) and verbatim representations in sensory cortex (i.e., a visual mismatch: hearing “a red candy box” and reactivating an image of “a blue candy box”), then he or she will be more likely to resist the misinformation. This study supports and extends the sensory reactivation and fuzzy-trace theories. It may contribute to the understanding of the reconstructive nature of human memory and its application in the legal system.

References

Poster No 1089

Shared cortical activation dynamics across individuals during virtual navigation

Jaeseob Lim¹, Sang-Eon Park¹, Sang-Hun Lee¹, Sang Ah Lee¹

¹Seoul National University, Seoul, Korea, Republic of

Introduction: During exploration of a new environment, visual information, navigation events, and their importance for spatial memory are unevenly distributed across space and time. Consequently, various brain regions are likely to exhibit dynamic activities corresponding to the different demands of processing and encoding across time. Our study aims to identify the brain regions displaying such dynamic activity through inter-subject correlation analysis of fMRI data and use them to better understand how the human brain processes information as complex events unfold in our day to day experiences. We hypothesized that to efficiently encode and structure navigational episodes under limited cognitive capacity, the brain heavily allocates resources for visual processing and memory encoding during the occurrence of crucial portions of the episode such as turning or the emergence of a landmark, but not as much at other points in time. If this process fails, and the brain follows a sub-optimal pattern of encoding, it may lead to a decrease in performance, reflected in the memory accuracy of the navigational episode.

Methods: 44 healthy adults (mean age = 23.2, 25 female) performed a task involving the viewing of first-person navigational episodes through virtual environments and later identifying the correct route or destination on a map. Participants watched 24 different 1-minute episodes in the MRI scanner. Following each movie, participants answered a navigation-related question, choosing a map retracing the correct navigational path or a map marked with the destination location. 33 segmented cortical
regions were analyzed using an intersubject correlation (ISC) method, measuring the correlation between one person's activity dynamics and the mean activity dynamics of all other participants.

Results: With 3 exceptions, all regions exhibited a significant ISC larger than 0 (FDR-adjusted $p < 0.05$). The occipital regions showed high ISC compared to the other regions. In a subset of the brain regions (occipital regions, parahippocampal gyrus, and precuneus, adjusted $p < 0.05$), navigation episodes with landmarks showed greater ISC than navigation episodes without landmarks. Notably, these regions did not show a significant increase in average activation during navigation. ISC in the visual cortex in correct trials exceeded that of incorrect trials (adjusted $p < 0.05$), while average activation was not related to memory performance. Other brain regions showed no significant differences between correct and incorrect trials.

Conclusions: During navigation, various brain regions displayed shared dynamic processing. Sensory processing regions in the occipital lobe had the highest ISC, while frontal regions associated with higher-level cognitive functions exhibited smaller yet significant ISC. One factor contributing to ISC was the presence of distinguishable landmarks in the environment. This suggests that events related to landmarks act as temporal anchors, with most individuals similarly encoding them at those moments in the episode. Memory performance was found to be related to the dynamic activities, rather than the overall activation level, in the visual cortex. Given that the visual cortex reflects visual attention and memory, we suggest that inadequate control of such processes may, in part, explain why some individuals fail to encode the entire navigational event in memory. These results demonstrate that utilizing ISC as a neural marker of spatiotemporal encoding may provide further insight into the role of various brain regions in the formation of episodic memory, and provide new interpretations which may not be revealed through analyzing average activation level alone.
Memory reactivation during rest is coupled with fluctuations in ongoing brain states

Arielle Tambini1, Ting Xu2, Karl-Heinz Nenning1, Mark D'esposito3, Stanley Colcombe1, Michael Milham2

1Nathan Kline Institute, Orangeburg, NY; 2Child Mind Institute, New York, NY; 3University of California, Berkeley, CA

Introduction: A rich repertoire of neural dynamics is present during rest periods. One example is the reactivation of representations of past experience, a key mechanism supporting memory consolidation1. Although memory-related reactivation has been measured during rest (and sleep)2,3, it is unclear which awake brain states preferentially support reactivation. Prior work suggests a trade-off between internally-oriented brain states that promote reactivation, versus externally-focused states4-7. Recent findings support this idea, such that reactivation and related electrophysiological events coincide with default network activity, which is linked with internal processing8-9. A separate literature has characterized distinct brain states during rest via coactivation patterns (CAP) analysis10,11, which typically isolates a state reflecting internal vs. external processing (differentially weighting default vs. task-positive networks)12. Moreover, the recurring nature of CAPs is linked with slow fluctuations in global brain-wide activity (global fMRI signal, GS)12. Here, we sought to better understand which brain states support consolidation by characterizing relationships between reactivation events, brain states (i.e. CAPs), and GS fluctuations during rest.

Methods: We analyzed an fMRI dataset (n=52), in which the reactivation of incidentally encoded object-face stimuli has been reported14. We first isolated brain states (i.e. CAPs) from the baseline (pre-encoding) rest scans (see design in Fig. 1A)10,11. To classify brain states during post-encoding rest (three 9-minute scans), the correlation between each CAP and post-encoding time point was measured and each time point was assigned to the most similar CAP. Reactivation events were defined as time points of high similarity between the encoding and post-encoding rest patterns concurrently in the hippocampus and lateral occipital cortex (LOC)14-16. Although here we characterize brain states during reactivation, the primary goal of this dataset was to test the causal role of cortical activity in memory consolidation, such that inhibitory Transcranial Magnetic Stimulation (TMS) was applied to LOC or a Control site after learning. As LOC TMS reduced reactivation in LOC and memory retention vs. Control conditions, here, we also tested whether TMS influenced the coupling between reactivation and CAPs.

Results: We identified four distinct pairs of brain states (Fig. 1B). CAPs 1A and 1B captured modes of internal vs. external processing (differentially weighted default vs. dorsal attention networks). Other CAPs weighted the visual network (2A/B), the sensorimotor-association axis (3A/B), and somatomotor and ventral attention networks (4A/B). Reactivation was not uniformly distributed across CAPs (Fig. 2; F=14.5, P<10-9), but occurred preferentially during CAPs 1A and 2A, and was less likely during 1B and 3B. TMS influenced coupling between reactivation and CAPs (F=2.2, P=0.04); after LOC TMS, reactivation occurred more often during CAP 3A, and less during 2A. Moreover, reactivation tended to occur during the peak or zero phase of the GS (P<10-9, not affected by TMS). To ensure that the results were not an artifact of reactivation detection, we verified that parallel analysis of the encoding data revealed distinct coupling with CAPs.
Conclusions: Memory reactivation preferentially occurred during brain states reflecting internal vs. external processing and visual activation, suggesting that promoting these brain states may facilitate (visual) memory consolidation. Modulation of these dynamics by TMS suggests that this coupling may be functionally relevant for consolidation. Our results highlight that memory reactivation is coupled with ongoing, slow fluctuations in brain states and brain-wide activity, which may reflect slow changes in other factors (e.g. arousal) that shape memory consolidation.

References
Results: Patients overall showed worse performance on the behavioral task than the healthy controls, suggesting they have more difficulty retrieving information about unique entities. Comparing mean FA values between the groups showed greater asymmetry in the ILF in left TLE group compared to healthy controls, where the left TLE group had significantly lower FA in their left ILF compared to their right while the controls showed no asymmetry. There was no significant difference for the UF. In the voxel-wise analyses, there was a significant cluster in the frontal-lobe section of the left UF, where patients had significantly lower FA than controls. No cluster reached significance in the other three tracts considered. In patients, reduced mean FA in the left ILF was associated with poorer task performance, while reduced mean FA in the left UF was associated with a less cautious approach (faster reaction time, but poorer accuracy).

ABSTRACTS

Poster No 1091

Structural connectivity of the anterior temporal lobe impacts semantic retrieval efficiency

Nicolas Deom1, Omar Khalil2, Irene Giannoylis2, Mary Pat McAndrews2

1University of Toronto, Toronto, MT; 2Krembil Research Institute, Toronto, Ontario

Introduction: Semantic memory is the term usually used to describe the sum of all conceptual knowledge an individual possesses. Knowledge about unique entities, usually denoted with proper nouns, is thought to involve integration of many specific bits of information, and accessing these unique concepts is thought to rely on a network of ventrotemporal regions with a key hub in the left anterior temporal lobe (ATL). Individuals with left temporal lobe epilepsy (TLE) have particular difficulty with proper name retrieval, but the unique contribution of white-matter tracts, which connect this hub to the rest of the network, to this impairment remains an open question. Here, we examine the hypothesis that abnormalities in key tracts in TLE patients will impact successful retrieval of these concepts.

Methods: We recruited a sample of 26 left TLE patients being investigated for surgery and 17 healthy controls. Participants performed a semantic decision task where they were presented with a cue word (e.g., Jennifer Aniston) and two target words (e.g., Brad Pitt and George Clooney) and had to select which of the two targets was more closely related to the cue (Brad Pitt being the expected answer here). Diffusion-weighted images were acquired on a 3T Signa MR system. Standard preprocessing operations were applied on the collected data, using the fMRIPrep pipeline. Tract reconstruction of the left and right uncinate fasciculus (UF) and inferior longitudinal fasciculus (ILF), as well as all analyses were performed using TRACULA, running on Freesurfer 7.4.1. We compared mean fractional anisotropy (FA) and FA voxel-by-voxel along the tract between patients and controls. We also examined the relationship between mean FA and performance on the semantic task. Significant clusters in the along-the-tract analysis were considered significant at p<0.05 FWE-corrected. Mean FA comparisons of whole tracts were considered significant at p<0.05.

Results: Patients overall showed worse performance on the behavioral task than the healthy controls, suggesting they have more difficulty retrieving information about unique entities. Comparing mean FA values between the groups showed greater asymmetry in the ILF in left TLE group compared to healthy controls, where the left TLE group had significantly lower FA in their left ILF compared to their right while the controls showed no asymmetry. There was no significant difference for the UF. In the voxel-wise analyses, there was a significant cluster in the frontal-lobe section of the left UF, where patients had significantly lower FA than controls. No cluster reached significance in the other three tracts considered. In patients, reduced mean FA in the left ILF was associated with poorer task performance, while reduced mean FA in the left UF was associated with a less cautious approach (faster reaction time, but poorer accuracy).
Conclusions: We found that FA in the left ILF and UF, as a measure of white-matter tract integrity, was reduced in TLE. For TLE patients, having lower FA in the left ILF was also related to a reduced ability to retrieve semantic information about unique entities. The impact of structural damage or dysfunction in the anterior temporal hub on this process is well-established in the literature. Our findings add to the newer literature indicating that retrieval of information about unique semantic entities is also related to the integrity of long-ranging temporoooccipital connections.

References
5. Tranel, D. (2009). The left temporal pole is important for retrieving words for unique concrete entities. Aphasiology, 23(7–8), 867–884. https://doi.org/10.1080/02687030802586498

Poster No 1092
Aberrant brain network reorganization underlies emotional memory suppression under long-term stress
Tan Wenlong¹, Shaozheng Qin²
¹Beijing Normal University, Beijing City, Beijing, ²Beijing Normal University, Beijing, Beijing

Introduction: Long-term stress (LTS) is believed to result in a tendency to be more sensitive and unforgettable to emotional information (e.g., threat or adversity) as seen in various stress-related mental disorders (Joels, 2006; McGaugh, 2015), which could be maladaptive for mental health (Anderson, 2021). Memory suppression, specifically through voluntarily impeding...
the retrieval of unwanted memories (Anderson, 2001), holds the potential to serve as a strategy to alleviate this tendency. However, the extent to which memory suppression can alleviate the over persistence of aversive memories caused by long-term stress, as well as its underlying neural mechanisms, remains elusive. We conducted a fMRI study to investigate neural pattern reorganization associated with the influence of suppression on emotional memories before and after overnight under long-term stress.

Methods: Sixty-one young male college students participated in this experiment: 40 of them who were in a long-term high academic stress environment (all were preparing for the Chinese National Postgraduate Entrance Exam (CNPEE) for at least 6 months) were assigned to the Long-term stress group, the other 21 participants, who had not been exposed to other any major stressors in past 6 months, were the healthy control group. (Fig. 1A). The experiment consisted of four phases, including two training sessions which were conducted two days respectively, “Think/NoThink” paradigm, post-scan memory test and questionnaire (Fig. 1B). Brain images were acquired on a 3T Siemens scanner using an echo-planar imaging sequence. Imaging data were preprocessed and analyzed by using SPM12. We employed several analytical techniques, including univariate general linear models (GLM), representational similarity analysis (RSA), functional connectivity analysis, and network topology analysis, to analyze the brain data.

Results: Behaviorally, Exposure to long-term stress increases the SCL90 scores (Fig. 1 C). Long-term stress group showed less decay of emotional memories over time, and this trend could be intercepted by memory suppression (Fig. 1 D,E). The decay of memories under baseline conditions mediated the difference in inhibition scores between the two groups in the remote condition (Fig. 1 G). Neurally, at network level, the increase of communication efficiency in suppression-related brain network over time was attenuated under long-term stress (Fig. 2 B,C), and the most affected node was the left amygdala, which had an enhanced hubness in control from recent to remote and an abnormal decreased hubness over time in long-term stress (Fig. 2 D,E). The correlation patterns of brain connectivity and suppression efficiency are distinct during suppression before and after overnight, indicated that consolidation reconfigures brain system involved in suppression, however, these is no similar reconfiguration under long-term stress. The long-term stress group showed change of suppression network communication over time was negatively associated with suppression efficiency of remote memories (Fig. 2 F,H).

Conclusions: Participants under long-term stress exhibited less aversive memories loss from 30 minutes to 24 hours delay, indicated altered consolidation and forgetting process. Neurally, consolidation is manifested by significant reorganization of neural activity patterns during suppression at different time points. However, in the long-term stress group, these corresponding reorganization patterns are altered or even reversed, especially in the left amygdala. Due to the insufficient consolidation and forgetting of emotional memories, the long-term stress group demonstrated a higher efficiency in suppressing remote memories, which was characterized by the extent of reorganization of neural activity patterns was negatively associated with more effective suppression of remote memories. Our findings have significant implications for the application of memory suppression strategies in the treatment of stress-related disorders.
Influences of long-term memory systems on individual neural differences in early language processing

Analia Marzoratti¹, Anna Youngkin¹, Ian Lyons², Michael Ullman², Tanya Evans¹

¹University of Virginia, Charlottesville, VA, ²Georgetown University, Washington, DC, DC

References
Introduction: Long-term memory (LTM) is typically divided into distinct interacting subsystems: declarative (DM) and procedural memory (PM). The declarative-procedural (DP) model of language learning posits a shift from reliance upon explicit DM retrieval to more efficient, automated PM retrieval for language processing.1 This is thought to be particularly relevant for processing rule-based grammatical content, which has been shown to strongly rely on implicit retrieval of linguistic patterns from PM.1,2 Semantic processing has conversely been associated with explicit DM retrieval of acquired knowledge (e.g., vocabulary) from memory.2 However, individual differences in the developmental timing, extent, and adaptive value of this DM/PM shift posed by the DP model are poorly understood.

Methods: This study uses open source functional magnetic resonance imaging data from children (n = 159) aged 7 years (M = 7.60, SD = 0.78).3 By studying same-aged children, we could isolate individual differences from effects of typical, age-related shifts in function such as those posed by the DP model. We estimated mean hemodynamic response across voxels within bilateral regions linked with LTM in the literature (DM: caudate, putamen; PM: hippocampus, parahippocampal gyrus; Fig. 1) while children performed a semantic and a grammatical auditory language task.1 Through multilevel modeling, we used random slope terms to quantify the influence of individual differences on group-level effects of language demand on neural response.4 We tested predictions based on the DP model that PM engagement would (1) predict improved task accuracy, and (2) show stronger activity and effects for the grammatical task. We also expected (3) stronger effects of individual differences in PM activity effects given its emergent role across development.

Results: We found reduced activation during the grammatical task compared with the semantic task in bilateral DM and PM brain network-related structures (Fig. 2). This average fixed task effect was larger for bilateral PM (B = -0.47) vs. DM ROIs (B = -0.31). Based on the DP model, we predicted this negative effect in DM but not in PM regions. Both the fixed negative effect and random effects were largest in models of PM ROI activity, suggesting that the PM system may be particularly influenced by language processing demand and individual differences in neural response. Contrary to our predictions, accuracy showed a significant negative association with left PM activity (B = -4.04, p = .041), with no other significant neural effects on performance. This suggests that our findings of significantly reduced activity in left PM ROIs during the grammatical task may have exerted some benefit for their accuracy. As random slope terms were smaller in accuracy models with PM ROIs relative to DM ROIs, this negative effect appears relatively consistent across members of this sample. These findings suggest that the benefits ascribed to PM retrieval by the DP model of language processing may not extend to grammar at this age.
Conclusions: Our results suggest that the DP model may not wholly explain the relative roles of LTM systems for language processing at this stage of development, demonstrating complex individual differences in the links between neural activation, and behavioral outcomes. Even at the same age and stage of development, typically developing children may rely on differential degrees of DM and PM retrieval to perform identical cognitive tasks. Therefore, quantifying subject-level variability may be crucial for understanding the scope and stability of patterns of neurocognitive function, even patterns linked to purportedly consistent and generalizable developmental trends. The framework leveraged for this study serves as one example of how future work may similarly account for individual differences in their analyses to better characterize the diversity of neural mechanisms for children's learning.

References
Methods: The effect of ALLO withdrawal directly in humans. Methods to investigate the excitability (Sumner, 2020b). This study utilized an established visual LTP and electroencephalography (EEG) paradigm to investigate the effect of ALLO withdrawal directly in humans.

Results: Linear mixed effects. During the four-month intervention, the control group showed a decrease in left wHCV, while the volumes in the training group increased (time x group interaction: $\beta = 161.70, 95\%-CI[12.80, 310.26]$). The training group also maintained their levels of Cathepsin-B and physical fitness over time, whereas the control group experienced a decline in both (physical fitness, maximal Watt: $\beta = 11.45, 95\%-CI[0.74, 21.79]$; Cathepsin-B levels: $\beta = 39.53, 95\%-CI[6.71, 72.22]$). Dynamic modeling. In the training group only, PP improved MEM in subsequent dual-task session (-1.11, 95%-BCI[-1.22, -0.99]). Such effect lasted for up to 15 days. Higher baseline wHCV was associated with a stronger coupling-effect of PP on MEM (-0.15, 95%-BCI[-0.18, -0.11]) and lower persistence of MEM (-0.21, 95%-BCI[-0.21, -0.08]).

Conclusions: Four months of combined physical and cognitive training has a neuroprotective effect in older adults with metabolic risk factors. Specifically, training, as opposed to a sedentary lifestyle, helped to maintain Cathepsin-B levels and increase left hippocampal volume. Cognitive changes were nonetheless not evident within such a short time period. Using a sophisticated dynamic modelling approach, we demonstrated that exercise training is dynamically linked to cognition in a day-by-day manner, with higher levels of physical fitness improving memory performance in subsequent sessions. The observed benefits were midterm, i.e., lasting for up to 15 days after training session. Interestingly, this interaction was most pronounced in individuals with higher baseline hippocampal volume. Taken together, our data show some evidence for exercise-induced effects on brain health and plasticity in older adults at metabolic risk.

References

Poster No 1095
Using LTP to investigate the Neurosteroid Withdrawal Hypothesis of Perimenstrual Catamenial Epilepsy
Malak Alshakhouri1, Rachael Sumner1, Farheen Kothiwala1, Suresh Muthukumaraswamy1, Khalid Hamandi2, Paul Hofman3, Peter Bergin4, Cynthia Sharpe5

1The University of Auckland, Auckland, New Zealand, 2CUBRIC, University Hospital of Wales and Cardiff University, Cardiff, Wales., 3Liggins Institute, The University of Auckland, Auckland, New Zealand, 4Neurology Auckland Hospital, Te Whatu Ora, Auckland, New Zealand, 5Starship Hospital, Auckland District Health Board, Auckland, New Zealand

Introduction: Catamenial epilepsy refers to seizure exacerbations during certain phases of the menstrual cycle, a condition affecting 40% of women with epilepsy (WWE) that is often treatment-resistant (Herzog, 2015). Perimenstrual catamenial epilepsy (PCE) is the most common pattern, exemplified by a two-fold increase in seizure frequency around menstruation (Herzog, 2004). Female sex steroids are involved in modulating cortical excitability. Very broadly, oestradiol enhances glutamatergic excitation, while progesterone enhances GABAergic inhibition via its neuroactive metabolite, allopregnanolone (ALLO) (Reddy, 2016). The current hypothesis, which has only been tested in rodents, suggests PCE could be a withdrawal symptom caused by the rapid premenstrual decline of ALLO following prolonged exposure during the luteal phase (Reddy, 2016). Long-term potentiation (LTP) is a model of neural plasticity that allows us to non-invasively investigate changes in cortical excitability (Sumner, 2020b). This study utilised an established visual LTP and electroencephalography (EEG) paradigm to investigate the effect of ALLO withdrawal directly in humans.

Methods: This study used a within-subject, repeated-measures, counterbalanced, observational design. Twenty-one WWE with uncontrolled seizures and 25 healthy controls attended 3 sessions timed to their perimenstrual (day -3 to +2), mid-follicular
(day 5 to 8), and mid-luteal (day -5 to -9) phases, with day 1 being the first day of menstrual bleeding. Cycle timing was confirmed using ovulation and blood tests. Blood will be analysed for changes in progesterone, oestradiol, ALLO and GABAA receptor (GABAAR) mRNA. At each session, participants were presented with repetitive sine gratings at low frequency (1Hz) for 4 minutes, preceding a 2-minute high-frequency photic tetanus (9Hz) to induce LTP (Fig 1). The low-frequency condition was repeated at 2- and 40-minutes post-tetanus to record early and sustained LTP changes, respectively. EEG was recorded using a 64-channel actiCAP system. Data was pre-processed using Fieldtrip and analysed using SPM12 in MATLAB. LTP was assessed as changes in visual evoked potential (VEP) amplitude between pre-tetanus and post-tetanus recordings.

Fig 1. Diagram of the LTP paradigm timing and sequence. Adapted from Sumner, et al., (2020a).

Results: The data from the entire control cohort and the first nine WWE were included in the analysis. Initial analysis revealed a significant enhancement of the P2 peak of the VEP in the late post-tetanus condition at 183ms in the control cohort (F(1,288) = 76.8, p < 0.05 FWE-c) and at 215ms in the epilepsy cohort (F(1,96) = 73.3, p < 0.05 FWE-c). The timing of these peaks was used to inform the main within-subject analysis of menstrual cycle phase effect. A significant effect of menstrual cycle phase on visual LTP was found in the control cohort (F(2, 288) = 12.1, p < 0.05 FWE-c). P2 enhancement was significantly greater during the mid-follicular phase than the perimenstrual phase (t(48) = 4.41, p < 0.05 FWE-c) (Fig 2a). In the epilepsy cohort, exploratory analyses revealed a trend in the opposite direction. P2 enhancement was greater during the perimenstrual phase than the mid-follicular phase (t(16) = 3.23, p < 0.01 unc) (Fig 2b).

Fig. 2. Topographies of the P2 peak during the perimenstrual and mid-follicular phases for (A) the healthy control cohort and (B) the epilepsy cohort.

Conclusions: We found greater LTP enhancement during the mid-follicular phase compared to the perimenstrual phase in healthy females, although both phases are associated with low serum hormone levels. The latter is however associated with higher progesterone to oestradiol ratio, potentially leading to dominating effects of GABAergic inhibition and thus reduced cortical excitation (Reddy, 2004). It is too early to interpret the epilepsy findings, given the small sample size at the time of analysis. Yet, our preliminary finding shows some promise as it appears to align with rodent findings of increased cortical excitation during the perimenstrual phase (Reddy, 2007). This could reflect heightened sensitivity of women with PCE to ALLO withdrawal, possibly underlined by dysregulation of GABAAR as the current hypothesis suggests.

References

30TH ANNUAL MEETING OF THE ORGANIZATION FOR HUMAN BRAIN MAPPING • SEOUL • 1734
Neuroplasticity related to sound localization in single-sided deafness patients: an fMRI study

Leesseul Shim1,2, Ja Hee Kim1,3, Gibbeum Kim1, Hyo-Jeong Lee1,2,3

1Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medi, Anyang, Korea, Republic of; 2Ear and Interaction Center, Doheun Institute for Digital Innovation in Medicine (D.I.D.I.M.), Hallym University Medical Center, Anyang, Korea, Republic of; 3Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medi, Chuncheon, Korea, Republic of

Introduction: In patients with bilateral deafness, cortical plasticity related to behavioral outcomes has been explored in the auditory/visual sensory domain and the modality-independent cognitive domain. However, neuroplastic change in patients with single-sided deafness (SSD) is still largely unknown and associated with a specific binaural process such as sound localization is scarce. In this fMRI study, neural activity while performing sound localization tasks was explored in patients with single-sided deafness compared to the binaural or monaural hearing controls.

Methods: A total of 35 patients with severe to profound SSD and 13 normal-hearing controls (NC, n=13, age = 45.2±11.9) participated in the study. The patients with SSD were comprised into two groups: the left SSD (Lt SSD, n=17, age=43.9±15.2) and the right SSD group (Rt SSD, n=18, age=52.6±7.2). All participants performed two fMRI sessions of 14 blocks, each with an auditory localization task. The NC group have conducted the same experiment in three conditions: binaural, right ear-only, and left ear-only. All participants verbally responded the source direction among the left, front, and right sides. The correct response rate and the RMS error were also acquired during the scan. Imaging analysis was performed using the SPM12 package. Aside from whole-brain analysis of group comparison and correlation, cortical laterality was explored in three auditory ROIs that are cytoarchitectonically defined, accounting for both cluster size and activity strength (WLI: weighted laterality index).

Results: The NC group in the binaural condition revealed significant activation in the bilateral auditory cortices, regions in the frontal cortex, and the cingulo-opercular network. As expected, the NC group with one ear plugged showed a completely biased response to the side of the open ear. The auditory cortical response is shifted to the hemisphere contralateral to the open ear regardless of the source direction. Similar to the NC group in the binaural state and different from them in monaural conditions, the SSD groups revealed activity in the bilateral STG to all stimuli directions, suggesting that abnormal aural preference has developed in the ipsilateral auditory cortex to the intact ear. Localization-related activity in the right Heschl’s gyrus changes as a function of the duration of single-sided deafness, leading to a decreased interhemispheric asymmetry in both SSD groups. In the SSD groups, activity in the posterior STG contralateral to the intact ear and in the cingulo-opercular network was related to the better localization performance in the scanner. Analysis of WLI revealed that a time-related decrease in auditory cortical asymmetry is significant in the earlier auditory areas when the source is in the direction of the impaired ear.

Conclusions: With an extended duration of the asymmetric hearing, auditory cortical plasticity occurs to respond to the direction of the sound source, regardless of the side of hearing. The functional change seems to occur rapidly in the non-primary areas, while it changes slowly in the core area in a time-varying fashion. The result suggests compensatory neuroplasticity in the dorsal auditory pathway and areas for attentional control is essential to overcome the distorted auditory spatial information for sound localization in patients with SSD.

References
Swing Dance Induced Brain Plasticity: Morphometry and Quantitative Study

Chengyi Yuan¹, Weishun Dong¹, Qian Wang¹, Xiao Wang¹, Yanlin Yu¹, Chu-Chung Huang¹

¹East China Normal University, Shanghai, China

Introduction: Dancing has been regarded as an effective approach for improving cognitive and psychological health, in either older or young adults (Mitterová et al., 2021). To investigate the brain plasticity effect of dancing, traditional neuroimaging research has mostly focused on functional or gray matter morphological changes. However, the structural basis of brain functional change may not be linked with morphological information derived from non-quantitative image, such as T1w, which may be insensitive to short-term intervention, especially in young adults (Broessner et al., 2021). In contrast, quantitative MRI (qMRI) allows a more constant and specific measurement of tissue microstructure, which provide a new view to link structural and cognitive functional changes (Weiskopf et al., 2021). To better understand the structural reorganization underlying functional performance improvements, we conducted an interventional study on healthy adults to investigate the neural plasticity effect after partner dancing training, both traditional grey matter morphometry and qMRI indices were used.

Methods: Seventeen healthy adults (9 females; mean age: 19.8 ± 1.3 years) with no prior dancing experience were included in the study. They underwent MRI scans before (Scan 1) and after (Scan 2) a five-week swing dance workshop lasting two-hours per week. Gray matter volume (GMV) was extracted following optimized voxel-based morphometry approach using T1w. MTsat map and R2* map were acquired using the multi-parameter mapping (MPM) approach (Tabelow et al., 2019) and co-registered to T1w image for further spatial normalization. T1w images from both scans were segmented by a within-subject template and warped to MNI space separately. For each time point, the same deformation was applied to the quantitative maps without modulation. A combined weighting/smoothing approach procedure was implemented on the quantitative maps (Draganski et al., 2011). The statistical threshold for each voxel was defined as uncorrected p < 0.005, with a minimum cluster size requirement of 100, 170, and 140 voxels for GMV, MTsat, and R2* maps, respectively. Further exploration on the correlation between brain structural alterations and cognitive functional changes was conducted on clusters showing significant difference in voxel-based analysis.

Results: After 5 weeks of swing dancing training, participants demonstrated regional GMV increase in left superior temporal gyrus (STG), left cerebellar lobule VIII (CER3), right cerebellar lobule IV-V (CER4_5) and GMV decrease in bilateral middle cingulate & paracingulate gyri (ACG). We observed larger MTsat value in brain regions including left superior frontal gyrus-medial (SFGmedial), left middle frontal gyrus (MFG), left middle temporal gyrus (MTG), right anterior orbital gyrus (OFCant) and bilateral crus I of cerebellar hemisphere (CERCRU1). R2* demonstrated higher values in Right IFG pars orbitalis (IFGorb). A positive correlation emerged between the change of MTsat value in the left CERCRU1 and the change in Self-Acceptance Scale (SAQ) score (R2 = 0.37, p = 0.0124) while a negative correlation was found between the change of MTsat value in the left SFG-medial and the change in Susceptibility to Embarrassment Scale (SES) score (R2 = 0.291, p = 0.031).

Fig. 1. Brain regions with structural alterations between two scans. The warm color maps show significantly larger value. The cool color maps show trends toward smaller values. Lt, left; Rt, Right; ACC, anterior cingulate & paracingulate gyri; CER4_5, lobule IV, V of cerebellar hemisphere; CER8, lobule VIII of cerebellar hemisphere; CERCRU1, crus I of cerebellar hemisphere; IFGorb, IFG pars orbitalis; MFG, middle frontal gyrus; MTG, middle temporal gyrus; OFCant, anterior orbital gyrus; SFGmedial, superior frontal gyrus; medial; STG, superior temporal gyrus.
Conclusions: Our analysis demonstrates that partner dancing training can induce significant microstructural differences in the brain areas responsible for motor skill learning, action planning, task execution and social cognition. Additionally, we observed correlations between brain microstructural alterations and social cognition changes regarding mental health and interpersonal relationships. Our findings demonstrated that partner dancing may induce myelination in specific brain regions, suggesting the neural basis of social cognition improvement. These findings support the potential of partner dancing as a comprehensive intervention, integrating both exercise and social attributes.

References

Poster No 1098
Prehabilitation before neurosurgery modifies cognitive brain networks preserving function
Alba Roca-Ventura1, Leonardo Boccuni1, David Leno-Colorado1, Edgar Buloz-Osorio1, Selma Delgado-Gallen1, María Cabello-Toscano2, David Bartrés-Faz2, Alvaro Pascual-Leone3, Jose M. Tormos4, Kilian Abellaneda-Pérez1
1Institut Guttmann, Barcelona, Spain, 2University of Barcelona, Barcelona, Spain, 3Harvard Medical School, Boston, MA, 4Universidad Católica de Valencia, Valencia, Spain

Introduction: Optimizing tumor excision while limiting harm to healthy brain tissue is the main objective of brain tumor surgery. However, the use of invasive prehabilitation techniques come with a higher risk of consequences. Recent research has demonstrated the brain’s ability for change plastically, allowing functional activity to be transferred between different brain regions. However, it remains unclear whether this externally-triggered reorganization of cognitive brain networks could temporarily and adversely affect cognitive functioning in patients awaiting brain surgery.

Methods: Twelve patients (4 women, 8 men; mean age: 52.67 ± 13.4) diagnosed with brain tumors were admitted for prehabilitation. Patients were categorized into two equivalent groups based on the tumor’s location and its potential risk to either language or motor functionality. Pre- and post-prehabilitation assessments encompassed functional magnetic resonance imaging (fMRI) and a comprehensive neuropsychological assessment. Prehabilitation involved non-invasive brain
stimulation targeting networks relevant to the function at-risk, combined with intensive language or motor training, tailored to each individual’s specific case. Language performance and fMRI-derived language brain networks were explored as the main variables, with their metrics compared to those of the motor group, employed as a control. Two Way Repeated Measures Anova, post hocs and Wilcoxon test were used for the statistical analyses.

Results: A significant interaction between groups (language vs. motor) and time (pre vs. post-PRH) was found for the fMRI language brain networks modulation ($F = 5.007; p = 0.049$). Pairwise post-hoc analyses revealed a significant decrease in the language group ($p= 0.047$) but not in the motor control group ($p= 0.495$). These statistically significant changes in brain network arrangement were not associated with language performance in any of the groups (all p-values > 0.05).

Conclusions: Non-invasive prehabilitation induced distinct brain network changes for language and motor groups and these changes showed no association with cognitive impact, and hence, without generating an impact on cognitive function. Therefore, the relocation of brain activity from its initial site does not seem to result in any potential crowding effects. In this context, these results suggests that non-invasive prehabilitation before brain tumor surgery opens a safe neuroplasticity window where brain configuration is temporarily modified, but cognitive performance is preserved. Notwithstanding, more research is necessary to confirm and explore deeper into these findings, which lies on the horizon (ClinicalTrials.gov: NCT05844605).

References
3. François, C (2019). Right Structural and Functional Reorganization in Four-Year-Old Children with Perinatal Arterial Ischemic Stroke Predict Language Production. eNeuro vol. 6,4

Poster No 1099

Detecting motor plasticity in the human thalamus and putamen with precision functional mapping
Roselyne Chauvin, Dillan Newbold, Ashley Nielsen, Samuel Krimmel, Athanasia Metoki, Benjamin Kay, Timothy Laumann, Evan Gordon, Nico Dosenbach

Introduction: Cortico-striato-thalamo-cortical loops have been studied to better understand motor adaptation. Plasticity has been observed in these circuits using invasive electrophysiology in patients, and animals. Human plasticity studies, using fMRI, have been limited by low signal-to-noise ratios in subcortex, differences in sensitivity between cortical and subcortical brain measures and plasticity paradigms that induce only small effects. To overcome these limitations, our study paired arm immobilization by casting, with repeated functional imaging in three individuals (Precision Functional Mapping; PFM) to address low signal-to-noise ratio in the subcortex. Daily resting-state functional connectivity (FC) and motor task fMRI were used to measure functional systems pre, during, and post, 2 weeks of casting. Previously, we identified increased FC between the disused somatomotor cortex hand region and the cingulo-opercular network (CON), an executive control system. We also observed large, spontaneous pulses during casting involving the cortical component of the disused motor circuit. We recently discovered the previously unrecognized Somato-Cognitive Action network (SCAN), which is inter-digitated with effector-specific motor regions in the central sulcus and connects the CON and motor networks within the primary motor cortex. Thus, to capture disuse-driven plasticity effects in human cortex and subcortex, and integrate them with our new understanding of motor circuit, we expanded our prior investigation of the cast dataset to include analysis adapted to the signal characteristic of subcortical regions.

Methods: We analyzed the casting dataset (3 subjects, daily 30min rest+10min HCP motor task fMRI over 6 weeks). For each subject, we employed two complementary methods to measure motor plasticity. First, we quantified disuse-related changes in FC. We computed seed-based voxel correlation maps of FC with somatomotor hand region for each rest session and quantified the change between pre and during casting sessions using within-anatomical structure cluster-based correction, against randomized label null distribution. Second, we performed a detection of disuse pulse presence using a novel HRF-based local modeling method. Finally, we compared resulting subcortical plasticity maps (FC changes, disuse pulses) to...
conventional motor execution maps generated from pre casting task fMRI. Similarities between subcortical maps were tested against spatial null distribution using Moran algorithms.

Results: While the SCAN regions in the cortex did not show involvement in disuse-driven plasticity, subcortical nodes of SCAN, particularly the central thalamus and posterior putamen, exhibited strengthened FC during disuse and presence of spontaneous activity pulses, that partially overlapped anatomically (Fig. 1). Motor task fMRI validated that subcortical disuse-driven plasticity effects spatially correspond to the upper extremity movement execution circuitry (Fig. 2).
Conclusions: Our study highlights the significance of subcortical motor circuits in human motor plasticity and a potential role for information integration across networks in motor adaptation. Indeed, the SCAN seems to serve as its downstream actuator, turning more abstract plans into integrated whole-body actions8. While cortical SCAN regions might implement whole-body motor commands and do not show large plasticity effects, SCAN subcortical nodes could mediate the disuse-induced FC change between CON and motor effector regions. This subcortical plasticity role is supported by knowledge of thalamic involvement in memory consolidation and homeostasis during sleep10.

References

Poster No 1100

Latent connectivity-behavior dimensions following stroke

Ke Wu1, Gong Gaolang1

1State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Beijing Normal University, Beijing, China

Introduction: Understanding neurobiological mechanisms behind behavioral deficits is crucial for prognosing and treating stroke patients1,2. To address this issue, previous neuroimaging studies on stroke patients largely applied univariate correlation or machine learning approaches to predict each single behavioral score with single or multiple brain features3,4. These approaches, however, ignore the highly correlation nature of post-stroke deficits across behavioral domains and possible latent dimensions of heterogeneous behavioral phenotypes in stroke patients3,5. The present study applied a multivariate data-driven method to explore the latent dimensional associations between post-stroke behavioral measures of multiple domains and distributed functional connectivity of the entire brain.

Methods: Dataset A public shared longitudinal stroke dataset from the Corbetta's group was used1,2,4. This dataset includes a battery of neuropsychological tests and multi-modal MRI scanning at three poststroke time points: ~2 weeks, ~3 months, and ~12 months. For each time point, the patients with all behavioral assessments and qualified resting-state functional MRI scans were entered into our analysis (~2 weeks: 57 patients; ~3 months: 63 patients; ~12 months: 63 patients; 31 healthy controls). Data processing For each of the 5 neuropsychological domains (motor, language, spatial attention, verbal memory, and spatial memory), principal component analysis (PCA) was applied to all within-domain tests, resulting in 5 component scores. For each patient, stroke lesions have been manually outlined by the Corbetta's group. Resting-state functional data was minimally preprocessed using FSL1. We then applied the Gordon 333 cortical parcellation and Pearson correlation to estimate a 333×333 functional connectivity (FC) matrix6. Here, lesion voxels within each parcel were masked out, and the functional connectivity from the parcel with more than 50% lesion voxels were excluded from the FC matrix6. Statistical analysis The partial least squares correlation (PLSC) was applied to identify significant latent components (LC) between the multi-domain neurological scores and FC measures within the matrix. Each identified LC accompanies with a whole-brain weighted matrix pattern (i.e., FC salience) and behavioral profile (i.e., behavioral salience), and a FC composite score and a behavioral composite score then can be yielded for each individual. Pearson correlations between the original data and resultant LC composite scores was used to quantify the contribution of each raw variable to the LCs, referred to as LC loading.
Results: As shown in Figure 1, PLSC analysis consistently revealed one significant LC for poststroke three time points, as well as for the healthy controls. The loadings of the original features (i.e., 5 behavioral domain scores and 55278 functional connectivity) were illustrated in Figure 1B-C. Interestingly, both FC saliences and loadings exhibited overall similar pattern among the three poststroke time points by showing significant correlations between each other (Fig.2). However, their correlation with health controls was gradually increased along the poststroke time, suggesting a reorganization of the behavior-connectivity relationship following the gradual poststroke recovery.

Conclusions: Using a multivariate data-driven approach, the present study revealed a robust latent connectivity-behavior component/association in both stroke patients and healthy controls. Particularly, the poststroke FC pattern underlying such association is gradually changed toward the pattern in healthy controls, supporting a dynamic reorganization of functional connectivity networks after the stroke.
ABSTRACTS

Poster No 1101

Ultrafast resting state fMRI unveils layer-specific feedforward and feedback interactions

Joana Carvalho1, Francisca Fernandes1, Mafalda Valente1, Koen Haak2, Noam Shemesh1

1Champalimaud Foundation, Lisbon, Lisbon, 2Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Gelderland

Introduction: Decoding the intricate directional flow of information within cortical circuits is crucial for deciphering brain dynamics and understanding the driving forces behind learning, sensory training and neuroplasticity following brain damage. Despite its scientific and clinical relevance, a model describing layer-specific feedforward and feedback interactions in health and disease is still lacking. Here, we applied a layer based connective field (ICF) model1 to ultrafast fMRI and diffusion (d)fMRI resting-state (RS) data to reveal the feedback vs feedback layer specific fingerprints in healthy controls and brain damage animals.

Methods: All experiments were preapproved by the competent authorities. N=15 adult Long Evan rats were scanned on a 9.4T Biospec scanner, under medetomidine sedation. Two different acquisitions were performed: BOLD (N=9) and dfMRI (N=6). BOLD: 6 healthy controls and 3 cortical blind (CB, V1 lesioned), animals were scanned in two scanning sessions: retinotopic mapping and ultrafast RS (3 RS datasets were obtained using GE-EPI acquisitions from: a multislice set; a visual cortex and visual pathway slice sets). V1 Lesioning: Bilateral V1 lesions were performed in 3 animals using a 1% solution of ibotenic acid, Fig2A. The CB animals were scanned 2 weeks post-lesioning. Diffusion fMRI: One scanning session with a visual stimulation and RS paradigms (b= 1.2 ms/m2 and b=0.05 ms/m2.) Preprocessing: Images were NORDIC denoised, slice-timing and motion corrected, coregistered, normalized to the SIGMA atlas. Population receptive field mapping and ICF models were implemented in in-house python scripts and build on the work of1,3.

Results: The ICF position maps estimated from ultrafast RS data show retinotopic organization, Fig1A. LCF size, which reflects the source layer sampling extent, revealed that deeper layers have larger ICF sizes than superficial layers, Fig1B. This is in agreement with the idea that deeper layers receive feedback information from higher visual areas. Furthermore intracortical ICF between layers of VC showed two different ICF size profiles: feedforward (L4 projecting to all the other layers of the cortex) with inverse U shape with the larger ICF sizes at layer 5 and feedback with a U shape with the larger CF sizes at superficial (L1) and deeper layers (L6), Fig1C. Similar ICF size profiles were also found between V1 and V2 Fig1D. To confirm that larger CF sizes are associated with feedback signals, we computed CFs during visual stimulation and RS. LCFs estimated during visual stimulation (reflecting predominantly feedforward connections) have significantly smaller size than ICFs estimated during RS (spontaneous activity is thought to be feedback dominated) Fig 1F. Fig1E shows the reliability of the CF model, CF estimated from functionally linked areas (i.e V1 to other visual areas) have a higher variance explained than areas that are not connected. LCF when applied to CB animals shows increased V2 sampling from visual areas that provide direct input to V1 (LGN and LP) but not to visual areas indirectly connected with V1 (SC), consistent with idea that residual vision is mediated by V1-bypassing circuits4, Fig2D. Furthermore, also in CB animals deep layers of V2 have the larger ICFs, Fig2C. In addition, ICF estimates obtained from the RS ADC signal show smaller ICF size than the ones obtained form BOLD, and they seem to be more layer specific, Fig2 E,F.

References
Figure 1: LCF disentangles feedforward and feedback information. A: Visualization of the LCF maps averaged over animals, polar angle (Panels A, C, and F, yellow), obtained from multiblock RS data for all areas of the cortex. B: Violin plot of the size estimated for the polar angle between L4 and all other layers of V1 (feedforward connections) and between all other layers to L4 (feedback connections). C: Layer of LCF was obtained between V1 and V2; D: Violin plot of the size estimated between visual areas (V1 - L2/3 - V1) and between V1 and non-visual areas. E: CF size and variance explained obtained for the retinotopy stimulus and RS (1.5 x 1.5) and ultrafast resting state (300ms) between multiple functionally linked visual areas.

Figure 2: V1-hyperspiking circuits in Cerebral Blindness. A: Anatomical image of an animal with V1 bilateral lesions. B: Superior colliculus (SC), LGN, and Visual Cortex (VC) time series in response to the retinotopic stimulus for cortical and healthy controls. C: LCF size estimates in CB. D: Violin plot of the CF size for CB and HC. Estimated for the connections LGN-V2, LP-V2, and SC-V2. E: CF maps (position and size) obtained from the ADC, B1200, and B1200 signals during RS. F: Violin plot of the CF size obtained from ADC, B1200, and B1200 signals for visual stimulation, and RS.
Conclusions: The application of ICF model to ultrafast RS and dfMRI data shows: 1) A bypass of V1 in CB animals mediated by feedback to deep layers of V2; 2) functional connectivity reflects visuotopic organization in the absence of visual input; 3) the size profiles of ICFs enable to disentangle feedback and feedforward signals. Our findings align with the idea that in the visual system layers 5 and 6 carry the feedback information to layer 4, and with the underlying neural architecture.

References

Poster No 1102
Neuroplasticity following auditory working memory training post-stroke: A case study
Ada Leung¹, Winnie Chow¹
¹University of Alberta, Edmonton, Alberta

Introduction: Recovering from a stroke is a challenging process. Working memory is one of the cognitive functions that is impacted in a stroke involving the dorsolateral prefrontal cortex. Prior studies have found that improvement in working memory abilities post-stroke is predictive of functional gains (Vallat et al., 2005). Thus, studying how working memory training induces neuroplasticity may shed light on strategies for improving everyday functions. This pilot study aimed to examine the neuroplastic effects of working memory training in a patient with an ischemic stroke resulting in damage of the frontal regions. Our goal was to examine whether auditory working memory training led to changes in auditory and visual working memory abilities, as well as self-perceived cognitive and daily living abilities.

Methods: A woman, aged 56, sustained a right cerebral infarction involving the right middle cerebral arteries six months before the experiment. In the experiment, the patient completed auditory working training that consisted of 1-back, 2-back, and 3-back tasks using spoken digits and letters as stimuli. The training lasted six weeks, five days a week, and 40 minutes a day, with increasing task difficulties across weeks. Before and after the training, the patient underwent functional magnetic resonance imaging (fMRI) on auditory 1-back and 2-back tasks and visual 1-back and 2-back tasks. Also, the patient rated her performance and satisfaction in functional activity engagement using the Canadian Occupational Performance Measures (COPM) and the Cognitive Failure Questionnaire (CFQ). These subjective ratings reflected how well the patient felt herself performing highly prioritized daily activities. The fMRI scanning was conducted at the Peter S. Allen MR Research Center at the University of Alberta. A 3T MRI system (Siemens) with a standard birdcage head coil was used. Structural T1 weighted anatomical volumes were obtained (axial orientation, TR=2080 ms, TE=4.38 ms, FOV=256 mm, slice thickness=1 mm). The T2* weighted echo planar image sequence acquisition parameters were: TR=2000 ms, TE=30 ms, flip angle=80°, FOV=256 mm, and effective acquisition matrix=64×64 mm. Each functional sequence consisted of 36 4-mm thick axial slices, positioned to image the whole brain. The functional run began with a 30-second rest block followed by 8 blocks alternating between task and rest. A whole brain analysis was conducted using SPM12. The design matrix was modelled with blocks of 2-back, 1-back and rest for the auditory and visual tasks in the pre- and post-training scans. Contrasts were extracted with multiple comparisons controlled at p<0.05 corrected.

Results: The patient completed the training. In the post-training scans (compared to pre-training) there was increased neural activation in the left superior frontal gyrus, the bilateral inferior parietal lobe, and multiple cerebellar regions in the 2-back > 1-back contrast for both the auditory and visual 2-back tasks. There was also increased striatal activation in the 2-back > rest contrast for the auditory 2-back task. Hit rate and reaction time increased by about 12% and 21% respectively for all the n-back tasks (averaged scores). The ratings on the COPM and the CFQ also improved.

Conclusions: Neuroimaging findings suggest positive learning effects, with increased frontoparietal activations and striatal activations, together with improved behavioral performance. The former is the core network for working memory (Klingberg, 2010) while the striatum is related to learning (Salminen et al., 2016; Dahlin et al., 2008). Although transfer effects of working memory training have been inconclusive (Melby-Lervåg et al., 2016), this study showed transfer effects across tasks of similar
ABSTRACTS

Poster No 1104

Neurochemical Alterations in Bilateral DLPFC after Structure Learning Training in Healthy Adults

Deepika Shukla1,2, Chia-Lun Liu1,2, Xiaojin Cheng1,2,3, Chie Takahashi4, SH Annabel Chen1,5,6,7, John Suckling8,2, Zoe Kourtzi4,2, Balazs Gulyas1,5,2, Eleanor Koo1,2, Wei Ler Koo1,2, Jia Yuan Janet Tan1,2, Marisha Ubrani1,2, Boon Linn Choo1,2, Min Hong1,2, CLIC Consortium2

1Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore, 2Centre for Lifelong Learning and Individualised Cognition (CLIC), Cambridge Centre for Advanced Research and Education in Singapore(CARES), Singapore, Singapore, 3Department of Psychology, University of Innsbruck, Innsbruck, Austria, 4Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, United Kingdom, 5Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore, 6School of Social Sciences, Nanyang Technological University, Singapore, Singapore, 7National Institute of Education, Nanyang Technological University, Singapore, Singapore, 8Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom

Introduction: Structural learning (SL) integrates “Learning to learn” approach of individual’s abilities to extract underlying pattern and develop rules to adapt new changes through cognitive flexibility (CF). Homeostatic plasticity in neuronal circuits is crucial for critical learning and depends upon coordinated modulation of synaptic excitation and inhibition through Glutamate and GABA interactions1. Disruption in this coordinated neurotransmitter’s interplay triggers cognitive deficits2, while adaptive modulation contributes to relearning capacity3-4. Studies reported associative interaction with learning and cognitive skills development with neurotransmitters5, but the underlying neuro-cognitive model of these interactions is illusive. Using controlled SL training intervention, we aim to investigate the effect of learning in both the neuronal and behavioral levels to assess its transferability to other cognitive abilities.

Methods: 113 healthy volunteers aged between 18-55 years were pseudo-randomized to control (C) (55) and training (T) (58) groups matching with age (mean±SD: 28.21±7.89), gender: (65-F, 48-M) and intelligence (IQ) (109±16.30). T-group underwent 2-week SL training6. Out of the 113, 106 (C:53, T:53) participants completed with post-session magnetic resonance (MR) imaging, of which 7 (C:2, T:5) withdrew/dropped out of the study. All MR scans were performed in 3T Siemens MAGNETOM Prisma MRI scanner with a 64-channel head coil. All participants consented to Cognitive testing and MRI sessions with ethics approval from NTU-IRB. MR spectroscopy (MRS) for GABA quantitation in bilateral (left L- and right R-) dorsolateral prefrontal cortex (DLPFC) were performed at two different time points of pre- and post- SL training sessions along with cognitive assessments. Each MR session included 3D TI-MPRAGE (TR=2000ms; TE=22.6ms; TI=800ms; flip-angle=8°; FOV=256×256; slices=176; voxel-size=1×1×1mm3) and 1H-MEGA-PRESS MRS (voi: 30x15x30 mm3, TR=2000ms, TE=68ms, ON=1.98ppm, OFF=7.5ppm, Navg=128) with one unsuppressed water spectra of Navg=4. Voxels were placed close to middle frontal gyrus maximizing gray matter. Manual shimming resulted linewidth <16 Hz. MRS data in BIDS structure was applied for pre-processing and Osprey7 was used for quantitation of GABA+ (GABA + macromolecule) and Glx (Glutamate+glutamine). Quality check for MRS data included visual artefacts, head movements, bad data elimination, pre-processing and Osprey.

Results: Tissue corrected GABA+ and Glx levels in both L- & R-DLPFC of study groups did not differ at pre-training stage. After training, the T-group showed significant reduction in R-DLPFC Glx (p = 0.007, mean-diff: -2.479) compared to C-group (Fig.1a). Paired comparison between sessions showed significant decrease in post-training R-DLPFC GABA+ in T-group (p = 0.03, mean-diff: 0.656) but not in C-group (p = 0.12) (Fig. 1d). No significant difference was observed for L-DLPFC GABA+, Gix and GABA+/Glx ratio across groups and sessions. MRS measures did not relate to SL test-scores. However, R-DLPFC Glx in the T-group correlated positively with switch-cost reaction time (r = 0.3247, p = 0.0409) between shift-repeat trials of color-shape task, indicating reduced Glx levels in the R-DLPFC relates to short reaction time in the T-group (Fig. 2b). GABA+/Glx ratio in
T-group showed significant positive relation ($r = 0.317, p < 0.05$) with probability shift measure levels in contrast to negative relation ($r = -0.093$) observed in C-group. A strategy shifting ability in the T-group is observed in CF, and other cognitive domains (i.e. working memory, inhibition, and non-verbal intelligence) in contrast to C-group (Fig. 2a).

Conclusions: SL training evidenced significant modulation in neurochemicals after training and associates to response time and accuracy measure in CF. We also observed potential transfer of SL training to selective cognitive domains of working memory and Inhibition and fluid intelligence.
Music Training Increased thalamus connectivity in sensorimotor information bottom-up processing

Gujing Li1,2,3, Kexin Gao1,2,3, Hui He1,2,3, Yayun Liu1,2,3, Yuanyuan Yu1,2,3, Cheng Luo1,2,3, Dezhong Yao1,2,3

1School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China, 2MOE Key Lab for Neuroinformation, Center for Information in Medicine, Chengdu, Sichuan, China, 3The Clinical Hospital of Chengdu Brain Science Institute, Chengdu, Sichuan, China

Introduction: Music training is well known to improve sensorimotor skills. However, it is still not clear its influence on sensorimotor information bottom-up processing in the brain. The thalamus is an obligatory station through which nearly all sensory information must pass before reaching the cerebral cortex (McCormick and Bal 1994). Our previous study has proven that music training results in structural adaptations of the thalamus (Gujing et al. 2018). Thus, we selected thalamus subregions as regions of interest (ROI) and utilized stepwise function connectivity (SFC) (Sepulcre et al. 2012) to map the connectivity patterns of ROIs at different step distances, to represent the sensorimotor information bottom-up processing pattern in music participants.

Methods: 28 proficient musicians, 33 dancers, and 33 matched controls were recruited in this study. Dancers were recruited to detect the similarities and differences between dance and music training. Then, 510s resting-state functional images (TR=2s, TE=30ms) of all subjects were collected on a 3T MRI scanner. After preprocessing, stepwise function connectivity (SFC) analysis was performed. The coordinate of eight thalamus subregion ROI (radius=4 mm) was defined by the human brainnetome atlas. FC matrices were constructed and only positive correlations of the FC matrix above the threshold (r=0.6) served as input data for the following calculation. The SFC value of a voxel j for a given step distance l and a seed area i is computed from the count of all paths that connect voxel j and any voxel in seed area i, and have an exact length of l. Therefore, SFC value of a brain voxel represents the sum of the number of pathways that connect to any one of the voxels in the seed region. We explored a wide range of link-step distances, from 1 to 8, to characterize the progression of the derived maps. Finally, one-way ANOVA was performed to determine differences among the three groups. The multiple compare correction took the form of GRF (voxel p value=0.001, cluster p value =0.05) was performed. Post-hoc analysis was performed on each significant cluster.

Results: Statistical analysis of SFC results gave the information that compared with the dance and control group, the SFC value of lateral pre-frontal thalamus at step 2 in the music group were significantly higher in right temporal pole: superior temporal gyrus, right inferior frontal gyrus opercular part and right precentral gyrus.
Conclusions: Our study deepens understanding of music and dance training effects on sensorimotor information bottom-up processing. Music training enhanced connectivity between thalamus and primary sensorimotor areas, which is the early phrase of sensorimotor information bottom-up processing.

References
1. Gujing et al. (2018), 'Modern dance training and string instrument training have different effects on grey matter architecture', Advances in Psychological Science, 26: 1165.

Poster No 1107
Effects of Development and Cognitive Training on Brain Signal Variability
Fan Liu¹, Feiyan Chen¹
¹Bio-X Laboratory, School of Physics, Zhejiang University, HangZhou, China

Introduction: Previous works on both fMRI(Grady and Garrett 2014) and EEG(Mcintosh, Kovacevic, and Itier 2008) suggested that the variability in brain signal is necessary for individuals to adapt to the changing environment. Moreover, the brain signal variability shows an "inverted U-shaped" (Grady and Garrett 2014) dynamic trajectory, where young adults with better cognitive abilities have the greatest brain signal variability(Mcintosh et al. 2010). Therefore, the metric could be a potential biomarker of aging and changing of cognitive abilities. However, previous studies were based on task-fMRI(Boylan et al. 2021; Grady and Garrett 2014) or defined the fixation before tasks as the resting data(Garrett et al. 2011), while the fixation is more likely to be influenced by the preceding and following tasks. In addition, previous studies have focused on aging adults or younger adults (20-30 years old)(Garrett et al. 2011) to explore the changes in aging. Finally, there was a large age span of subjects in the same study, which may confound some of the underlying changes. Therefore, our study used the resting-state fMRI and select first, fourth, and sixth graders in primary school to delineate these developmental changes in brain signal variability through school years. Additionally, abacus-based mental calculation training (AMC) has been used as a cognitive training to study the effects of training intervention on variability.
Methods: We recruited a group of children of whom resting-state fMRI (rs-fMRI) were collected in Grade 1, Grade 4 (three years’ AMC training) and Grade 6 (five years’ AMC training), as well as the matched control group. Preprocessing steps included discarding the first five images, slice-timing, and head-motion correction. Then the functional images were aligned to the corresponding T1-weighted images, and were normalized to the MNI space with a resampling voxel size of 3 × 3 × 3 mm³. The spatial smoothing was skipped to reduce the impact of signals from other voxels(Garrett et al. 2010). The scans with excessive head motion (3 mm and 3°) were excluded. Some nuisance variables were removed in multiple linear regression analysis, including 24 Friston body-motion parameters and average white matter, cerebrospinal fluid. And a band-pass (0.01–0.1 Hz) filter was applied to reduce the effects of physiological noise. Then we extracted the time series for ROIs defined by the BN-246 template(Fan et al. 2016). MSE (multiscale sample entropy) were computed for the variability of signals.

Results: We found that brain signal variability presented an “U-shaped” dynamic trajectory during school years, which is different from the previous studies. The trend of variability was firstly decrease and then an increase occurred after the fourth grade, which could be accelerated by AMC training (see Fig 1). In the ROI-level analysis, we observed that after three years of AMC training, the AMC group already showed a significant decrease in brain signal variability in the orbital gyrus, inferior temporal gyrus, basal ganglia, and thalamus compared to that of first year. The variability then shifted to an elevated trend with continued training. In addition, more brain regions in the control group remained in a state of reduced variability at grade 6 compared to AMC group. In grade 4, the AMC group showed lower variability compared to the control group, while in grade 6, the AMC group had higher brain signal variability. Thus, these results revealed that training accelerated the dynamical change of brain signal variability. The AMC group achieves the transition from lower to higher brain signal variability earlier than children in the control group.

Conclusions: Brain signal variability can be used as a biomarker of children’s development and training. It exhibited an “U-shaped” dynamic trajectory among the school-aged children. Notably, the intervention of AMC training accelerates this dynamic process, making the metric reach a minimum more quickly and then return to increasing.

References
Poster No 1109

Long-Term Abacus Training Reshapes Substrates of Executive Function and Mathematics among Children

Tianyong Xu1, Xinyang Liu2, Andrea Hildebrandt3, Changsong Zhou1,4, Feiyan Chen1

1School of Physics, Zhejiang University, Hangzhou, China, 2School of Psychology and Cognitive Science, East China Normal University, Shanghai, China, 3Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany, 4Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong

Introduction: Domain-general executive functions (EFs) serve critically for mathematical skills (Cragg et al., 2014), which relationship of these two closely-related abilities show a variable role among cohorts with individual difference (Best et al., 2011; Cragg et al., 2017; Spiegel et al., 2021; Dong et al., 2022). However, little is known about whether the plasticity of this relationship between EF and math as well as their individual difference during childhood can be affected by cognitive training and the neural underpinnings. By analyzing behavioral performances and brain functional neuroimaging of children with and without five-year abacus mental calculation (AMC) study, we investigated the training effect on the association and individual difference of EF and mathematics, together with relevant changes in neural substrates.

Methods: A total of 142 children were recruited in this experiment, whom were randomly assigned to the training group (n = 72) and the control group (n = 70). Children in the training group received a two-hour AMC training per week for five school years, while children in the control group did not have any prior experience in AMC. In the post-training session, all of them participated in the EF- and mathematics-associated behavioral tests. Among them, 66 children completed resting-state fMRI scanning performed on a 1.5T Philips MRI scanner. We made following investigations. First, we applied multiple group structural equation modeling (SEM) analysis to test group difference of EF-math relationship. Then, we calculated similarity of EF-math FC patterns for the overlap size of shared neural circuits. Further, we computed the inter-subject similarity of FC (ISFC) patterns in frontal-parietal regions. Finally, we explored the role of ISFC on the relationship between EF and mathematics by performing mediation analysis.

Results: By demonstrating that training promoted EF and mathematical abilities (Fig. 1A), we also observed long-term abacus training reduced individual variability and enhanced the relationship between EF and mathematics (Fig. 1B, C). Using different constraint strategies, step-wise comparisons were made based on the SEM model, and all results in model comparisons were shown in the table (Fig. 1B). It revealed higher EF-math relationship (r = 0.856, p = 0.008) in the AMC group relative to the controls (r = 0.468, p = 0.060, Fig. 1C). These results demonstrated significantly decreased individual variances of mathematics and EF, as well as their enhanced relationship. Focusing on the relevant frontal-parietal regions from meta-analytic maps with EF/math-related terms in Neurosynth, we found that long-term training modulated FCs within these regions (Fig. 2A). Moreover, the AMC group presented higher overlapping circuits in EF-math FC patterns, which might support the enhanced EF-math transfer (Fig. 2B). Notably, training enhanced ISFC in frontal-parietal regions significantly (Fig. 2C), which partially mediated EF-related improvement in mathematical ability in the AMC group but not in the control group (Fig. 2D).
Conclusions: Our current study revealed the plasticity of transfer effect and individual difference affected by cognitive training. Long-term abacus training with visuospatial strategy can modulate FCs within frontal-parietal systems. Therefore, EF and mathematical abilities depending on the common neural substrates of frontal-parietal circuits could be improved and their relationship becomes strengthened. Besides, sustained training over multiple years with same strategy should reduce individual variability especially in the relevant neural networks. These different dimensions of training/learning as demonstrated here for EF and math is expected to be generalizable to other transferable abilities.

References

Poster No 1110

Abacus Training Affects Brain Hemispheric Asymmetry of Connectivity Gradients during Childhood

Jiali Mu¹, Feiyan Chen¹
¹Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, China

Introduction: Hemispheric asymmetries are influenced by various factors, among which development and cognitive training are the most influencing ones (Toga et al. 2003). However, it remains largely unknown the impact of these factors on the children’s hemispheric asymmetry of functional hierarchical topology. Previous study has adopted a framework to identify whole-brain functional gradients that capture the similarity of connectivity patterns in different cortical regions (Margulies et al. 2016). The current study extended such framework to explore the effect of abacus-based mental calculation (AMC) training on brain asymmetry during child development.

Methods: 2.1 Participants This study recruited a total of 283 children who were randomly assigned into AMC and control groups at the beginning of primary school. The AMC group received 2 h per week of training from the 1st to the 6th grade, while the control group did not receive any physical or mental abacus instructions throughout this experiment. Four resting fMRI sessions were administered in the longitudinal study, including 1st, 2nd, 4th, and 6th grade. 2.2 Functional connectome gradients We calculated within-hemispheric functional connectivity (FC) in voxel-level. Specifically, the atlas of intrinsic connectivity of homotopic areas (AICHA, 4mm) was used to parcellate the brain regions, yielding 9316 voxels in the left hemisphere and 9198 voxels in the right hemisphere. For each hemisphere, we utilized the BrainSpace toolbox to estimate functional gradients (Vos et al. 2020). Notably, the current study focused on the unimodal-transmodal gradient. 2.3 Statistical
To quantify hemisphere asymmetry, we chose left-right as the asymmetry index (AI) (Wan et al. 2022). A positive AI-score meant the hemispheric leftwards, while a negative AI-score dominated rightwards. To test group and development effects on the AI of the unimodal-transmodal gradient, we applied a linear mixed model. Then we examined hemispheric differences across Yeo's seven network computing their network's gradient average. Temperament was assessed through scale, with two main levels of exuberance and BI.

Results:

3.1 Group and grade effects on the AI of the hemispheric gradient

The linear mixed linear model revealed a significant group × grade interaction effect of the unimodal-transmodal gradient AI (p=0.027). In 1st grade, there was no significant difference between the AMC group and the control group; In 6th grade, the two groups had a significant difference (p = 0.003). From a developmental perspective, in 1st grade, there was no significant hemispheres asymmetry both the two group. However, the control group showed significant leftward asymmetry in following 2nd, 4th and 6th grade (p < 0.001), while the AMC group always showed no significant lateralization in these time points. 3.2 Frontoparietal network asymmetry and temperament

From 1st grade to 6th grade, both groups of children showed significantly rightward asymmetry in the frontoparietal network. There was a positive correlation between the AI of frontoparietal network in the 1st grade and their 3rd grade exuberance in the control group (r = 0.489, p = 0.008), but not in the AMC group. In addition, there was a positive correlation between the asymmetry in the 1st grade and their 3rd grade another temperament BI in the AMC group (r = 0.406, p = 0.009).

Conclusions:

In current study, we investigated the effects of developmental and cognitive training on the hemispheric asymmetry of connectivity gradient. Our study showed that both the development and cognitive training play important roles in hemispheric asymmetry of connectivity gradient. Additionally there was a significant correlation between the asymmetry of the frontoparietal network and temperament, which was distinct across these two groups. These findings provide novel insights of the impact of long-term cognitive training on hemispheric asymmetry of connectivity gradients.

References

Poster No 1111

The modulation of neurotransmitters in sensory areas during motor learning: an MRS study

Hong Li, Sima Chalavi, Amirhossein Rasooli, Geraldine Rodríguez-Nieto, Stephan Swinnen

KU Leuven, Leuven, Vlaams Brabant

Introduction: Gamma-aminobutyric acid (GABA) and glutamate (Glu), as the primary inhibitory and excitatory neurometabolites in the human central nervous system, play pivotal roles in human learning. Numerous studies using animal models have shown that the administration of drugs that facilitate or hinder GABAergic transmission can modulate learning outcomes and
the formation of memories4,5. These findings further highlight the critical role of the GABAergic system and the inhibitory-excitatory balance in learning. Considering that static resting-state neurometabolite levels, measured at a single time point, may not provide a comprehensive picture of the dynamics of inhibitory and excitatory processes and their role in behavioral performance6, the repeated measurements of neurometabolites may provide complementary insight into the relationships between the modulation of neurometabolites and behavior. However, evidence on how neurometabolites are modulated to facilitate learning is scarce7. Therefore, the aim of this study was to investigate whether feedback types and phases of learning affect the modulation of neurometabolites in specific sensory processing brain areas. Additionally, we aimed to investigate whether the modulation of neurometabolites is associated with behavioral progress.

Methods: We used magnetic resonance spectroscopy (MRS) to measure the modulation of neurometabolites during a motor learning task under two different feedback conditions. Fifty healthy young participants were trained on a bimanual tracking task over five days (Day 1 – Day 5) while receiving either concurrent augmented visual feedback (CA-VFB group, N=25) or terminal intrinsic visual feedback (TA-VFB group, N=25) of their performance. Additionally, GABA\(^+\) (GABA + macromolecules) and Glx (Glu + glutamine) levels in two sensory-processing brain areas were determined: primary somatosensory cortex (S1) and medial temporal cortex (MT/V5). We used three time points for MRS measurement, i.e., before (baseline), during and after task training on Day 1 (initial learning phase) and Day 5 (late learning phase).

Results: Behaviorally, the behavioral progress was more pronounced on the first training day than on the last training day and worse initial performance was associated with larger behavioral progress. From all samples, MT/V5 GABA\(^+\) levels increased from baseline to during the task and it reduced back to baseline following the end of behavioral task training on Day 1. S1 Glx levels were reduced from baseline to after the behavioral training on Day 1. Additionally, S1 GABA\(^+\) levels were reduced from baseline to during the task and remained at this level after the end of behavioral task training during the late learning phase (Day 5). Furthermore, we found that higher baseline GABA\(^+\) levels in either the S1 or MT/V5 area were associated with larger reduction of GABA\(^+\) levels along with behavioral training. However, the behavioral progress achieved under either feedback or feedback withdrawal conditions was not correlated with the modulation of neurometabolites during motor training.

Conclusions: Our findings suggest that the modulation of neurometabolites in task-related brain areas constitutes one of the mechanisms driving motor learning. Furthermore, the modulatory capacity of the neurometabolites is linked to its baseline concentration.

References

Poster No 1112

Alpha Traveling Waves: Coexistence of Idling and Active Inhibition in Selective Working Memory

Yifan Zeng\(^1\), Paul Sauseng\(^1\), Andrea Alamia\(^2,3\)

\(^1\)University of Zurich, Zurich, Switzerland, \(^2\)CNRS Université de Toulouse, Toulouse, France, \(^3\)Artificial and Natural Intelligence Toulouse Institute, Toulouse, France

Introduction: The functional role of alpha waves (8-12 Hz) has been the subject of debate. However, much attention has been focused on investigating alpha amplitude, leaving the functional significance of its temporo-spatial dynamics, particularly traveling waves, relatively unexplored. Importantly, previous studies have shown that alpha waves traveling in different directions may serve distinct functional roles (Alamia et al., 2023; Alamia & VanRullen, 2019; Pang et al., 2020). During visual stimulation, forward waves (propagating from posterior to anterior sites) convey bottom-up information, while backward waves (anterior to posterior sites) reflect top-down regulation (Pang et al., 2020). Here, we extended the understanding of the functional spectrum of alpha waves by investigating their traveling direction during selective working memory processes.

Methods: We re-analyzed two pre-existing, open-access EEG datasets (dataset 1: Feldmann-Wüstefeld & Vogel, 2019; dataset 2: Adam et al., 2018). In both datasets, participants performed similar lateralized delayed match-to-sample working memory...
ABSTRACTS

tasks, where they were required to memorize the color of the targets in the presence of distractors. Following a brief retention phase, participants reported whether the probe matched the target (dataset 1, Figure 1A) or all the colors of the target (dataset 2, Figure 1B). In the first dataset, the distractor load (2, 4, or 6 distractors) was manipulated. In the second dataset, both the memory span and the distractor load varied synchronously between 1, 3, and 6 items. We focused our analysis on the amount of forward and backward alpha waves during the retention phase. We quantified the amount of alpha traveling waves using a two-dimensional fast Fourier transform-based algorithm inspired by the work of Alamia and VanRullen (2019; Figure 1C).

Results: Figure 2 shows alpha traveling waves observed during the retention phase. In dataset 1, we found an increase in the power of alpha forward waves as the distractor load increased. In dataset 2, increased distractors/memory set size led to an increase in forward waves and a decrease in backward waves. Notably, the effect interacted with hemisphere. Alpha forward waves exhibited a more pronounced increase in the hemisphere contralateral to the distractors. Conversely, the reduction in backward waves was stronger in the hemisphere ipsilateral to the targets. In both datasets, the forward waves were lateralized contralateral to distractors, while backward waves displayed lateralization towards the hemisphere ipsilateral to targets.
Conclusions: Our results demonstrated that the distractor load regulated the amount of alpha forward waves during working memory retention. This observation suggests that the forward waves may serve as active inhibition of distracting information, superimposing on the bottom-up visual stream. In contrast, increasing memory set size led to a reduction in backward alpha waves. This might indicate a reduction of cortical idling when more information needs to be kept in working memory.

References

Poster No 1113
Dynamics of Decision-Consistent Bias in Human Visual Working Memory
Hyonwoo Gu1,2, Joonwon Lee3, Sungje Kim3, Jaeseob Lim3, Hyang-Jung Lee3, Heeseung Lee3, Minjin Choe3, Dong-Gyu Yoo3, Jun Hwan (Joshua) Ryu1,2, Sukbin Lim4,5,6, Sang-Hun Lee3
1Stanford University, Stanford, CA, 2Wu Tsai Neurosciences Institute, Stanford, CA, 3Seoul National University, Seoul, Korea, Republic of, 4NYU Shanghai, Shanghai, China, 5Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, Shanghai, China, 6NYU-ECNU Institute of Brain and Cognitive Science, Shanghai, China
Introduction: Humans tend to bias their ongoing actions toward their past decisions, a phenomenon dubbed decision-consistent bias\(^3\). Efforts to explain this seemingly irrational bias have been limited to the sensory level, despite the evidence that it is affected by post-perceptual processes\(^2\). Here, by combining psychophysical and cortical measurements with a class of dynamical models, we uncover a previously unidentified source of the decision-consistent bias: the interplay of decision-making with the drift dynamics of working memory.

Methods: In a scanner, participants were asked to memorize the orientation of a briefly (1.5s) presented grating and estimate it after a prolonged (15s) delay, intervened by a discrimination task (1.5s) (Fig. 1a-b). In the discrimination task, upon the appearance of a reference, participants had to decide, whether the remembered orientation was tilted clockwise or counterclockwise relative to the reference. We quantified the decision-consistent bias as the difference between choice-conditioned mean errors (Fig. 1c). To characterize the dynamics of decision-consistent bias, we considered a model class of the memory process with or without drift dynamics (Fig. 1e-f). In these models, the initial point at the sensory encoding stage is constrained by the efficient encoding scheme\(^8\), and the encoding and drift functions are constrained by the stimulus-specific bias inferred from the estimation errors (Fig. 1d) using the von Mises basis functions. To probe the working memory dynamics during delay, we performed linear decoding from the early visual cortex, V1, V2, and V3, considering the availability of working memory information there\(^6\). We used the inverted encoding model\(^1\) and projected the reconstructed responses onto the polar space to readout the orientation. To compare the BOLD decoding trajectories and the model predictions, we convolved the canonical hemodynamic response functions with the model predictions and the boxcar-modeled visual drives during the stimulus and reference epochs.
Results: First, the drifting dynamics of the decision-consistent bias well explained behavioral responses. Across all participants, the full model with both drift and diffusion terms was superior to the reduced model without drift when the Bayesian information criterion was compared (Fig. 1g). Next, the working memory signals in the visual cortex were consistent with the drifting dynamics. When conditioned on the discrimination decisions, the decoded trajectories showed a bifurcation away from the target orientation towards the direction consistent with the decision (Fig. 2b). Trajectories predicted by the full model closely resembled those observed in the BOLD signals, compared to the diffusion-only reduced model (Fig. 2c). As predicted in the drift time course (Fig. 2a), the post-decision component (b_post) decreases in late trials, whereas the pre-decision component (b_pre) increases. To quantify these delay-dependent changes, we estimated their differences in early and late trials, namely, Δb_pre and Δb_post, by inferring the conditional means during the discrimination and estimation tasks both from behavior (Fig. 2d) and BOLD signals (Fig. 2f). These results matched the full model prediction (Fig. 2h), both in the signs of Δb_post and in their negative correlation, while the reduced model failed to capture these signatures (Fig. 2j). Furthermore, when conditioned on the converging (zero-crossing points in drift functions with negative slopes) and diverging (positive slopes) stimuli characterized for each participant, the full model correctly captured the larger absolute amounts of Δb_pre and Δb_post in diverging stimuli, whereas the reduced model could not (Fig. 2e,g,i,k).
Conclusions: Our findings provide empirical support for the drifting working memory and its interplay with decision-consistent bias in humans, accounting for how the working memory representations can continuously develop in a decision-consistent manner.

References

Poster No 1114
Exploring the Behavioral and Neural Mechanisms of Mindfulness in Enhancing Spatial Working Memory
Yuwen He1, Seng-Hang Lei1, Wenyue Gao1, Anqi Gu1, Jieting Chen1, Jiaze Li1, Mek Wong1, Kuai Long Sou1, Zhen Yuan1
1University of Macau, Macau, China

Introduction: Mindfulness practice has been shown to enhance various cognitive functions, including memory (Creswell, 2017; Tang et al., 2015). Although several studies have demonstrated the positive impact of mindfulness on working memory (Jha et al., 2010; Stein et al., 2022), its effects on spatial working memory in college students remain largely unexplored. Furthermore, the neural mechanisms underlying the regulation effects of mindfulness on spatial working memory remain poorly understood. To address these gaps, we conducted a brief mindfulness intervention study.

Methods: In the initial phase of the study, we recruited 15 participants with no prior mindfulness experience for the experimental group, which underwent a 4-week mindfulness workshop. Additionally, we recruited 10 matched participants for the control group, who did not engage in mindfulness practice. Both groups performed a spatial working memory task during an fMRI scan on two occasions: first upon recruitment and again three months later. For further analysis, 11 participants from the experimental group and 9 participants from the control group met the eligibility criteria.

Results: Preliminary results revealed that the brief mindfulness intervention significantly reduced dysfunctional metacognition in individuals who practiced mindfulness (Figure 1, group*time interaction p=0.02), suggesting the effectiveness of our intervention. As depicted in Figure 2A, participants in the mindfulness group demonstrated improved spatial working memory performance after three months, whereas the control group showed decreased performance, although the group*time interaction was not significant in the current sample (p = 0.2). Neuroimaging findings indicated a significant group*time interaction effect in the right frontal eye field (Figure 2 B, uncorrected p < 0.001), a crucial brain region involved in attentional control.
Conclusions: In summary, our preliminary results suggest that the brief mindfulness intervention holds the potential for enhancing spatial working memory in individuals. Furthermore, the observed modulated brain activations in the right frontal eye field, resulting from mindfulness practice, may underlie the improvements in spatial working memory performance.

References

Poster No 1115
Volitional Breathing Alerts Brain for Faster Reaction in Emotionally Distracted Working Memory Task
Seulgi Eun1, Phan Nguyen1, Kyungmo Park1
1Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea

Introduction: Emotion, as a comprehensive psychophysiological response to internal or external environment, plays a crucial role in survival mechanisms. Emotion sometimes enhances our cognitive function, while it often disturbs even it leads to failure [Dolcos, 2011]. When it comes to the detrimental effect of emotion is somewhat retrogressive response to survival, investigating strategy to reduce the effect could be an attractive research topic. Here, considering neurobehavioral association between breathing and emotion, which the volitional breathing (VB) could rebalance and regulate emotional states [Ashhad, 2022], we applied simple breathing strategy (i.e., slow and deep breathing) to emotionally distracted working memory task to investigate brain mechanisms of VB in emotional processing.

Methods: Twenty-eight healthy young females participated in our fMRI experiment. Participants performed three different delayed match to sample working memory (WM) tasks depending on types of breathing strategy and visual distraction during memory maintenance phase (Maintenance) (i.e., scrambled image distraction for control, Scram; negative emotional image, Emo; and volitional breathing with emotional image, EmoVB) (Fig 1A). In EmoVB, participants were instructed to breathe deep and slow, while they were given instruction to concentrate on performing WM task without any instruction on breathing in Scram and Emo. Acquired functional images for each task were preprocessed and used in the ROI-based GLM analysis. ROIs were chosen from Human Brainconnetome Atlas [Fan, 2016], and we extracted representative ROI time series within each ROI by calculating 1st principal component of principal component analysis. Then, considering brain regional heterogeneity of hemodynamic response function (HRF) [Bright, 2009], we calculated optimal HRF delays for each ROI using ROI-based GLM with time shifted stimulus HRFs (Fig 1B). Finally, we extracted ROI brain responses including BOLD activity (beta) and latency (optimal delay), and those of Maintenance were compared between Scram and Emo to investigate effect of emotional arousal, and between Emo and EmoVB to investigate effect of VB on the emotional processing. During experiment, we also measured breathing patterns and WM performance (i.e., accuracy, AC; and reaction time, RT).
Results: As we instructed, participants’ breathing pattern showed deeper in breathing depth and slower in rate in EmoVB than Emo. We found that the Emo impaired RT but not AC compared to Scram. Interestingly, VB restored the impaired RT to almost the same level of Scram, but it did not change in AC. As results of contrasted brain responses between Emo and Scram, the Emo decreased activity in the motor control and cognitive processing regions, and increased in the emotional processing regions, while it simultaneously prolonged latency in the emotional processing regions and shortened in the motor control regions. Also, our correlation analysis between brain responses and WM performance showed brain responses related to coping mechanisms both in the cognitive (i.e., dorsolateral prefrontal cortex) and emotional processing (i.e., parahippocampal gyrus and visual cortex) regions as well as to detrimental mechanisms in the emotional processing (i.e., amygdala) region. On the other hand, from results of brain contrast between EmoVB and Emo, the VB decreased activity in the motor control as well as in the emotional processing regions, and shortened latency in most of brain regions. Interestingly, the improved RT by the VB was associated with the decreased activity and shortened latency in the motor control regions, and more consistent breathing of the VB caused more improvement in the RT (Fig 2).
Conclusions: Collectively from our results, it seems that the VB not only regulates the excessive brain responses in the emotional processing network induced by the emotional distraction but also makes brain in alert state for faster response by recruiting motor control networks.

References

Poster No 1116
Cortico-cerebellar patterns differentiate maintenance and manipulation in working memory tasks
Joshua Tan1, Eli Müller1, Claire O’Callaghan1, James Shine1
1University of Sydney, Sydney, NSW

Introduction: Working memory involves the temporary storage and manipulation of information. It plays an important part of our day-to-day lives, such as when organising your daily schedule and engaging in conversations. However, the mechanisms of working memory are poorly understood, due in part to largely cortical explanations for the phenomenon. Intriguingly, working memory has previously been associated with regions of the dorsolateral prefrontal cortex that share extensive connections with the cerebellum, and rodent studies have implicated this circuit in working memory tasks. We hypothesised that working memory mechanisms are facilitated by cerebellar engagement, which may provide a parsimonious understanding for the neural mechanisms of working memory.

Methods: Twenty-four right-handed individuals (mean age = 23.8, SD = 2.6, 16 women) participated in the study and completed both a working memory spatial map and mental rotation task (King et al., 2019). Participants underwent three days of training before the first scanning session. Each participant completed 16 imaging runs (10 min per run) spread across two days. Each task consisted of an instruction period (5 s) and a response period (30 s). For the mental rotation task, there were 9 trials per run (duration = 3 s; ITI = 300 ms), with three difficulties with different degrees of rotation (easy = 0°, medium = 50°, hard = 150°). For the spatial map task, there were 6 trials per run (duration = 4.8 s; ITI = 200 ms) with three difficulties with differing number of digits to memorise (easy = 1, medium = 4, hard = 7). fMRI scans were pre-processed using fMRIPrep, denoising and a high-pass filter (0.01) was applied using python scripts. Time-series signal was extracted and z-scored from a parcellation of 502 regions (400 cortical regions; Schaefer et al., 2018, 28 cerebellar regions; Diedrichsen, 2006, 74 subcortical regions; Tian et al., 2020). General linear models were fitted to the subject ROI time-series, comparing the effect of task difficulty on the BOLD response. Linear discriminant analysis (LDA) was used to find a low-dimensional manifold that separated both the spatial map and mental rotation tasks. Time-varying functional connectivity was estimated using the multiplication of temporal derivatives, a windowed approach (Shine et al., 2015). Edge connectivity across the whole brain was compared across tasks using permutation testing.

Results: General linear models were constructed comparing the effect of task difficulty on regional BOLD response. From these models, increased difficulty in the mental rotation task was associated with increased BOLD in the dorsolateral prefrontal, parietal cortices, and cerebellar lobules V and VIII (p < 0.05). The spatial map task was associated with increased BOLD response in the dorsolateral prefrontal, premotor, parietal, cortices, as well as lobule VI, Crus I and Crus II of the cerebellum (p < 0.05). The beta coefficients from these models were then compared using LDA and the principal eigenvector was analysed. The principal eigenvector described a gradient separating the middle lobe from the anterior and flocculonodular lobes of the cerebellum. Where the middle cerebellar lobe was related to maintenance in the spatial map task, and the anterior and flocculonodular lobes were related to manipulation in the mental rotation task. At the cortical level, there were minimal differences between the two tasks. Time-varying analyses revealed increased connectivity over time between dorsolateral regions with Crus I and Crus II of the cerebellum during spatial mapping. During mental rotation there was a decoupling between dorsolateral regions and Crus I and Crus II of the cerebellum.
Figure 1 Brain maps comparing levels of difficulty in mental rotation and spatial map tasks

Conclusions: These results provide evidence that task demands of different working memory processes are differentiated in the cerebellum. By going beyond cortico-cortical interactions, we find distinct differences in neural patterns that differentiate processes of working memory.

References

Poster No 1117
Dynamic neural representations in the prefrontal and parietal cortex during selective retrieval
Jisu Park¹, Sue-Hyun Lee¹
¹Department of Psychology, College of Social Sciences, Seoul National University (SNU), Seoul, Korea, Republic of

Introduction: The retrieval of selectively relevant information from stored memory is an essential process guiding goal-directed behaviors. State-based models of working memory propose that the selective reactivation of goal-related memory traces, facilitated by attentional focus, brings memorized information into working memory (D’Esposito and Postle, 2015). However, while prior studies of working memory have predominantly examined the neural processing of just-experienced information (Lepsien and Nobre, 2007; Harrison and Tong, 2009; Lee, Kravitz and Baker, 2013), the specific neural mechanisms underlying the activation of goal-dependent information and the suppression of irrelevant information from long-term memory in the brain still remain elusive.

Methods: To elucidate the specific neural mechanisms underlying goal-dependent selective retrieval, we conducted an event-related functional magnetic resonance imaging (fMRI) experiment, consisting of separate sessions for learning and selective retrieval. During the learning session, participants memorized scenes in which multiple objects are naturally placed. On the following day, the participants were instructed to selectively retrieve a cued object from the memorized scene inside the scanner, followed by independent scans of object and scene perception. To investigate neural representations of goal-relevant object information selectively retrieved from original scenes, we directly compared neural response patterns during selective retrieval with those elicited by perception of objects or scenes. Simultaneously, we examined retrieval cue-specific representations during selective retrieval by comparing neural response patterns elicited by the same retrieval cue and those
Results: The direct comparison between retrieval and perception patterns revealed dissociable information processing in the dorsolateral prefrontal cortex (dIPFC) and angular gyrus (AG) during selective retrieval. The dIPFC and AG commonly represented the goal-related original scene information during the early phase of selective retrieval. On the other hand, the AG primarily represented the targeted object, whereas the dIPFC showed prominent representations of non-targeted objects. During the later phase of retrieval, shared representations between retrieval and perception were not observed in either area. In parallel, we found a persistent retrieval cue-specific representation during this later phase in both the dIPFC and AG. By comparing pattern similarities between adjacent time points, we confirmed distinct neural representations between the early and later phases of retrieval. Specifically, while dynamic changes in neural representation were observed during the early phase, consistently similar representations across time points were observed during the later phase.

Conclusions: These findings suggest that goal-dependent retrieval of selective information involves dissociable information processing in the prefrontal and parietal cortex, along with dynamic temporal changes in neural representations in both areas.

References

Poster No 1118
Contingency representations in prefrontal cortex unify goal-directed planning and working memory
Jacob Miller1,2, Daniel Ehrlich3, Yvette Afriyie-Agyemang4, Nicole Santamauro1, Zailyn Tamayo1, Alan Anticevic1, John D. Murray5,1
1Yale University School of Medicine, New Haven, CT, 2Wu Tsai Institute, Yale University, New Haven, CT, 3University of California, Berkeley, Berkeley, CA, 4University of Pittsburgh, Pittsburgh, PA, 5Dartmouth College, Hanover, NH

Introduction: Working memory (WM) is critical in guiding our adaptive behavior based on immediate and future demands (van Ede & Nobre, 2023). The prefrontal cortex (PFC) and a connected network of areas are consistently active during WM (Sreenivasan & D’Esposito, 2019). But, it remains difficult to parse out the differential contributions of brain areas to WM function, especially when the maintenance and usage of WM content is often intertwined. How do representations for stimuli, task rules, and future behavior all contribute to WM, and what is their brain circuit organization? A recently developed computational framework and task paradigm helps unify the representational geometry for goal-directed planning and WM (Ehrlich & Murray, 2022). In this WM task, patterns of human behavior and activity in neural networks suggest the emergence of combined representations of stimuli and task rules into response contingencies. Here, we tested for differential neural substrates of stimulus, rule, and response information, and newly predicted contingency representations to clarify the role of PFC during WM.

Methods: During functional magnetic resonance imaging (fMRI), human participants completed 4 runs (32 trials each) of a conditional delayed logic WM task (Fig. 1a). On each trial, participants were shown a rule cue (colored box), then a gabor filter stimulus (vertical/horizontal), followed by a jittered delay period, and then a second gabor (vertical/horizontal), after which participants responded with a left or right hand button. The correct response on each trial was determined based on the rule and the first and second stimulus (Fig. 1b-c). fMRI data was acquired via 8x multi-band sequence with 2mm isotropic voxels, along with field maps and T1w/T2w anatomical scans. Functional data were minimally pre-processed in native anatomical space for each participant using fMRiprep (Esteban et al., 2019). We then used a general linear modeling framework in Nilearn (Abraham et al., 2014) with separate regressors for each combination of cue 1 stimulus and rule, modeling the initial cue period (1.6 s) and delay (3.2-8.0 s). Separate F-test contrasts were constructed to test for voxels that responded highly to different levels of stimulus, rule, response, and contingency information (Fig. 1b). Contrast maps were passed through probabilistic Threshold-Free Cluster Enhancement (pTFCE) to incorporate cluster information into voxel inference (Spisák et al., 2019) and corrected at FWE level or an arbitrary threshold for visualization.
Results: During the cue period, stimulus (orientation: horizontal vs. vertical) and rule (GRTR vs. XNOR vs. MEMO vs. NAND) information was present across voxels in early and high-level visual areas, extending into the lateral occipital complex and intraparietal sulcus. During the WM delay, a distributed set of voxels in frontal, parietal, and temporal cortex responded highly to different levels of contingency across trials (LL vs. LR vs. RL vs. RR), but most strongly in lateral frontal cortex (pFWE < 0.05, Fig. 2a). Maps of contingency representations often overlapped with rule representations, however, contingency sensitive voxels showed specific, non-overlapping territory in more anterior PFC areas (Fig. 2b), extending ventrally beyond the inferior frontal sulcus and dorsally along superior frontal sulcus/gyrus (Miller et al., 2021), or even wrapping around the frontal pole onto the medial PFC surface.
Conclusions: Building on classic and modern studies of rule coding in PFC (Milner, 1963; Vallentin et al., 2012), we show that the most anterior PFC areas in the human brain display unique representations of task contingencies in WM by transforming stimulus and rule information to future responses. Tying in perspectives of hierarchical cognitive control in PFC (Badre & Nee, 2018), these results suggest anterior PFC subserves WM by integrating different task information to plan future behavior.

References

Poster No 1120

Decoding Replay during Working Memory Manipulation and Retention in Humans

Shiva Sedghi1,2

1 Université Laval, QC, Canada, 2 CERVO Brain Research Center, QC, Canada

Introduction: Working memory, known as the ability of the human brain to temporarily hold and manipulate sequential items, is at the critical juncture between memory, attention, and perception, and is central to a range of cognitive functions and goal-directed behaviors. Load-dependent increase of brain activity and brain rhythmic activity in the theta frequency range in fronto-parietal networks have been associated with working memory performance. In parallel, recent studies have suggested that internally generated sequences of neural representations can be reactivated or ‘replayed’ to support memory consolidation and learning. Replay has also been proposed as a mechanism that enables planning and action preparation based on past experiences. However, the potential relationship between replay and active working memory retention and manipulation remains unexplored.

Methods: In this study, we utilized magnetoencephalography (MEG) to measure neural activity before, during after associative learning and during the working memory processes. We recruited 30 young participants in 2 consecutive MEG sessions with pre-learning exposure, associated learning, post-learning evaluation, and working memory tasks. During the working memory task, participants had to mentally recall, and regenerate the previously learned sounds based on given instructions. We used multivariate classification techniques to identify neural patterns associated with memorized items and investigate the dynamics of these patterns during working memory retention and manipulation periods. In addition, we explored the neural mechanisms associated with associative learning in humans by using a combination of behavioral, MEG, and machine learning approaches.

Results: Our analysis demonstrated sustained theta activity within a distributed network, indicating the temporal cooperation of brain regions during and after learning. ERF and Hilbert transform analysis also revealed a learning-associated beta desynchronization over fronto-temporal and parietal lobes, regions known to be involved in working memory functions. Furthermore, we detected evidence of backward replay during the manipulation and retention phases of working memory processes.

Conclusions: We observed sustained theta activity in the defined regions of interest after a memory-related task, which may be attributed to the role of theta oscillation in facilitating long-range communication between distant brain regions and can serve as a marker for the formation and retention of memory associations. These findings provide further support for the involvement of theta activity in cognitive processes. We also observed functional changes in the beta range (12–30 Hz)
Alpha oscillations protect auditory working memory against different distractors

Chia-An Tu¹, Yi-Fang Hsu¹

¹National Taiwan Normal University, Taipei, Taiwan

Introduction: Alpha oscillations are proposed to serve the function of pulsed inhibition to protect items in working memory from irrelevant information (Klimesch, 1999; Jensen & Mazaheri, 2010). Previous visual research showed that occipital alpha activity increased at the anticipation of strong distractors (Bonnefond & Jensen, 2012; Sghirripa et al., 2021). However, in the auditory modality, it was found that strong distractors were associated with pre-distractor decrease of alpha power in the left superior temporal gyrus (Weisz et al., 2020), which might be due to the involuntary direction of attention to strong distractors or the prioritisation of memorised information in anticipation of strong distractors. It remains unclear whether and how auditory distractors are inhibited by alpha oscillations.

Methods: We used a modified Sternberg paradigm where we manipulated the strength of distractors (strong vs weak distractors) and the amount of distractors (more vs fewer distractors) in a block design. A total of 22 participants were presented with six primes of spoken digits (where distractors were sandwiched between targets) with an SOA of 1100 ms (i.e., encoding), a silent interval of 2200 ms (i.e., retention), and a probe of a spoken digit to which participants had to press a key to indicate whether it was one of the targets presented earlier (i.e., retrieval). While 50% of the probes called for a yes response, 50% of the probes called for a no response. Participants’ response was followed by a jittered ITI of 900-1300 ms. EEG was recorded from 32 active electrodes on a Brain Products actiCAP snap according to the extended 10-20 system.

Results: Pairwise comparisons of the ERSP suggested that distractor strength and distractor amount modulated alpha activity differently. On the one hand, alpha power increased by distractor strength (i.e., strong vs weak distractors) at the encoding phase both before and after the presentation of distractors as well as at the retention phase over right centroparietal area. On the other hand, alpha power increased by distractor amount (i.e., more vs fewer distractors) at the encoding phase but not after the presentation of distractors beyond right centroparietal area.

Conclusions: Strong vs weak auditory distractors seem to be inhibited by increased alpha activity in a similar way to visual distractors. Moreover, the increased alpha activity is both proactive and reactive. More vs fewer auditory distractors seem to be inhibited by increased alpha activity proactively but not reactively, which likely involves a broad network of cortical regions.
Distinct neural patterns for working memory and sensory representations in the early visual cortex

Sungje Kim¹, Joonwon Lee¹, Hyunwoo Gu², Dong-Gyu Yoo¹, Heeseung Lee¹, Hyang-Jung Lee¹, Jaeseob Lim¹, Minjin Choe¹, Sang-Hun Lee¹

¹Seoul National University, Seoul, Korea, Republic of, ²Stanford University, Stanford, CA

Introduction: Numerous studies have demonstrated the presence of working memory (WM) representations within the early visual cortex (EVC) (Harrison and Tong, 2009; Serences et al., 2009; Ester et al., 2013). The sensory recruitment hypothesis proposes that the EVC utilizes the same neural code for both WM and sensory representations (referred to as the 'sensory code'), enabling WM to benefit from the high fidelity of sensory coding (Adam et al., 2022; D'Esposito and Postle, 2015). However, a recent study challenges this view, suggesting that the population activity patterns in the EVC during sensory encoding differ from those observed during WM maintenance (Kwak and Curtis, 2022). In this study, we investigate whether the EVC uses a shared code for sensory and working memory information by designing a paradigm that sensory and mnemonic representations are sufficiently separated in time and compared them using several measures of neural codes.

Methods: In a magnetic resonance imaging (MRI) scanner, 50 human observers participated in a task where they briefly viewed an oriented grating and later reproduced its orientation after a substantial delay period (16.5 s), which is long enough for the blood-oxygen-level-dependent (BOLD) responses to the grating to dissipate. During the delay period, there was a decision period where the subjects was asked whether the remembered orientation was clockwise or counter-clockwise than the presented stimulus orientation. Sensory codes were defined based on BOLD responses during the period of peak univariate BOLD activity, while working memory codes were defined using responses during the last moment of the delay period.

Results: Both sensory code and working memory code could successfully read out the information in the EVC, but their informative period were different. Decoding performance by sensory code was peaked after the stimulus onset, decreased during delay and disappeared at the last period of delay. Conversely, the working memory code exhibited lower decoding performance than the sensory code during stimulus onset, but maintained higher performance in entire delay period. During the decision period, where the physical stimulus was present, the sensory code accurately decoded the orientation of the physical stimulus, while the working memory code successfully retrieved the remembered orientation. These findings underscore the differential temporal characteristics of sensory and working memory codes in the EVC, highlighting a unique representation of working memory distinct from sensory representation. Several measures were employed to compare sensory and working memory representations. First, when projected onto a low-dimensional state space (Panicello and Buschman, 2021), sensory and working memory orientations formed in two separate planes orthogonal to each other. Second, using the inverted encoding model (Brouwer and Heeger, 2009), decoding stimulus orientation revealed that working memory information could not be decoded using voxel weights trained on sensory representations, and vice versa. Third, voxel-level analysis demonstrated that the differences in codes were derived from distinct distributions of orientation preferences. Lastly, examination of retinotopic properties showed that orientation preferences in the sensory representation were correlated with radial positions in retinotopic space (Ryu and Lee, 2018; Lee and Ryu; 2023), while such correlation was absent in the working memory representation.

References
Conclusions: Our findings suggest that EVC employs distinct neural codes for representing sensory and mnemonic orientations. This differentiation may enable the brain to perform tasks involving the comparison of both types of representations with less distraction from external interference. The observed separation in coding mechanisms supports the idea that EVC adapts to the unique demands of sensory and working memory processes, providing insights into the neural underpinnings of working memory within the early visual cortex.

References
Brain activity during working memory in autoimmune Addison’s disease

Annelies van’t Westeinde¹, Olle Kämpe¹, Sophie Bensing¹, Svetlana Lajic¹

¹Karolinska Institute, Stockholm, Stockholm’s Län

Introduction: Individuals with autoimmune Addison’s disease (AAD) lack production of adrenal hormones and therefore need to take daily oral replacement for cortisol and aldosterone (Husebye, Pearce et al. 2021). This replacement in its current form is sub-optimal, and frequently results in supra- and infra-physiological cortisol levels that might negatively affect the brain and cognitive functioning. Research has begun mapping the effects of having AAD on cognition, neuro-structure and neuro-function, in an effort to understand if the brain needs to be better protected in this patient group (Schultebraucks, Wingenfeld et al. 2015, Russell, Kalafatakis et al. 2023). Our group has found some indication of reduced total brain volume and changes in resting-state connectivity in individuals with AAD (Van’t Westeinde, Padilla et al. 2022, Van’t Westeinde, Padilla et al. 2023). Most notably, women with AAD report to be mentally fatigued, which impairs their daily functioning (van’t Westeinde, Ström et al. 2022). The present study aims to further our understanding of brain function in AAD by investigating brain activity during verbal and visuo-spatial working memory in a cohort of young adults with AAD, compared to healthy controls. In addition, we investigate the modulating role of mental fatigue.

Methods: All participants (56 with AAD (33 females) and 62 controls (39 females), aged 19-43 years), underwent MRI scanning of the brain while performing a visuo-spatial and verbal working memory task. FSL was used to compare task-related BOLD-signal between patients and controls, for the encoding and decoding phases of both tasks. In addition, we estimated the temporal standard deviation of the BOLD-signal in certain regions of interest where a significant group difference or interaction was found. Estimates of working memory performance included reaction time, variability in reaction time (coefficient of variation) and accuracy. Self-reported mental fatigue in the two days prior to testing was estimated with the multidimensional fatigue inventory (MFI), which was used in an analysis testing if the relationship between fatigue and brain activity during the task differed between patients and controls.

Results: No difference in mean accuracy, reaction time or brain activity during the working memory tasks were found between the groups, and there were no interactions with sex. Patients did have more variable reaction times during the control conditions of both tasks. In addition, a differential association between mental fatigue and brain activity during the visuo-spatial task was found in a cluster in the right occipital pole (80 voxels, peak MNI 32, -94, -6), and three in the cerebellum, specifically a cluster covering Vermis VI; Left V and Bilateral VI, (117 voxels, peak MNI -4, -68, -10), a cluster in Right I-IV (67 voxels, peak MNI 8, -50, -20) and a cluster in Right Crus I (67 voxels, peak MNI 40, -82, -30), where patients with more mental fatigue had stronger activity in these clusters. Stronger activity in the right occipital pole was associated with slower reaction times in patients, and a greater temporal standard deviation in the bilateral cerebellum region VI was associated with more mental fatigue in patients, but not controls.

Conclusions: These findings suggest that while patients perform at the same level as controls on this specific task, mental fatigue is affecting their brain activity, in particular in the cerebellum and primary visual areas. Our findings suggest that the cerebellum is involved in fatigue and performance regulation in patients with AAD, which is in line with a recent study showing the involvement of cerebellar excitability in fatigue regulation (7). Future studies are needed to better understand fatigue in patients with AAD, how to improve this and how to best protect their brains on the long term. In particular, the development of a pump to deliver cortisol might help improve brain function in AAD and should be further investigated (3).

References
Integrating Multimodal Neuroimaging Features to Predict Working Memory and Psychiatric Disability

Catherine Walsh1,2, Jean-Baptiste Pochon1, Agatha Lenartowicz1, Sandra Loo1, Catherine Sugar1, Carrie Bearden1, Robert Bilder1, Jesse Rissman1

1University of California, Los Angeles, Los Angeles, CA, 2National Institute of Mental Health, Bethesda, MD

Introduction: Individual differences in working memory (WM) capacity have been linked to variation in higher order cognition and psychiatric disability. One goal of the NIH Research Domain Criteria (RDoC) paradigm is to formally characterize this relationship and relate neurocognitive markers of WM to psychopathology across broad diagnostic categories1. Although a variety of structural and functional brain measures have been shown to account for variance in WM capacity, recent work integrating distinct modalities of brain structure and function explain more variance than can any single modality on its own2,3. The present investigation sought to leverage machine learning to characterize the relative importance of different functional and structural neuroimaging measures for predicting WM task performance, trait-level WM capacity, and overall psychiatric disability.

Methods: Data from 169 participants (106 females, age 21-40) were collected as a part of a project recruiting adults with a wide range of mental health concerns, as well as non-care-seeking adults. Participants underwent behavioral testing to measure cognitive ability and self-reported clinical symptomatology, as measured by the WHO Disability Assessment Scale (WHODAS) and the Brief Psychiatric Rating Scale (BPRS). Indices of WM were submitted to an exploratory factor analysis, producing visual and verbal WM capacity factor scores. All participants underwent whole-brain imaging using a Siemens 3.0T MRI scanner. Functional data collection (multiband EPI, TR=1.5s, TE=34.2ms, voxel resolution = 2 mm3) included a resting state scan, a face localizer4, and a delayed facial recognition WM task (DFR;5). Structural data collection included a high-resolution (1 mm3) T1-weighted scan and a diffusion-weighted scan. We identified 3 modalities of neuroimaging features to use as predictors in our models: task-based fMRI from the DFR task (univariate BOLD parameter estimates and representational similarity-based indices of face-specific representational content and encoding-to-delay pattern stability), resting state fMRI (mean connectivity across networks; global and local graph theoretical measures), and structural measures (cortical thickness and subcortical volume). Separate ElasticNet models were built for each modality, in addition to models for each task-fMRI measure and a full model including predictors from all modalities. Model were trained and tested with a 10-fold cross-validation framework. Spearman correlation was used to index explained variance, and permutation testing was used to determine statistical significance for overall models and individual predictors.

Results: Different patterns of modalities were able to predict each outcome measure (Fig 1a). Task fMRI models significantly predicted task performance, visual WM capacity, and BPRS. Resting state fMRI models predicted task performance and WHODAS, while structural MRI models could only predict WHODAS. Decomposing task fMRI models into individual measures revealed a striking dissociation, where task performance was most predicted by univariate BOLD and encoding to delay pattern stability measures, while visual WM capacity was best predicted by the strength of face-specific representational content (Fig 1b). Combined multimodal models were able to predict a significant variance in most measures, especially for WHODAS where the multimodal modal model outperformed the unimodal models (Fig 1c).
Conclusions: Predictive modeling revealed unique contributions of structural and functional MRI in predicting WM task performance, trait-level WM capacity, and psychiatric disability. Better trait visual WM capacity was associated with high-fidelity representation of task-relevant features during maintenance, while WM task performance was predicted by neural persistence of encoding processes. Psychiatric disability was predicted by task-related functional activity measures. These potential neural biomarkers could inspire novel targeted interventions.
ABSTRACTS

References
5. Druzeligal, T.J. (2003), "Dissecting Contributions of Prefrontal Cortex and Fusiform Face Area to Face Working Memory", Journal of Cognitive Neuroscience, vol.15, no. 6, pp. 771-784

Poster No 1125

Task-Dependent Reconfiguration of Global Functional Connectivity and Complexity

Maren Wehrheim\(^1\), Joshua Faskowitz\(^2\), Christian Fiebach\(^1\)

\(^1\)Goethe University Frankfurt, Frankfurt am Main, Hesse, \(^2\)Indiana University Bloomington, Bloomington, IN

Introduction: Brain activity continuously fluctuates over time, even if the brain is in controlled (e.g., experimentally induced) states. Recent years have seen an increasing interest in understanding the complexity of these temporal variations, particularly also with respect to between-person differences in brain function. Here, we study how the variability and complexity of task-elicited BOLD activation, as well as global functional network properties, adjust to increasing cognitive demands and how these dynamic reconfigurations relate to individual differences in task performance.

Methods: We use data from the Human Connectome Project (van Essen et al., 2013) from the working memory task (N-back). We select a subset of unrelated low-motion individuals (see Ito et al., 2020) for whom complete scan protocols were available (N=330). We compute time-resolved global functional connectivity across the complete scan following Esfhalani et al. (2020). We then measure the temporal variability of global connectivity (standard deviation and mean squared successive difference) within each task block. Additionally, we measure the complexity of the BOLD activation time series as the extrinsic (linear) dimensionality and intrinsic (non-linear) dimensionality of the signal within each block. To determine reliability of the derived measures of neural variability and complexity used in the present study, we compute reliability across consecutive runs (within-session Spearman-Brown-corrected split-half correlations).

Results: As cognitive load increases, brain-wide functional connectivity is reduced (global functional decoupling). While this result may appear unexpected at first glance (under the assumption that higher cognitive load requires increased functional integration), we observed that load-dependent functional decoupling is directly associated with an increase in complexity (non-linear dimensionality) of the BOLD signal across all brain networks, reflecting a fundamental reconfiguration of the whole functional connectome. Both components of reconfiguration, functional decoupling and dimensionality increase, are directly associated (r = -.77) and directly behaviorally relevant, as indicated by significant across-participant correlations with working memory performance (r = .29 and r = -.24, respectively). Thus, better performance goes hand in hand with greater functional decoupling and increased network complexity. We furthermore observed that functional decoupling evolves over the course of task blocks and that better performance is associated with less variable connectivity dynamics over the course of the task (r = -.26). Lastly, we demonstrate that intrinsic BOLD dimensionality and the variability of global functional connectivity strength have good split-half reliability (r > .76), thus supporting the use as robust markers of individual differences at the neuro-functional level.
Conclusions: Our results demonstrate the dynamic reconfiguration of brain networks in response to varying cognitive task demands. Whereas previous literature showed heterogeneous results with respect to how functional connectivity is adjusted under increasing working memory demands, our results indicate that global connectivity is reduced because the brain is reconfigured dynamically in a task-dependent manner. Interestingly, reconfiguration is on the one hand more pronounced in persons with better working memory performance (and thus ‘more dynamic’), while at the same time more consistent (i.e., less variable over time). More generally, our results demonstrate that variability and complexity in the brain are reliable measures with high behavioral relevance, which will contribute important insights into understanding the nature of individual differences in cognitive abilities.

References

Poster No 1126

Neuroanatomical basis of working memory in fibromyalgia and the moderating influence of depression

Irene Peláez¹, Ana Belén del Pino¹, María Luisa Fernández¹, María Eugenia de la Hoz¹, Diego Galán¹, Dino Soldic¹

¹Rey Juan Carlos University, Madrid, Spain

Introduction: Fibromyalgia (FM) is a chronic pain syndrome characterized by persistent chronic pain, fatigue, sleep problems, anxiety, depression and cognitive impairments in various domains. In particular, poor working memory performance has been consistently observed in patients with FM compared to healthy control subjects (HC). This dysfunction has been specifically linked to the abnormal functioning of frontoparietal networks. However, studies investigating brain morphology have yielded inconclusive results, with contradictory evidence emerging regarding potential differences between individuals with FM and HC. With this in mind, the main of this research was to investigate potential differences in brain volume within frontoparietal regions between patients with FM and HC, examining their relationship with performance in working memory tasks. In addition, the study analyzed depression and anxiety levels as potential modulating variables between working memory task
performance and brain volume, given that elevated levels of these socio-affective variables have previously been associated with cognitive impairment.

Methods: The study included 30 patients with FM and 27 HC. Voxel-Based Morphometry analyses were used to examine brain morphology, and working memory was assessed using various neuropsychological tests from the WAIS-III and WMS-III scales. Psychological variables, including depression and anxiety, were also measured.

Results: As expected, FM patients demonstrated lower scores in arithmetic, letter-number sequencing, and the working memory index. However, no significant differences in grey matter volume were observed between the two groups. Simple regression analyses between brain volume and neuropsychological tests revealed that, in the HC group, lower brain volume in the studied areas was associated with poorer performance in most working memory tests. Conversely, in the FM group, a minimal relationship was observed between these two variables, and the few significant effects that emerged were contradictory. Moderation analyses revealed that, in the FM group, depression affected the relationship between brain volume and performance on working memory tests, while anxiety did not yield significant results.

Conclusions: These results offer valuable insights into the intricate relationship between working memory deficits in FM, their neural substrate, and the moderating effect of socio-affective variables such as depression. This information could contribute to the development of intervention strategies better tailored to this patient population. This research was funded by the project PID2020-115463RB-I00; 2021-2025 of the Ministry of Science and Culture and from the Rey Juan Carlos University: A515 ‘Proyectos Impulso’ young PhD researchers–URJC–INEMODOL2023.

References

Poster No 1127

Neural correlates of auditory working memory precision: an intracranial EEG study

Joel Berger1, Alexander Billig2, Phillip Gander3, Meher Lad4, Sukhinder Kumar5, Kirill Nourski5, Christopher Kovach6, Ariane Rhone1, Christopher Garcia3, Hiroto Kawasaki7, Brian Dluhy8, Matthew Howard1, Timothy Griffiths4

1The University of Iowa, Iowa City, IA, 2University College London, London, United Kingdom, 3University of Iowa, Iowa City, IA, 4Biosciences Institute, Newcastle, United Kingdom, 5University of Iowa, IOWA CITY, IA, 6University of Nebraska, Omaha, NE

Introduction: Working memory is the capacity to hold and manipulate behaviorally relevant information in mind in the absence of ongoing sensory input. Utilizing intracranial EEG in a recent paper (Kumar et al., 2021), we demonstrated oscillatory correlates of auditory working memory (AWM) during maintenance of a tone in various structures, including the hippocampus. Here, we extend this work further by developing a paradigm that accounts for a precision model of working memory, allowing for measurement of error on a single trial basis and enabling a clear distinction of the retrieval period from the maintenance period, whilst simultaneously recording single units and local field potentials (LFPs).

Methods: We simultaneously recorded behavioral responses to the task and LFPs from the hippocampi of five human subjects undergoing invasive monitoring for presurgical localization of epileptic foci [wherein the hippocampus was subsequently found to be not a seizure focus]; in three patients, single units were also recorded in the hippocampus and Heschl’s gyrus. For the AWM task (Figure 1), participants were presented with a short tone, followed by a 3-second retention period. They were instructed that they then had 5 seconds to alter a repeated tone to match it as close in frequency as they could to the target tone (“tuning/retrieval” period), for a total of 60 trials. We carried out time-frequency analysis using wavelet transforms for the LFP data, whilst single units were isolated with an automated spike sorting procedure and examined with trial raster plots and peri-stimulus time histograms. Behaviorally, working memory precision was calculated as the reciprocal of the standard deviation of response error.
Results: Patients performed the task similarly to previously observed non-epileptic populations. Across all hippocampal contacts, we observed low frequency activity (< 8 Hz) that was persistent throughout the retention period and was particularly striking at the onset of the tuning period, as well as following the offset of this period, concurrent with high gamma suppression (70-150 Hz). Trials were concluded with a significant desynchronization of theta-alpha (4-15 Hz) hippocampal activity (for all time-frequency data, see Figure 2). In two patients with simultaneous HG and hippocampus contacts, we additionally observed an increase in phase locking between the two regions at the onset of the retention period and the offset of the retrieval period. Clear single unit modulation was evident at various phases of the task in HG and hippocampus. In hippocampus, this modulation most commonly manifested as suppression.

Conclusions: Overall, these data highlight neural correlates of precision of AWM and implicate the hippocampus in maintenance, retrieval and response monitoring of non-verbal AWM. The combined LFP and single unit data enable development of a model of AWM involving the hippocampus communicating to auditory cortex at various key phases.

References
Methods: We tested a multi-dimensional network framework, which aggregates data across three brain modalities into a single model capable of capturing heterogeneity in cognitive aging. For this, we used the Cognition, Brain, and Aging (COBRA) study, a large-scale cohort of 181 healthy older adults (age 64-68 at baseline; 44.8% females) followed over 10 years. There are 3 waves, separated by 5 years, and participants go through MRI (structural and functional) and PET (dopamine D2) at each wave. There is also a full cognitive battery, lifestyle, health, and genetics information. The multilayer model included three modalities (i.e., layers): (1) functional connectivity, (2) grey-matter estimates, and (3) dopamine (DA). All data underwent mean centering, regressing out covariates (e.g., age, sex, intracranial volume), and normalization. These data were used to create a subject similarity network, with nodes representing individuals and edges representing similarities between them using pairwise correlations. Finally, a multi-dimensional network framework (i.e., a multilayer network) was constructed (Fig 1).

Several metrics can be derived, but the main outcome was modularity since it captures strength of network partition, which is derived using an iterative generalized Louvain community detection algorithm optimized for multilayer frameworks based on the work by Mucha et al. 2010.

Results: We postulated that, by detecting common as well as complementary signals across modalities and minimizing the effect of different scales and noise, the multilayer network would provide insights into the development and progression of cognitive decline. We have previously applied this methodology to 490 individuals at risk for AD and shown that the model can distinguish cognitively normal (CN) from AD participants (Fig 2A). The method is data driven and blind to the label of each participant (i.e., CN or AD), but these labels are still created with information included in the model. As such, it remained unclear how well the network performs on a healthy sample with a comprehensive brain imaging and cognitive battery not tailored to detect a specific kind of dementia. Our framework identified groups with distinct cognitive profiles (Fig 2B). The groups differed in working memory (t(150.2)=-2.3, p=0.011) and the group with better scores also had higher white-matter integrity (t(165)=-2.8, p=0.003). There were no differences in episodic memory (p=0.445), but the group with better working memory performance and higher fractional anisotropy also had marginally better processing speed (p=0.09).

Conclusions: A full understanding of cognitive aging warrants the inclusion of interactions within and between modalities. Multimodal biomarkers seem to be good predictors of cognition in healthy aging and correlate with other estimates of brain integrity. Gray matter, functional connectivity, and DA can provide unique insights when investigating differences in healthy populations.
Association Between Body Mass Index and Brain Aging in Adults: A 16-Year Population-Based Cohort

Han Lv

Beijing Friendship Hospital, Capital Medical University, Beijing, Beijing

Introduction: High body mass index (BMI), a modifiable factor associated with poor cardiovascular health, is linked to brain health, but the causal relationship between BMI and brain health remains unclear. This study aimed to demonstrate the effect of cumulative BMI on neuroimaging features in adults of different ages and verify the causal relationship.

Methods: This study was based on the KaiLuan Study, a multicenter, long-term follow-up, community-based longitudinal cohort study of the adult population that began in 2006. The study included participants who visited the hospital at least 3 times and underwent brain MRI examination, with no evidence of dementia or mental disorders. Exclusion criteria were incomplete or poor-quality neuroimaging data and diagnosed cancer. We modeled the trajectories of BMI over 16 years to evaluate cumulative exposure. Multimodality neuroimaging data were collected using 3.0-T MRI, starting in 2020, for volumetric measurements of the brain structure, white matter hyperintensity (WMH), and skeletonized white matter tract at the voxel level. We performed two-sample Mendelian randomization analysis using genetic data from 681,275 individuals to analyze the causal relationship between BMI and neuroimaging features.

Results: In the population-based longitudinal study, clinical and neuroimaging data were obtained from 1,074 adults (aged 25–83 years). High BMI was associated with a wide range of negative brain health effects. For adults aged under 45 years, the differences in cerebral parenchyma volume between those with BMI > 26.2 kg/m² and those with normal BMI corresponded to 12.0 years (95% confidence interval [CI], 3.0 to 20.0) of brain aging. The volumetric results corresponded to -17.9 ml (95% CI, -29.8 to -4.5). Differences in WMH were statistically significant for participants aged over 60 years, with a 6.0-ml (95% CI, 1.5 to 10.5) larger volume. Genetic analysis of 681,275 individuals indicated causal relationships among high BMI, smaller volume of the cerebral parenchyma and gray matter, and higher fractional anisotropy in projection fibers.

Conclusions: High BMI is causally associated with smaller brain volume and abnormal microstructural integrity in projection fibers, especially in young adults. These findings provide a basis for future brain health promotion and disease prevention strategies.
Poster No 1130

Dementia Risk Scores are significantly associated with GABA+, but not Glx, or Impulse Control

Jacob Levenstein¹, Ciara Treacy¹, Sophie Andrews¹

¹Thompson Institute, University of the Sunshine Coast, Birtinya, QLD

Introduction: Dementia is a neurodegenerative disease with a terminal trajectory, characterized by a complex symptomatology, including impaired memory, behavioral changes, and progressive functional decline. A Dementia risk score (DRS) quantifies an individual’s risk of developing dementia, based on protective and detrimental risk-factors. Further, DRSs can be utilized to examine the neuropathological pathogenesis of dementia risk. Recent review articles have highlighted the potential role of glutamatergic and GABAergic systems underpinning dementia etiology¹ ². Here, we investigate whether neurochemical concentrations are associated with DRSs in an aging population without a dementia diagnosis. We hypothesize that individuals with greater DRSs will have lower GABA+ and Glx (after controlling for age and education). A secondary question explores whether behavioral measures of response inhibition relate to dementia risk and or neurochemicals. We hypothesize that individuals with worse inhibitory control will have greater DRSs, greater Glx and lower GABA+.

Methods: This study was approved by UniSC’s Human Research Ethics Committee (S211620) and all participants provided informed consent. To date, 78 healthy older adults aged 50-85 completed this study. After reviewing quality metrics and model fits of the MRS data, 62 participants were included in the final cohort (31f, 67.7M-age, +/-10.01). DRSs were computed using the CogDrisk assessment⁴, based on 17 modifiable and non-modifiable risk factors. All participants completed an MRI brain scan at the Thompson Institute, via a 3T Skyra (Siemens, Erlangen Germany). In brief, a T1-weighted structural scan (MPRAGE) was acquired and used for placement of the MRS volume of interest (VOI). Two single-voxel MR spectroscopy (MRS) scans were acquired using a Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy sequence (HERMES,⁵; VOI=3cm³, TR=2000ms, TE=80ms, flip angle=90°, averages=320, TA=10:48). MRS was acquired in the left sensorimotor cortex.
(M1) and left prefrontal cortex. MRS data was analyzed using OSPREY's standard processing and fitting pipeline (v.2.4.0). Only the M1 GABA+ and Glx results are presented here, with each expressed as a ratio of creatine and phosphocreatine (tCr). A suite of behavioral tasks were collected to probe inhibitory control, attention, and cognition. Presented here are the error rate results from the Go-NoGo task administered using PsyToolKit and analyzed with in-house scripts. Hierarchical linear regression was performed using SPSS (v.29.0). For all models, age and education were entered in step 1, with step 2 containing the regressor of interest.

Results: Hierarchical linear regression revealed that dementia risk scores were significantly associated with age, education and M1 GABA+ (F(3,58)=20.41, p<0.001, R²=0.514). After controlling for age and education, GABA+ remained a significant predictor of dementia risk (β=-0.258, t=-2.80, p=0.007, R²=0.119). Age nor education were significantly correlated with GABA+ concentrations (ps. ≥ 0.31). For both Glx and Error Rate, neither were significantly associated with dementia risk, with or without controlling for age and education (ps. ≥ 0.49). Finally, Glx, but not GABA+, was significantly associated with Error Rate from the Go NoGo task (β=-0.349, t=-2.76, p=0.008, R²=0.118).
Conclusions: These results demonstrate that M1 GABA+ concentrations were significantly associated with dementia risk scores. No relationship was identified between Glx and dementia risk, suggesting that the GABAergic system at M1 may provide unique insight into the pathophysiology of modifiable dementia risk in healthy aging. To determine the mechanism(s) underpinning this relationship, further analysis of MRS VOIs, metabolites, and an evaluation of unique measures of modifiable risk factors are required.

References

Poster No 1131

Does functional system segregation mediate the effects of lifestyle on cognition in older adults?

Petar Raykov, **Ethan Knights**, **Richard Henson**

MRC Cognition and Brain Sciences Unit, Cambridge, United Kingdom

Introduction: Healthy aging is typically accompanied by cognitive decline (Nyberg et al., 2003). Previous work has shown that engaging in multiple, non-work activities during midlife can have a protective effect on cognition several decades later, rendering it less dependent on brain structural health; the definition of “cognitive reserve” (D. Chan et al., 2018; Gow et al., 2017). Other work has shown that increasing age is associated with reduced segregation of large-scale brain functional networks (M. Chan et al., 2021; Wig, 2017). Here we tested the hypothesis that functional segregation mediates this effect of middle-aged lifestyle on late-life cognition.

Methods: We used fMRI data acquired during three different brain states (tasks) in the CamCAN dataset (www.cam-can.org), together with cognitive data on fluid intelligence and episodic memory and retrospective lifestyle data from the Lifetime Experiences Questionnaire (LEQ). We computed functional system segregation (SyS) as the difference between within network connectivity compared to between network connectivity. We ran regression models to examine whether SyS measures predict cognition after adjusting for linear and non-linear age and sex effects. We additionally ran mediation models examining how previous midlife activities (during ages of 30-64 years) affected SyS and cognition in late-life (65+ years old).

Results: In all three tasks, we replicated the negative association between adult age and functional segregation, and showed that functional segregation related to fluid intelligence even after adjusting for the (nonlinear) age effects. However, we found no evidence that functional segregation in late-life mediated the relationship between non-specific (non-occupation) midlife activities from the LEQ and either measure of cognition in late-life. In exploratory analyses, we also failed to find evidence that functional segregation in late-life related to youth-specific LEQ activities (i.e., education), or that functional segregation in mid-life related to current non-specific LEQ activities. These results were largely robust to use of different brain parcellations and pre-processing strategies. We tested how different pre-processing strategies affect measures of functional system segregation and its relation to fluid intelligence.

Conclusions: Our results confirm that measures of functional system segregation may be indicative of cognition. We did not find evidence that functional segregation mediated the effects non-specific midlife activities have on late life cognition. Thus, the brain correlates of cognitive reserve arising from mid-life activities remain to be discovered.
Predicting Fluid Intelligence from SyS (N=627). Fluid intelligence was positively related to SyS in each of the three brain states, after adjusting for second-order effects of age, and sex.

References

Poster No 1132
Age-related differences in control energy of brain state transitions

Vibin Parakkattu1, Lorenzo Lorenzo-Luaces1, Youngheun Jo1, Joshua Faskowitz1, Alina Podschun2, Sebastian Markett2, Richard Betzel1

1Indiana University, Bloomington, IN, 2Humboldt-Universität zu Berlin, Berlin, Berlin, Germany

Introduction: The brain’s physical wiring – the connectome – shapes ongoing patterns of activity, tracing out a trajectory over time through a high-dimensional space (Parkes et al., 2023). Recent work has leveraged network control theory to understand how control inputs can be delivered to the brain to alter its dynamic trajectory to traverse a desired set of brain states (Cornblath et al., 2020). Control theory provides a useful measure for quantifying the effort needed to move from one brain state to another – the so-called “control energy” (Pasqualetti et al., 2014). Here, we study a lifespan dataset to understand how control energy varies across the human lifespan.

Methods: We studied the Nathan Kline Institute, Rockland Sample dataset (https://fcon_1000.projects.nitrc.org/indi/enhanced/; Nooner et al., 2012). We focused on N = 458 participants (ages 7-85 years) with high-quality and low-motion functional and diffusion MRI data. For each participant, we reconstructed a subject-specific connectome (Tournier et al., 2019) and processed the resting-state fMRI using fMRIPrep (Esteban et al., 2019). To estimate brain states, we identified local peaks in the amplitude of brain-wide activity (root mean square) and extracted whole-brain activation patterns during those instants. We repeated this procedure for all participants. We then aggregated across participants and clustered them using the k-means algorithm (correlation distance and number of clusters, k = 6). For each subject, each frame (from trough to trough on either side of a given peak) was then labelled as belonging to 1 of 6 brain states. Network control theory enables us to estimate the “effort” associated with state transitions. With this framework, we then calculated, using subjects’ own connectomes, the energies necessary to transition between every pair of states. We calculated the correlation of these energies with age after regressing out biological sex, intracranial volume, number of usable (low-motion) frames, as well as residual motion.

Results: We found that the k=6 clusters corresponded to three pairs; each pair consisted of an activation pattern and its near-perfect anti-correlate (Fig. 1a & b). Clusters 1 and 2 corresponded to activation/deactivation of the visual and dorsal attention networks; clusters 3 and 4 correspond to activation/deactivation of default mode with salience/ventral attention networks; clusters 5 and 6 correspond to activation/deactivation of somatomotor and visual networks with the control network (Fig. 1c). We found that, on average, control energy was greatest when transitioning between paired patterns (Fig. 1d) and, more generally, was anticorrelated with the spatial similarity of activation patterns (r = -0.93; Fig. 1e). Further, we found...
heterogeneity across control sites — regions/nodes where control signal was “injected” — in terms of their regional control energies. When considering all possible transitions, we found evidence of three broad clusters, each corresponding to a different brain-wide pattern of regional control energy. These patterns were closely aligned with target states and, again, were grouped by pairs. Finally, we showed that both regional and whole-brain control energies were correlated with age (Fig 2a). In particular, control energy associated with transitioning from states 3 and 4 into 2 and 1, respectively, decreased significantly with age after regressing out covariates ($r = -0.24, p < 10^{-8}$; Fig. 2b & c). Relatedly, we found evidence of distinct regional differences in control energy with age. Broadly, these changes implicated sensorimotor systems—e.g., visual, somatomotor, and dorsal attention networks (Fig 2d & e).
Conclusions: In conclusion, our work shows that transitions between empirically derived brain states vary with age. These findings open the possibility that observed age-related differences in cognition/behavior may be owed to differences in successfully navigating brain state transitions.

References

Poster No 1133
Multimodal brain age prediction using 5-HT2A receptor binding and gray matter volume
Ruben Dörfel1,2, Joan Arenas-Gomez2, Claus Svarer2, Gitte Knudsen2,3, Jonas Svensson1,3, Pontus Plavén-Sigray1,2
1Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, 2Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark, 3Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark

Introduction: Developing biomarkers that capture age-related biological changes in the human brain is crucial for understanding the causal role of biological aging in the genesis of neurodegenerative disorders (Mattson and Arumugam 2018). Brain serotonin 2A (5-HT2A) receptor binding, measured using positron emission tomography (PET), has been shown to decline with age and has been related to various degenerative disorders (Karrer et al. 2019; Hasselbalch et al. 2008). Similarly, gray matter (GM) volume in the brain, measured using T1 weighted magnetic resonance imaging (MRI), has been shown to decrease during adulthood (Bethlehem et al. 2022), and neuronal atrophy is a hallmark of e.g., dementia. In this study, we investigated the decline in 5-HT2A receptor binding using the brain age paradigm (Franke et al. 2010) to evaluate its usefulness as a biomarker for biological aging. Specifically, we aimed to 1) predict brain age using PET data, i.e., 5-HT2A receptor binding outcomes; 2) compare to predictions based on MRI data, i.e., gray matter volume; and 3) investigate whether a multimodal approach combining PET and MRI derived data yields improved predictions over unimodal approaches.

Methods: We investigated 209 healthy subjects between 18 and 82 years (mean=36.6, std=16.8). The data was derived from the CIMI database (Knudsen et al. 2016). All subjects had imaging of the 5-HT2A receptor using PET and structural imaging of the brain using MRI. Binding potentials and GM volumes were quantified in 14 cortical and subcortical regions with 5-HT2A receptors (Varnäs, Halldin, and Hall 2004). Various machine learning algorithms were implemented to predict age based on imaging-derived feature sets: only PET, only MRI, and PET + MRI (Figure 1). We selected commonly used algorithms for brain age prediction (Baeker et al. 2021). Multimodal models using PET and MRI data were implemented using a stacking approach. A dummy regressor and a pre-trained structural MRI-based brain age prediction software (Leonardsen et al. 2022) were also implemented as a reference. All models were trained and evaluated using a 20-times repeated 5-fold CV setup. We reported the average mean absolute error (MAE) and the average correlation between predicted and chronological age over all hold-out folds.
Results: Overall, all models using PET, MRI, and PET+MRI-derived features performed better than the dummy regressor and worse than the state-of-the-art software pyment. The results for all trained models were visualized in Figure 2. Following, we reported the results for the best model in each feature set, which was Bayesian Ridge Regression (Bridge) for PET and the Gaussian process regressor using an RBF kernel (rbfGPR) for MRI and PET+MRI. We found that cerebral 5-HT2A receptor binding predicted chronological age accurately (average MAE=6.63 years, r=0.87) and outperformed gray matter volume-based predictions (average MAE=7.76 years, r=0.79). The difference between PET and MRI-based predictions was statistically significant (p=0.04). We further found that the accuracy increased after combining MRI- and PET-derived regional measures (average MAE=5.93 years, r=0.88). However, the difference to the PET-based model was not statistically significant (p=0.14).

Conclusions: We showed that 5-HT2A receptor binding could be used to predict chronological age accurately. Those age predictions were more accurate than predictions based solely on volumetric MRI data. Combining PET and MRI data into one model increased the accuracy, suggesting that both contribute unique information when predicting age. This indicated that...
both measures were affected by distinct aging-related biological mechanisms. Therefore, 5-HT2A receptor binding might be suitable as a putative biomarker for aging-related changes in the human brain. However, further studies assessing if 5-HT2A-based age predictions are predictive of poor health outcomes are necessary to establish its use as a biomarker.

References

Poster No 1134
Altered neuro-substrates preceding accelerated cognitive and mobility aging in older people
Pei-Lin Lee¹, Kun-Hsien Chou²,³, Chih-Kuang Liang⁴,⁵,¹, Chih-Ping Chung⁶,⁷, Wei-Ju Lee¹,⁷, Li-Ning Peng¹,⁸, Liang-Kung Chen¹,⁸,⁹, Ching-Po Lin²,³,¹₀
¹Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ²Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan, ³Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ⁴Center for Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ⁵Division of Neurology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ⁶Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, ⁷Department of Family Medicine, Taipei Veterans General Hospital Yuanshan Branch, Yi-Lan, Taiwan, ⁸Center for Geriatric and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan, ⁹Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan, ¹₀Department of Education and Research, Taipei City Hospital, Taipei, Taiwan

Introduction: Concurrent cognitive and mobility impairments, a condition known as physio-cognitive decline syndrome (PCDS), brings higher risks of dementia and mortality in older people. Previous cross-sectional studies have identified specific clinical and neuroanatomic features linked to PCDS, indicating its potential as a distinct preclinical dementia syndrome. However, the temporal relationship between neuroanatomic abnormalities and the development of PCDS has not yet been investigated. Understanding the neuroanatomical alterations preceding this syndrome is crucial for understanding the early pathophysiology of PCDS. This longitudinal study aimed to examine grey-matter volumes (GMV) and the corresponding structural covariance network (SCN) abnormalities in robust individuals to predict the conversion to PCDS.

Methods: Participants were sourced from the I-Lan Aging Longitudinal Study, comprising robust individuals with no initial signs of PCDS. Participants were categorized into PCDS-converter and non-PCDS converter groups based on their status in the follow-up clinical assessment. The image analytical pipeline was shown in Fig 1A. Baseline T1w images were preprocessed with the VBM pipeline under CAT12. Voxel-wise ANCOVA model, accounting for age, sex, education, smoking status, and total intracranial volume, was applied to identify the regional GMV alterations. These regions served as seeds in subsequent seed-to-voxel SCN analysis to establish corresponding morphometric networks. Significant SCN changes between groups were identified using a linear regression model with a group by mean seed volume interaction term. Furthermore, individual inter-regional SC integrity was calculated using a jackknife bias estimation procedure for further correlation analysis. Regional GMV and individual SCN integrity that showed abnormalities in the PCDS converter group were further analyzed for their associations with physical and cognitive performance at follow-up, using the partial Spearman correlation analysis with the same nuisance variables.
Results: The study included 343 robust individuals (60.2±6.9 years old, 49.6% men). After an average follow-up period of 5.6 years, 227 remained non-PCDS, while 116 converted to PCDS. Notable GMV reduction were identified in the cerebellum and right caudate among PCDS converters (see Fig 1B). Significant differences in SCNs between study groups for cerebellum-based (to right frontal-pole and left middle-frontal-gyrus) and caudate-based SCNs (to right caudate-putamen, right planum-temporale, left precentral-gyrus, right postcentral-gyrus, and left parietal-operculum) were observed (see Fig 1C). Furthermore, correlation analysis revealed the cerebellum's regional GMV and the integrity of the caudate-based SCNs at baseline might be linked to certain physical examination and cognitive performance at follow-up (with uncorrected p<0.05, see Fig 2).

Conclusions: The study uncovered early regional GMV and morphologic network changes preceding PCDS in community-dwelling older individuals. PCDS converters exhibited baseline GMV reductions in cerebellum and increases right caudate volumes compared to non-converters. Seed-to-voxel SCN analysis identified distinct covariances in two cerebellum-based (to right frontal-pole and left middle-frontal-gyrus) and caudate-based SCNs (to right caudate-putamen, right planum-temporale, left precentral-gyrus, right postcentral-gyrus, and left parietal-operculum) between groups. These identified regional GMV and SCNs’ integrity at baseline were also linked to physical mobility and cognitive performances over time. These findings offer an understanding of the neuroanatomical foundation of rapid declines in both physical mobility and cognitive functions, potentially guiding targeted prevention of subsequent dementia in those older people with dual cognitive and mobility impairments.
References

Poster No 1135
Atrophy Progression in People With a Family History of Alzheimer's disease is Shaped by Connectivity
Christina Tremblay1,2, Shady Rahayel2, Alexandre Pastor-Bernier1, Frédéric St-Onge3, Andrew Vo1, François Rheault4, Véronique Daneault5, Filip Morys5, Natasha Rajah5, Sylvia Villeneuve3, Alain Dagher1, PREVENT-AD Research Group5
1Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada, 2Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada, 3Brain Imaging Centre, Douglas Institute Research Centre, Montreal, Canada, 4Université de Sherbrooke, Sherbrooke, Canada

Introduction: Alzheimer’s disease (AD) includes a long period of presymptomatic brain changes. Different risk factors are associated with AD development, including having a family history of AD (FHAD). The Braak model suggests that tau pathology in synergy with beta-amyloid (Aβ) spreads along structural connections in AD eventually leading to atrophy (Braak & Braak, 1991). However, the pattern of atrophy progression in people with a FHAD in addition to the influence of brain structural connectivity on proteins propagation and atrophy progression remain unclear. Here we used structural MRI from three databases (ADNI (Jack et al, 2008), PREVENT-AD (Breitner et al, 2016) and Montreal Adult Lifespan Study (Elshiekh et al., 2020)) to map the atrophy progression in FHAD and AD, and build group-specific connectomes.
Methods: Longitudinal data up to 4 years enabled us to perform atrophy progression analysis in FHAD and AD compared to controls. Tau and Aβ protein distribution were quantified using [18F]AV-1451 and [18F]NAV4694 positron emission tomography processed with a standard pipeline (github.com/villeneuvelab/vlp). Group-specific structural connectivity matrices were created using Tractoflow-ABS (Theaud et al, 2020) and Connectoflow pipelines (Rheault et al, 2021). A structural connectivity matrix from healthy adults (undamaged) was also used (Misic et al, 2015). We first derived atrophy progression maps using deformation-based morphometry (ANTs longitudinal pipeline) from three groups with similar age, education and male/female proportion at baseline (controls: N=116, FHAD: N=153, AD: N=156). The atrophy progression (group-by-age interaction) was compared between the three groups with linear mixed models (FDR corrected) controlling for sex, education, body mass index, APOe4 genotype and APOe4 interaction with age. The Cammoun atlas (448 cortical regions) was used for brain parcellation and to build the group-specific connectivity matrices (Cammoun et al., 2012). The ComBat method was applied to harmonize the multi-center imaging data (Johnson et al, 2007). For the structural connectivity analysis, Pearson’s correlations with the structurally connected neighborhood regions were computed and tested against spatial null models using BrainSMASH (Burt et al., 2020).

Results: We found similar patterns of atrophy progression in FHAD and AD, notably in the cingulate cortex, temporal, and parietal lobes (Fig.1). The extent was more widespread and severe in AD. Several regions also showed less atrophy progression (-β) in AD (mostly in the temporal and frontal lobe), suggesting a ceiling effect. Analyses of structural connectivity indicated that the atrophy pattern and its progression were associated with existing structural connectivity in FHAD (atrophy progression: r=0.31, p-valuespin=0.03; atrophy at Bl: r=0.26, p-valuespin=0.04) (Fig.2A). In AD, only the atrophy at baseline was significantly correlated with that of structurally connected neighbors (atrophy progression: r=0.11, p-valuespin=0.26; atrophy at Bl: r=0.50, p-valuespin=0.001). Tau and Aβ protein concentration were also higher in structurally connected regions in FHAD and AD. However, when using an undamaged connectome from healthy adults (Fig.2B bottom row), an association was found with the atrophy progression in the structurally connected regions in both FHAD and AD. These results suggest that atrophy in AD continues to propagate along pre-existing connections despite current damage while, in FHAD, structural connectivity is not significantly impaired.

Conclusions: Supporting the Braak model, in FHAD and AD, our findings showed that structural connectivity influenced the baseline distribution of tau, Aβ and atrophy. These findings also underscore the critical role of structural connectivity in the distribution of pathological markers and atrophy progression in both FHAD and AD.
References

Poster No 1136

Diminished Social Value Integration in Older Adults

Chris M. Stolle¹, Rongjun Yu², Yi Huang¹

¹Lingnan University, Hong Kong, China, ²Hong Kong Baptist University, Hong Kong, China

Introduction: Older adults often make vital economic decisions, like managing retirement savings, under social influence. While research shows that social influence can alter decision-making, the impact of ageing on this process is understudied. Economic decision-making involves a mix of objective information and subjective utility (Rangel et al., 2008), with social influences integrated as ‘other conferred utility’ (OCU) (Chung et al., 2015). An experiment by Chung et al. showed that the OCU is encoded in the ventromedial prefrontal cortex (vmPFC). Changes in the prefrontal cortex may lead to cognitive decline (Dempster, 1992). Thus, older adults might struggle to incorporate OCU into their value estimation. They may use simpler strategies, meaning that while the OCU model may predict their behaviour, there may be no encoding in the vmPFC. We propose a “stubborn” model that assumes participants have hard-wired preference scores. This model involves a preference score for choosing risky options alone or under neutral influence (p1), and an adaptation parameter (p2) that adjusts the score based on the social influence. We hypothesise that this simpler model could predict older adults’ behavior as well as the OCU model.

Methods: We conducted an fMRI study with twenty older and twenty-two young adults. Participants who always chose the same option (two older and one younger) were excluded. The experimental task was adapted from a previous experiment (Chung et al., 2015). The experiment is depicted in Figure 1. Participants had to choose between a risky and a safe gamble that would determine how much participants win: In the safe gamble, the higher and lower amounts were close together. In the risky gamble, the higher amount to win was much higher than in the safe gamble, but the lower amount was also much lower. We simulated social influence by showing participants the choice of two other (simulated) players so that there were four conditions: 1) Safe: both chose safe; 2) risky: both chose risky; 3) indifferent: one chose safe, and one chose risky; 4) non-social: We did not display any others choice.

![Solo trials](image1)

![Info trials](image2)

Figure1: Experimental task with solo trials (first row) and trials under social influence (second row).

Results: First, we tested whether participants understood the task or made their choice randomly. Therefore, we compared the performance of the previously described OCU model with a random choice model, in which the probability of choosing risky or safe is always .5. The OCU model outperformed the random choice model for both younger ($\chi^2(3) = 35.88, p < 0.001$; pseudo-$R^2 = .55$) and older ($\chi^2(3) = 9.89, p < 0.001$; pseudo-$R^2 = .18$) adults. Thus, both age groups understood the task and behaved non-randomly. We compared the OCU model to the stubborn model. For young adults, the OCU model performed significantly better than the stubborn model ($\chi^2(1) = 21.92, p < 0.001$; pseudo-$R^2 = .16$). For older adults, the OCU model performed worse than the stubborn model (pseudo-$R^2 = .37$). The neural results (see Figure 2) showed significant activation for young adults in trials where they were faced with social influence in the vmPFC [peak voxel at $x = -5, y = 42, z = -16$; peak $Z = 3.52$; cluster size $kE = 13$; small volume correction (svc) at $p(FWE) = 0.02$]. This increased activation was absent in solo trials. For older adults, no such activation were found.
Conclusions: Our results showed that older adults do not incorporate other conferred utility. Instead, they use simplified compensatory strategies in which they stubbornly make risky choices at a rate that depends on the type of influence (none/indifferent, risky, safe). Correspondingly, unlike young adults, no processing of others conferred utility appears to occur in the vmPFC for older adults.

References

Poster No 1137
A layer-specific model of cortical sensory aging
Peng Liu¹, Juliane Doehler², Julia Henschke², Alicia Northall³, Angela Serian⁴, D. Samuel Schwarzkopf⁵, Oliver Speck⁶, Janelle Pakan², Esther Kühn⁷
¹Hertie Institute for Clinical Brain Research (HIH), Tübingen, Germany, ²Institute for Cognitive Neurology and Dementia Research (IKND), Magdeburg, Germany, ³Nuffield Department of Clinical Neurosciences, Oxford, United Kingdom, ⁴Institute of Cognitive and Clinical Neuroscience (IKND), Heidelberg, Germany, ⁵University of Auckland, Auckland, Auckland, ⁶German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany, ⁷Hertie Institute for Clinical Brain Research (HIH), Tübingen, Baden-Württemberg

Introduction: Sensory processing is organized in a layered architecture with segregated input, output and modulatory circuits. This layered architecture of sensory systems is a convergent feature in animal evolution (Stacho et al., 2020). A comprehensive understanding of (dys)functional sensory systems requires a detailed understanding of alterations in the layer-specific architecture and the associated phenotypes. This is so far lacking, not only for sensory systems but for cortical dysfunction in general. Sensory dysfunction comes with different cortical phenotypes, including increases in receptive field (RF) sizes (Liu et al., 2021), functional overactivation, decreases in lateral inhibition (Pleger et al., 2016) and structural alterations such as cortical thinning (Calì et al., 2018). However, it is unclear how changes in the layer architecture may contribute to the alterations characterizing sensory cortices with reduced functionality.

Methods: Here, we employed a unique approach to target this question by combining layer-specific structural and layer-specific functional 7T-MRI of primary somatosensory cortex (SI) with behavioral assessments from two cohorts of healthy younger and older adults. Cortical aging serves as a suitable model system to investigate the layer-specific architecture of sensory dysfunction as structural and functional reorganization is observed at different levels of the processing hierarchy, and affects behavior (Popescu et al., 2021). To better understand the mechanistic underpinnings of the observed changes, we used in vivo 2-photon calcium imaging (2PCI) in younger and older mice to investigate neuronal response differences at different cortical depths (Chen et al., 2013). We also used post mortem histological examination on mice as it provides deeper insights into layer-specific structural changes.

Results: Our study presents four major results that we used to develop a novel layer model of sensory aging (see Fig. 1): (1) Increased sensory input channel: In older adults, in spite of overall cortical thinning, the middle layer (i.e., input layer IV, identified using a previously published approach, Doehler et al. 2023) presents with increased thickness, higher myelin...
content, and a more pronounced antagonistic center-surround relationship between signals and cortical depth. An adult with congenital arm loss shows, on the other hand, a shrinkage specifically of layer IV of SI. This speaks towards a plasticity-mediated mechanism of layer IV thickness modulation in humans. (2) Cortical thinning driven by deep layer thinning: Reduced cortical thickness in older compared with younger adults is not homogenous across layers but driven by deep layer thinning. (3) Preserved low-myelin hand-face border in layer IV: Low-myelin borders in input layer IV are preserved older compared to younger adults as well as in an individual with congenital arm loss. (4) Altered modulation channel: Older adults show less thickness but more myelin in deep layers, which is mirrored by overall cell loss and increased PV+ cell density in older mice. This is accompanied by no alterations or even an increase in inhibitory interactions in older adults and mice, making PV-cell driven inhibition a likely underlying mechanism.

Conclusions: Taken together, the novel layer model of aging provides key and novel information on SI organization and aging sensory circuits that may explain cortical dysfunction in health and disease, which is of particular importance for developing intervention to preserve sensory functions in aging and neurodegeneration in the future. This work also provides impactful relevance for understanding the neuronal mechanisms that underlie topographic organization and plasticity in general by transferring mechanistic insights from animal to human research. Given the layer-specific profile was different from primary motor cortex, our data also motivate the detailed assessment of layer-specific circuits in different cortical areas.

References

Brain Aging Differences across 10 Brain Disorders by Brain Age Prediction

Chuang Liang¹, Godfrey Pearlson², Juan R. Bustillo³, Peter Kochunov⁴, Jessica A. Turner⁵, Wei Shao¹, Rongtao Jiang⁶, Jing Sui⁷, Daoqiang Zhang¹, Zening Fu³, ShiLe Qi¹, Vince Calhoun⁵

¹Nanjing University of Aeronautics and Astronautics, Nanjing, China, ²Yale School of Medicine, New Haven, CT, ³University of New Mexico, Albuquerque, NM, ⁴University of Maryland School of Medicine, Baltimore, MD, ⁵Georgia State University, Atlanta, GA, ⁶Yale University, New Haven, CT, ⁷Beijing Normal University, Beijing, China

Introduction: Brain age can be used as a brain health index to quantify individuals’ deviation from a normative brain aging trajectory. The difference between neuroimaging-predicted brain age and the chronological age, predicted age difference (PAD), is a potential biomarker that reflects individual differences in brain developmental trajectories. Risk factors for different brain disorders may converge on neurological aspects associated with accelerated brain aging processes. However, most existing studies have been conducted on a limited sample size that focused on a specific disorder without identifying interpretable neuroimaging features contributing to PAD prediction. Further understanding of brain aging trajectories and their spatial patterns among various brain disorders is important to disentangle disorder common and unique pathophysiological processes.

Methods: A total of 2752 independent patients, including attention-deficit/hyperactivity disorders (ADHD, n=344), autism spectrum disorder (ASD, n=484), schizophrenia (SZ, n=152), bipolar (BP, n=143), major depressive disorder (MDD, n=258), drinking (DRK, n=155), smoking (SMK, n=144), drinking and smoking (D&S, n=54), Alzheimer’s disease (AD, n=361), mild cognitive impairment (MCI, n=657) and 2752 age-gender-quantity matched healthy controls (HCs) were collected as testing sets. Age-range matched HCs (n=53149) for each patient group were selected from 4 consortiums (including ABCD, HCP, GSP and UKB) as the corresponding training sets. Averaged gray matter volume (GMV) for each region of interest (ROI) based on Schaefer (1000 ROIs) and subcortex (16 ROIs) brain atlas were used as features (Fig. 1a) in brain age prediction. Extreme gradient boosting (XGBoost) was trained on the selected age-range matched HCs, which was applied to the corresponding patient group to generate the individual brain age predictions. The accuracy of the XGBoost model on training set was estimated by 10-fold cross-validation (Fig. 1b). The PAD differences (covariates: age, age2, sex and site were regressed) between HC and each patient group were conducted (Fig. 1c). Shapley additive explanations (SHAP) were used to identify the interpretable brain features for PAD prediction in different diagnostic groups (Fig. 1d).

Results: (a) The high degree of correlations between chronological age and the predicted brain age in both training (r=0.67±0.94) and independent testing sets (r=0.73±0.91) confirmed the excellent prediction performance (Fig. 2a). (b) The PAD was higher in all the diagnostic groups than HCs, in which strong difference effects of PAD were observed in AD and D&S (d=0.84±0.97), moderate effects in SMK, DRK, SZ, BP and MCI (d=0.45±0.72), small effects in MDD (d=0.28), and negligible effects in ASD and ADHD (d=0.02±0.06, Fig. 2b). (3) The brain aging biomarkers that contribute the most in the PAD prediction for each diagnostic groups were: medial prefrontal cortex (mPFC)-lentiform nucleus (LN)-thalamus-amygdala in psychiatric disorders (SZ, BP and MDD), mPFC-postcentral cortex (PC)-thalamus in addiction disorders (DRK, SMK and D&S) and mPFC-superior temporal cortex- striatum-hippocampus in neurodegenerative (AD and MCI) disorders (Fig. 2c).

Conclusions: This is the first attempt to estimate brain age and its biological interpretation across 10 brain disorders in large scale cohorts. Results suggest that different brain disorders showed different brain aging, the highest aging in dementia, followed by addiction and psychiatry, (AD>D&S>SMK> DRK>SZ>BP>MCI>MDD). PAD differences were not observed in ASD and ADHD. Furthermore, the PAD in each patient group was driven by a unique spatial brain pattern, but also with some shared regions within the psychiatry (mPFC), addiction (mPFC and PC) and dementia (striatum). In summary, the observed
different brain aging, each with unique interpretable patterns, may serve as neuroimaging biomarkers for understanding the aging neural mechanisms of various brain disorders.
References
Interplay of Dietary Amino Acids, Metabolic Syndrome, and ApoE ε4 on Brain Integrity at Midlife

Cherry Youn1, Barbara Strasser2, Dietmar Fuchs3, Drew Gourley4, Marie Caillaud1, Yanrong Li1, Isabelle Gallagher1, Hirofumi Tanaka4, Andreae Haley1

1Department of Psychology, University of Texas at Austin, Austin, TX, 2Sigmund Freud University Vienna, Vienna, Vienna, 3Institute of Biological Chemistry, Biocentre, Innsbruck, Innsbruck, 4Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX

Introduction: Understanding the nuanced interactions between dietary components and genetic factors is critical in deciphering the mechanisms of neural aging. Tryptophan (TRP) and phenylalanine (PHE) are direct precursors of kynurenine (KYN) and tyrosine (TYR), respectively, and are large neutral amino acids (LNAA) that have been implicated in the pathogenesis of neurodegenerative diseases1. Their role in neurotransmitter synthesis suggests a complex interplay with cognitive function. Moreover, metabolic syndrome (MetS) has been recognized as a catalyst for accelerated cognitive decline, potentially exacerbating the aging process. This relationship may be even more pronounced in the presence of the apolipoprotein E ε4 (ApoE4) allele, a well-established genetic risk factor for Alzheimer’s disease2,3. Despite the significant strides in identifying the deleterious effects of these variables on cognitive performance, the research remains fragmented, especially regarding the effects of LNAA on brain health across different life stages, vascular risk, and genetic backgrounds. Hence, our study aims to bridge this gap by exploring the intersection of LNAA levels, MetS, brain integrity, and the presence of the ApoE4 allele at midlife.

Methods: 65 adults aged 40-61 underwent a health assessment. All concentrations of LNAA were determined by high-performance liquid chromatography. The number of MetS components was calculated according to the unified criteria4. MRI was conducted on a Siemens 3T Skyra with a 32-channel head coil. Fluid-attenuated inversion recovery images and high-resolution structural images were acquired to determine white matter hyperintensity (WMH) volume, which was quantified using the Lesion Segmentation Tool in SPM8. ApoE genotyping was conducted using polymerase chain reaction amplification and Sanger sequencing5. Participants grouped into two: individuals carrying 1 or 2 copies of the ApoE ε4 allele (ApoE ε4 positive) or those not carrying any copy (ApoE ε4 negative). Multivariate linear regression analyses were performed using R to test the joint effect of LNAA, MetS, and ApoE4 on white matter integrity in middle-aged adults. Sex, age, and years of education were included as covariates.

Results: Multivariate linear regression analyses for assessing 3-way interaction effects indicated that the ApoE ε4 allele was a significant factor in WMH volume. Interestingly, MetS was not a significant predictor of WMH volume in participants without the ApoE ε4 allele. This suggests that MetS alone does not markedly affect neural integrity in the absence of genetic susceptibility. Furthermore, LNAA levels did not moderate the non-significant relationship between MetS and WMH volume in these individuals. However, among ApoE ε4 carriers, LNAA levels played a moderating role, over and above relevant covariates. Specifically, low LNAA levels were associated with low WMH volume in the context of MetS (p <0.01). Moreover, higher LNAA appeared to accelerate the negative neural impact of MetS in these genetically at-risk individuals, revealing a nutrient-genetic interaction that may be pivotal for targeted dietary interventions.

Conclusions: This study elucidates the complex interplay of genetic predisposition, metabolic factors, and dietary amino acids on neural health. We discovered that MetS alone did not impact white matter integrity, nor did LNAA levels, in individuals without the ApoE ε4 allele. However, for ApoE ε4 carriers, LNAA levels substantially moderated WMH volume, particularly in the presence of MetS. Low LNAA levels correlated with low WMH, whereas higher levels attenuated MetS-related brain impairment. These insights underscore the potential of LNAA management as a strategic approach to mitigate the risks associated with MetS, especially in individuals genetically susceptible to neurodegeneration. Future dietary recommendations could be personalized to optimize cerebrovascular health in midlife, considering one’s metabolic and genetic profiles.

References
4. Alberti, K.G. M. M. et al. (2009), Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640–1645
Sensitivity of BOLD functional MRI low frequency fluctuations to age-related brain changes

Jessica Korte\(^1\), Wilsaan Joiner\(^1\), Audrey Fan\(^1\)

\(^1\)University of California, Davis, Davis, CA

Introduction: As the global population ages, it is vital to understand healthy aging in the brain. However, within functional MRI (fMRI) analysis, there is no established metric of healthy aging. Here, we quantify reproducibility and directly compare Amplitude of Low Frequency Fluctuations (ALFF) and fractional-ALFF (fALFF) in the cerebellum, a crucial structure for learning, motor control, and coordination, on a cohort selected from Human Connectome Project (HCP) datasets\(^1\). ALFF and fALFF characterize the intensity of local, spontaneous BOLD fMRI fluctuations between 0.01 and 0.08 Hz, a frequency range reflective of neuronal activity\(^2\). Moreover, ALFF frequency sub-bands, specifically slow-3 frequencies (slow-3f) [0.073-0.198 Hz] have demonstrated similar spectral patterns to neuronal firing\(^3\). Slow-3f appear stronger in cerebellar areas\(^5\), making this sub-frequency an ideal candidate to study age-related functional changes within the cerebellum.

Methods: Data from 12 young subjects (YS; 22-35 years; 6 male) and 12 senior subjects (SS; 65-79 years; 6 male) were accessed via the HCP Young Adult S1200 and Aging datasets, respectively. Subjects successfully completed both resting-state (rs) scans without reported quality issues. MRI scans included 2 initial rs-scans and 2 follow-up rs scans. For YS, the fMRI parameters included the following: TR: 702ms, spatial resolution: 2mm isotropic, duration: 14.4 minutes, multi-band factor: 8. For SS, the parameters were: TR: 800ms, spatial resolution: 2mm isotropic, duration: 14 minutes, multi-band factor: 8. CONN was used for preprocessing of the T1 and rs-fMRI images, and included functional realignment, slice-timing correction, normalization to MNI space and resampling of the T1 image to rs-fMRI resolution. The first 5 timepoints were discarded to account for relaxation effects. Denoising included linear regression of movement, CSF, and white matter\(^4\). The denoised signal was then Fourier transformed, filtered to standard (f)ALFF frequencies, and later to [0.073 0.198] Hz for slow-3f (f)ALFF. ALFF is a voxel-wise measurement, calculated by summing the amplitude across the frequency-filtered spectrum, then taking the square root of this metric. fALFF is calculated similarly but is divided by the sum of amplitudes across the full, non-filtered spectrum. Both metrics were normalized to whole-brain (f)ALFF to enable comparison across participants. All statistical analysis included cluster and multiple comparison correction and was conducted in SPM12.

Results: Reproducibility analysis via paired t-tests showed high stability for (f)ALFF across rs-scans in both groups. YS demonstrated higher ALFF than fALFF in subcortical and ventricular regions, as has been shown previously\(^6\). SS did not demonstrate any ALFF-fALFF differences. As a result, ALFF was selected as the metric for comparison given previous demonstration of repeatability and sensitivity\(^6\). Slow-3f ALFF demonstrated high values (p-uncorrected<0.001, p-FWE corrected<0.05, cluster size>20) within ventricle and white matter regions relative to average whole-brain slow-3f ALFF for both groups (Fig.1), indicating sensitivity to physiological effects. Comparison between YS and SS maps of slow-3f ALFF yielded differences between senior and younger participants (p-uncorrected<0.001, p-FWE corrected<0.05, cluster size>20), as illustrated in Fig. 2.

Figure 1

![Figure 1](image-url)

A) Areas where slow-3f ALFF was higher than average whole-brain slow-3f ALFF values for SS (p<0.001, p-FWE<0.05, cluster > 20). High values were confined to CSF areas and one posterior area.

B) Areas where slow-3f ALFF was higher than average whole-brain slow-3f ALFF values for YS (p<0.001, p-FWE<0.05, cluster > 20). YS demonstrated high values in ventricles, CSF, and throughout subcortical white matter.
Conclusions: This preliminary study suggests that ALFF may be a more sensitive metric than fALFF in detecting healthy aging changes. Decreased vascular reactivity and pulsatile CSF movement with age may result in smaller slow-3f ALFF in ventricles and vascular areas. Slow-3f ALFF varies with age within the cerebellum, sensorimotor areas, and frontal regions. Future work will incorporate more participants into this study, apply the SUIT atlas, and will investigate the sensitivity of other sub-frequency bands changes to aging.

References

Impact of Genetics on the Aging of Functional Connectivity with BrainAGE using the UK Biobank

Karen Ardiña1,2,3,4, Aashka Mohite1,2,3,4, Emily Munro1,2,3,4,5, Abdoljalil Addeh1,2,3,4, Charlotte Curtis2,5, Quan Long4,7, M. Ethan MacDonald1,2,3,4

1Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada, 2Department of Electrical Engineering & Software Engineering, University of Calgary, Calgary, Alberta, Canada, 3Department of Radiology, University of Calgary, Calgary, Alberta, Canada, 4Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada, 5Department of Chemical Engineering, University of Calgary, Calgary, Alberta, Canada, 6Department of Mathematics & Computing, Mount Royal University, Calgary, Alberta, Canada, 7Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada

Introduction: Brain aging leads to altered connectivity in rFMRI studies and is influenced by genetic factors, yet the full impact of genetics remains unclear (Pang et al., 2019). Recent advances in neuroimaging and machine learning have resulted in models that predict brain aging by calculating the Brain Age Gap Estimate (BrainAGE), a useful biomarker for neurological diseases (Sanford et al., 2022), from the difference between the model’s predicted age and the chronological age (Foo et al., 2020; Wilms et al., 2020; Gonneaud et al., 2021; Ardiña et al., 2023). BrainAGE models suggest that brain systems vulnerable to aging overlap with those susceptible to neurodegeneration but are limited in cohort sizes and approach (Zhao et al., 2019; Brouwer et al., 2022). This research aims to investigate the genetic underpinnings of functional connectivity changes during brain aging using machine learning, neuroimaging, and genetic data from the UK Biobank.
Methods: This cross-sectional study utilized genetic and rsMRI partial correlation matrices (upper diagonal) data from 37,449 subjects (aged 44-82, mean 64 years, 52.2% female) from the UK Biobank. BrainAGE was computed by inputting measurements from each correlation matrix (Fig. 1) to a machine learning based age prediction model with bias correction (Beheshti et al., 2019). A Genome-wide association study (GWAS) was conducted using the BrainAGE as a phenotype input. The GWAS was implemented with PLINKv1.9 (Chang et al., 2015), with rigorous data quality control including filtering based on missingness, sex discrepancy, minor allele frequency, Hardy-Weinberg equilibrium, and familial relatedness (Marees et al., 2018). Associations with a p-value less than 1e-04 were considered significant genetic variants to accelerated aging of functional connectivity.

Results: The BrainAGE model performance presented an R-squared score of 0.86 and a mean absolute error of 2.18. The GWAS identified 78 candidate single-nucleotide polymorphisms (SNPs), 10 independent significant SNPs, and 7 lead SNPs. The phenogram of the GWAS results related to accelerated brain aging shows the corresponding effect of each independent significant SNP across the human genome (Fig. 2). The genes found were TOMM40, previously related to Alzheimer’s disease, body mass index, cardiovascular disease risk factors, age-related macular degeneration, longevity, and cerebrospinal fluid t-tau levels (GWAS Catalog, 2023a); APOE, with Alzheimer’s disease biomarker, cholesterol levels, hippocampal volume, cerebrospinal fluid t-tau levels, parental longevity, and C-reactive protein levels (GWAS Catalog, 2023b); APOC1, with Alzheimer’s disease biomarker, cholesterol levels, longevity, cerebrospinal fluid amyloid beta 42 levels, and C-reactive protein levels (GWAS Catalog, 2023c); and finally, SRXN1 with body mass index, height, autism spectrum disorder, attention deficit-hyperactivity disorder, bipolar disorder, major depressive disorder, and schizophrenia (GWAS Catalog, 2023d).
Conclusions: This study investigated the genetic predisposition of specific SNPs and genes in relation to rfMRI brain correlation matrix changes and accelerated brain aging. The main contributions are the associations with genes predominantly related with longevity, Alzheimer’s disease, cerebrospinal fluid t-tau levels and amyloid beta, C-reactive protein levels, and mental traits. Suggestions for future research to enhance the BrainAGE prediction model include the potential the inclusion of additional or different imaging modalities for more precise or varied detection of SNPs. The study identified several gene associations with brain aging, contributing to the knowledge of the genetic underpinnings of brain aging related to connectivity, and paving the way for potential precision medicine targets.

References
7. GWAS Catalog (2023a) Gene TOMM40.
8. GWAS Catalog (2023b) Gene APOE.
9. GWAS Catalog (2023c) Gene APOC1.
10. GWAS Catalog (2023d) Gene SRXN1.

Poster No 1142
Significant but limited influence of cerebrovascular reactivity on age and sex in task & rest fMRI
Donna Chen1, Xin Di1, Xin Yu2, Bharat Biswal1
1New Jersey Institute of Technology, Newark, NJ 2Harvard Medical School, Charlestown, MA

Introduction: Functional magnetic resonance imaging (fMRI) measures the blood-oxygen-level dependent (BOLD) signals, which provide an indirect measure of neural activity mediated by neurovascular responses. Cerebrovascular reactivity (CVR) affects both task-induced and resting-state BOLD activity and may confound inter-individual effects observed in BOLD-based measures, such as those related to aging and biological sex1-2. To disentangle these, we examined a large open-access fMRI dataset containing a breath-holding (BH) task, checkerboard task, and resting-state scans.

Methods: MRI data were collected from the Enhanced Nathan Kline Institute – Rockland Sample3. Participants were selected based on those without any psychiatric or neurological disorders and had undergone a baseline MRI session (8 to 85 years, mean age: 43.6 years, standard deviation: 21.5 years, 334 F, 174 M). The BH task, checkerboard task, and resting-state scans were used, and we applied voxel-wise general linear models (GLM) to estimate task activations or to remove confounding signals in the resting-state scans. For the resting-state scans, the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were calculated. To examine whether BH activity explains individual differences in task and resting-state activations, we calculated voxel-wise correlations between BH CVR maps and the other three maps, i.e., checkerboard activations, ALFF, and ReHo. To examine age and sex effects on each of the brain activation maps, we performed group-level voxel-wise GLM, which included age, age2, and sex regressors. After observing age or sex effects on brain activations in the checkerboard or resting-state conditions, we investigated whether the same brain regions showed correlations with CVR. We identified the regions of interest by overlapping the previously mentioned maps and extracted the mean values of both BOLD activity and CVR. To adjust the BOLD activity using CVR, two methods were used. First, we introduced CVR as a covariance in the age/sex effects model to assess how its inclusion affected the observed changes. Second, we initially regressed out CVR from the BOLD activity measurement, and then employed the same model to investigate the effects of age and sex. This allowed us to evaluate the impact of the adjustments.
Results: The ALFF activation map appeared to be similar to the BH CVR map, where the strongest values were in the lateral and medial prefrontal cortex, and subcortical regions. In contrast, the mean ReHo map had stronger values in the parietal and occipital regions (Figure 1). We observed age-effects of BH CVR, particularly in regions with large vessels (e.g., near the top of the midline region and near the insula). Sex effects were present across large brain regions compared with age effects, mainly located in the frontal white matter regions, but extended to the nearby gray matter regions in the prefrontal cortex. For the checkerboard task, significant age effects were observed in the posterior part of the thalamus and right sensorimotor regions, and no sex effects were observed. The regions with significant age effects did not overlap with the regions showing correlations with CVR (Figure 2). For resting-state ALFF, sex effects appeared to overlap with regions correlated with CVR, which is in contrast to the age effects. For the resting-state ReHo maps, we found age effects covering almost the entire cortex and subcortical regions (Figure 2).

Conclusions: Using a large-sample fMRI dataset, we showed that individual differences in CVR as measured by a BH task were correlated with BOLD activity during a simple checkerboard task and in resting-state, although the effect sizes were limited. The observed age and sex effects on task and resting-state brain activity were stronger than those explained by breath-holding activity. Adjusting for breath-holding activity had limited effects on the estimated age and sex effects.

References

Poster No 1143

Influences of brain iron and glutamate on changes in brain activity during working memory in aging

Jonatan Gustavsson¹, Farshad Falahati², Rouslan Sitnikov³, Amirhossein Manzouri⁴, Goran Papenberg¹, Alireza Salami⁵, Jonas Persson⁶, Grégoria Kalpouzos⁷

¹Aging Research Center, Karolinska Institutet, Stockholm, Stockholm, ²Aging Research Center, Karolinska Institutet, Stockholm, Sweden, ³MRI Research Center, Karolinska University Hospital, Stockholm, Stockholm, ⁴Department of Psychology, Stockholm University, Stockholm, Stockholm, ⁵Karolinska Institutet & Umeå University, Stockholm, Stockholm, ⁶Karolinska Institutet, Stockholm, Sweden, ⁷Karolinska Institutet, Stockholm, Stockholm

Introduction: Iron is vital for several neurobiological mechanisms, such as neurotransmitters’ synthesis. However, brain iron overload, associated with age-related iron dyshomeostasis, is detrimental as it leads to oxidative stress and neuroinflammation¹. This likely contributes to alterations in neural-activity (as measured with blood oxygen level-dependent magnetic resonance imaging (BOLD MRI)) and cognitive deficits, including working memory²,³. Astrocytes are responsible for transporting glutamate, a neurotransmitter with antioxidant properties protecting the brain tissue from inflammatory insults⁴. They are also vulnerable to heavy metal toxicity, which can lead to BOLD alteration since astrocytes are involved in neurovascular coupling⁵,⁶. A healthy glutaminergic system may attenuate iron-mediated damage such as BOLD deficits. However, cross-sectional and longitudinal studies on the iron-glutamate relationship are lacking, with only one study linking more blood iron to less glutamate⁷.

Methods: Using data from the 3-year longitudinal IronAge project (baseline n = 208; 20–79 years, follow-up n = 135), we aimed to investigate (1) the relationship between brain iron and glutamate as a function of age, (2) if brain iron content is linked to longitudinal changes of brain activity in normal aging, and (3) whether glutamate mediates the relationship between brain iron and brain activity. Participants underwent MRI (3.0T GE scanner) to assess brain iron, glutamate, and brain activity during an N-back working-memory task. Iron content was assessed using quantitative susceptibility mapping and glutamate concentration was measured using 1H MR spectroscopy in striatum and dorsolateral prefrontal cortex (DLPFC). Functional MRI data were processed with fmrilprep and analyzed in SPM12 software. Working memory performance was calculated as d’ (d-prime).

Results: Firstly, whereas there were no significant associations between iron and glutamate in the whole sample (striatum: r = -0.04, p = 0.7; DLPFC: r = 0.006, p = 0.9), we found differential relationships in DLPFC when stratifying by age group (Figure 1): In younger adults (20–39 years old), higher iron was related to higher glutamate at trend level, but in older adults (60–79) higher iron was associated with lower glutamate (younger: r = 0.34, p = 0.06; middle-aged: r = 0.014, p = 0.4; older: r = -0.33, p = 0.03). Secondly, difference of activation during 2- and 3-back (contrasted with 1-back) between the 2 timepoints showed decreased activation in right DLPFC (p < 0.001) over time at a group level (Figure 2). A multiple regression model revealed no association between activation and baseline iron in DLPFC (β = -0.097, p = 0.3). However, stratifying by age groups showed that decreased activation was associated with more baseline iron in DLPFC among younger adults only (younger: β = -0.48, p = 0.01; middle-aged: β = 0.16, p = 0.3; older: β = 0.06, p = 0.7). Further, there were no associations with glutamate at baseline (ps > 0.3). Thirdly, glutamate did not improve the fit of the model (R² change = 0.01), nor did it attenuate the association between iron and activation. Finally, neither baseline iron nor glutamate were related to working memory performance in the whole group (ps > 0.3) nor within age groups (ps > 0.2).

Figure 1: The relationship between brain iron and glutamate in DLPFC as a function of age (values residualised for age and DPFC volume).
Conclusions: These findings indicate an association between iron and glutamate in the human brain that is modulated by age. The opposite patterns observed between younger and older adults may reflect the progress of astrocytic dysfunction; in young age iron is still in homeostasis, whereas in old age iron dyshomeostasis disrupts the glutaminergic system. Further, our results indicate that glutamate does not play a role in the relationship between iron content and decreased DLPFC activation during working memory performance.

References

Predicting Brain Aging (Brain Age Gap) from Biomedical and Lifestyle Variables
Mostafa Mahdipour1,2, Somayeh Maleki Balajoo1,2, Federico Raimondo1,2, Eliana Nicolaisen-Sobesky1,2, Shammi More1,2, Felix Hoffstaedter1,2, Masoud Tahmasian1,2,3, Simon Eickhoff1,2, Sarah Genon1,2

Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, 2Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany, 3Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany

Introduction: The Brain Age Gap (BAG) can be considered as an indicator of the brain health1,2. BAG is defined as the difference between an individual's chronological age and the age predicted by a machine learning (ML) algorithm based on individual brain features. While some studies demonstrated univariate associations between the BAG and several lifestyle and biomedical variables2,3, a substantial gap persists in understanding the multivariate association between these factors and BAG. Here, we addressed this question by using a wide range of biomedical, lifestyle, and sociodemographic variables conjointly to predict the BAG in a large population of the UK Biobank.

Methods: We built a ML model to predict an individual’s brain age using brain structural features (cortical and subcortical parcellated grey matter volume) in a subset of specifically healthy participants in the UK Biobank (n=5,025, age range 46-
82 years, 2,579 females). In particular, we applied ridge regression implemented in the Julearn package\(^4\). Subsequently, the optimized predictive brain model was applied to predict brain age in the remaining UK Biobank participants (n =34,365, age range 44-82 years, 18,128 females) (Fig 1A). The BAG was then computed following the adjustment of predicted brain ages for proportional bias based on regression parameters from the training set\(^5\). For predicting an individual's BAG, we selected 157 variables covering biomedical (e.g., cardiovascular, respiratory, and body metabolism), lifestyle (e.g. smoking and diet) and sociodemographic (e.g.: socioeconomical status, family and social life) variables in a subset of 7,736 participants not included in the healthy subset used to build the age prediction model (age range 44-81 years, 4,272 females). In order to train the model, we used a random forest algorithm as implemented in Julearn\(^4\) with a nested cross-validation approach including 10 inner and outer folds. Notably, we controlled for possible confounds (age, age2, sex, height, and volumetric scaling from the T1 image to standard space).

Results: We achieved a high level of accuracy in predicting chronological age using brain structural features. The average cross-validation Mean Absolute Error (MAE) of 3.75 years closely mirrored the MAE of the best model applied to the population data, which was 3.93 years and the correlation between chronological and predicted age was strong (r = 0.75 for the prediction model and 0.76 for the population data, Fig 1B). Using bias correction on the population's predicted brain age led to a relatively unbiased BAG with regards to age (Fig 1C). We then found that individual BAG could be robustly predicted to some extent by phenotypical variables with an average (across test folds) correlation between the predicted BAG and calculated BAG of 0.239±0.02, MAE of 4.54±0.10 years, and a Root Mean Square Error of 5.72±0.12 years. Examining mean features importance (Fig 2) further reveals that most features are relevant for the prediction. Nevertheless, biomedical factors, closely followed by lifestyle factors, appear to play a relatively more important role than sociodemographic variables.

Conclusions: We successfully developed a brain age prediction model in a healthy sample that enables to compute brain age gap as a sensitive estimator of individual brain structural health in an aging population. Although the relationships between any individual factor and brain structural health can be seen as negligible based on previously reported effect sizes\(^6\), here we showed that considering a range of variables jointly enables a decent prediction of BAG. Although no set of variables appear to play a crucial role here, biomedical factors related to body metabolism and cardiovascular systems, as well lifestyle factors directly influencing these later (such as smoking and alcohol consumption) appear relatively important for structural brain health.
References
Short-range white matter tracts modulate global parameters for neurocompensation in aging

Priyanka Chakraborty1, Suman Saha1, Arpan Banerjee2, Dr Dipanjan Roy3

1National Brain Research Center, Gurgaon, Haryana, 2National Brain Research Centre, Gurgaon, Haryana, 3School of AIDE, Center for Brain Research and Applications, IIT Jodhpur, Jodhpur, Rajasthan

Introduction: An overarching question in aging neuroscience is how the brain compensates for age-related white matter deterioration and sustains its normative pattern in neuronal dynamics across lifespan. Neuroplasticity, a recognized neurocompensatory mechanism, involves synaptic modifications and modulation of biological parameters (Park & Reuter-Lorenz 2009) in face of age related structural changes. Increased global coupling strength compensates for structural loss during healthy aging, and enhanced inter-areal coupling preserves neural synchrony (Pathak et al. 2022). Nonetheless, short-range (SR) white matter tracts allow fast and efficient local communication across the brain (Mišić & Betzel 2015), whereas, long-range (LR) tracts are crucial for integrating information among distant areas (Sporns & Zwi 2004). However, how the brain’s sub-graphs comprises of SR and LR tracts contribute to this neurocompensatory mechanism keeping functional integrity intact in healthy aging process is not completely understood. We aim to investigate how two sub-communities comprising SR and LR tracts modulate biophysical parameters to compensate for age related decline and specifically explore their roles in calibrating global interaction strength and conduction delay in age-related neurocompensation. We categorize white matter fibers into SR and LR connections based on their physical length distributions and employ metastability and an anatomically constrained whole-brain network model to assess how these sub-graphs influence the model parameters using structural connectivity data from individuals.

Methods: The study includes 82 healthy subjects (43 F and 39 M) from CamCAN, which are separated into two groups: 41 young (18-33 years, mean = 25±4 years, 22 F), and 41 old subjects (60-86 years, mean = 74±6.8 years, 21 F). We used Desikan-Killany parcellation of 68 cortical regions. We defined SR and LR connections based on the fiber lengths using two thresholds selected from first quartile (70 mm for SR) and third quartile (140 mm for LR) of the average tract length distribution. The maximum fiber length is set to 250mm. We utilized the Kuramoto model (Kuramoto 1984) to capture metastability in a network, where the input to the model is SC of individual subjects. For each pair of the two parameters (κ, τ), we measure the metastability $M(\kappa, \tau)$ and generated a metastability map on two-parameter plane. Next, we estimate the optimal parameters utilizing the condition, $[\kappa, \tau]_{\text{opt}} = \text{argmax}(M(\kappa, \tau))$. The optimal parameters are estimated at the level of individuals. Next, we compared the estimated parameters between young and old groups using independent t-test.

Results: The empirical structural analysis shows a significant reduction in fiber lengths and white matter counts or strengths in old subjects compared to younger participants. We also observed an age-related alteration in empirical functional network properties, whereas the empirical metastability remains constant between the two age groups. Overall, the results indicate a re-organisation in functional network and preservation in whole-brain dynamical repertoire. The simulated results reveal a significant increase in coupling strength in older adults compared to the young. We observed no significant difference between the optimal coupling strength of older adults and the short-range (SR) sub-community. Hence, the SR sub-community enhanced its coupling strength to maintain the desired set point while preserving functional integrity in the face of lost LR connections.

Conclusions: SR compensate for long-range fiber loss by modulating global coupling, effectively rescaling altered local interaction strengths (SC). Our study is useful for understanding the mechanisms underlying the brain’s function in neural disorders, including Alzheimer’s and Parkinson’s.

References
Lifespan music experience changes transition rates of microstate D related to executive function

Yan Li¹, Pengyu Zou¹, Liangfeng Feng¹, Jing Lu¹, Sijia Guo¹

¹School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China

Introduction: Lifespan music experience benefits older adults, which was proved by many behavioral studies, such as old musicians having higher scores on a test of executive function¹ and enhanced auditory attention in musicians². The potential mechanism is still unclear but is suggested to be related to cognitive network changes, such as frontal-parietal areas³.

The electroencephalogram (EEG) microstates can reveal the changes in the cognitive function network, and microstate D is related to attention and executive function⁴, which have been shown to decline during aging⁶. Microstate analysis is, therefore, helpful in understanding how music intervention can alleviate cognitive aging. This work recruited old musicians, old non-musicians, and young non-musicians to explore the relationship between microstate D and other microstates in music intervention in cognitive aging.

Methods: Sixteen old musicians (OM) were recruited from Sichuan Conservatory of Music and nineteen age-matched old non-musicians (ONM) were recruited from communities. Twenty-five young non-musicians (YNM) were recruited from universities. Five minutes of resting EEG recordings were collected using a 64-electrode channel EEG acquisition device. These electrodes were positioned to the extended 10-20 system, and the data were recorded at a sampling rate of 1000Hz. EEG recordings were preprocessed by the EEGLAB toolbox in MATLAB and then analyzed by the EEGLAB plugin for microstates. The original instantaneous maps were clustered into four microstate classes (same as previous studies, namely, microstate A, B, C and D). Finally, the transition rates between microstates were calculated and statistically analyzed. In addition, we also collected the behavioral data of the N-back task (the accuracy and reaction time of 0, 1, 2-back).

Results: For the transition rates between microstates D and A, B, and C, all the interactions of age × music training trended significantly. For the transition rate from microstate D to A, ONM was lower than OM (p<0.01, t=-4.45) and YNM (p<0.01, t=-3.51) (Figure 1a). For the transition rate from microstate D to B, ONM was higher than OM (p<0.05, t=3.16) and YNM (p<0.01, t=9.23), and OM was higher than YNM (p<0.01, t=5.14) (Figure 1b). For the transition rate from microstate D to C, ONM was lower than OM (p<0.01, t=-4.76) and YNM (p<0.01, t=-4.17), and YNM was lower than OM (p<0.05, t=-2.56) (Figure 1c). P-values in the results were given after False Discovery Rate (FDR) correction. The differences of transition rates from microstates A, B, and C to microstate D between groups are similarly above results. Future more, we found that transition rate of microstate D to A in the elderly was positively correlated with the accuracy of 2-back (p=0.024, r=0.3863) (Figure 2a) and negatively correlated with the reaction time of 2-back (p=0.0268, r=-0.3796) (Figure 2b).

Figure 1: The transition rates from microstate D to microstates A, B and C (FDR-corrected).
Figure. 2: The correlations between transition rate from microstate D to A and accuracy, reaction time of 2-back in the elderly.

Conclusions: As reported by existing studies, the transitions between microstates are not random. Some studies have found that the possibility of such transitions between microstates is related to functional networks and exhibits a tendency in patients. Similar to the above studies, we found that the changes of transition rates between microstate D and other microstates reflect cognitive aging of the elderly, specifically manifested as an increase between microstate D and C as well as a decrease between microstate D and A, B. Lifespan music experience has slowed down these changing trends and contributes to the better working memory performance. Moreover, music experience makes the auditory network more robust and enables the functional separation of auditory and frontal network to be maintained during aging, which is reflected by the correlation between transition rate and accuracy, reaction time of 2-back task. In a nutshell, these results provide more information for understanding the mechanism of music intervention in cognitive aging.

References

Poster No 1147

Shared brain network response change with naturalistic social content and support recall in adults

Eric Kwun Kei Ng1, Wan Lin Yue1, Janice Jue Xin Koi1, Joey Ju Yu Wong1, Xiaoqian Li2, W. Quin Yow2, Juan Helen Zhou1

1National University of Singapore, Singapore, Singapore, 2Singapore University of Technology and Design, Singapore, Singapore

Introduction: Theory of mind (ToM), a key social cognitive ability, may decline and adversely influence older adults. Naturalistic paradigms show promise to study social cognition with better ecological validity and sensitivity to age-related differences, but few studies have adapted it to study ToM at older age. We examined inter-subject correlation (ISC), a measure of between-subject brain response synchrony to a common stimulus and shown to be sensitive to differences in mental states, when participants watched a socio-affective movie. We expected 1) ISC to be higher during moments with higher ToM requirement, lower in older adults, with possible interaction such that age groups differed more during higher ToM requirement; 2) effects to be stronger in default mode network; 3) higher ISC to be associated with better recall.

Methods: 44 young (27 F, mean 22 yrs) and 46 older adults (34 F, mean 63.3 yrs) were scanned when watching a short movie about a family in local Singaporean context. They then completed a recall task comprising 9 factual and 18 ToM multiple-
choice questions from 9 major scenes. FMRI data (3T Siemens Prisma(-Fit); TR 720ms, 2.5mm isotropic) were preprocessed with an in-house pipeline. Time series extracted from 430 regional 4 were split into ToM (N=56) and non-ToM (N=74) segments based on timestamps manually demarcated by 3 researchers and hemodynamic response delay (6s), followed by concatenation into a ToM (402 TRs, 5mins) and non-ToM (488 TRs, 6mins) time series per participant. Regional ISC 5 was computed separately for each age group and ToM event type by correlating the time series of each participant with the mean time series averaged across all other participants in the group (Fisher’s Z, Pearson). Regions were then averaged as per functional network assignment, yielding 2 event type x (9 cortical + 3 subcortical) network-level ISC measures per participant. Network ISCs were subject to linear mixed models, with age group, ToM event type, and their interaction as variables of interest, and gender, scanner, and mean relative motion as covariates. Multiple comparisons in network analyses and post-hoc analyses were Bonferroni-adjusted. For networks showing statistically significant age-group ISC effects, partial Spearman’s correlations were computed between ISC and recall scores within each age group and event type, controlling for age, gender, scanner, education, and mean relative motion.

Results: ISC was higher during ToM than non-ToM moments in most networks (ps<.004). Contrary to past findings, older adults tended to have higher ISC in cortical networks than young adults (ps=.025-.07 uncorrected). Age Group x Event Type interactions (Fig 1) were observed in default mode network (DMN) and salience-ventral-attention network (SN-VAN). ISC for ToM events was higher than non-ToM events in young adults (p<.001 and .008, respectively), but they were comparable in older adults. Non-ToM ISC was also higher in older than young adults (p=.052 and <.001, respectively). Higher ISC in these networks was associated with better recall for ToM moments in both groups (ps<.001; Fig 2).
Conclusions: Our results echoed past findings of higher neural synchrony when processing others’ mental states; higher ISC in older adults may be due to stimulus choice but requires further examination. Interestingly, ISC enhancement was less among older adults than young adults in the DMN (internal state representations and narrative comprehension) and SN-VAN (selective attention and regulating DMN activity). Their inclusion suggested that older adults may become less selective to the need of (or lack thereof) processing social elements, due to lower social cognitive ability or altered socioemotional preferences. Positive ISC-recall association supported the hypothesis of an ‘optimal way’ of information processing among age-matched peers, with deviations reflecting idiosyncrasy in perspective taking and situational interpretation.

References

Poster No 1148

The negative relationship between brain-age gap and resilience in older people

Yue Gu1, Tatia Lee2

1The University of Hong Kong, Hong Kong, 2the University of Hong Kong, Hong Kong

Introduction: Ageing is a complex biological process (López-Otín et al., 2013). This deviation between the predicted-brain age and chronological age, referred to as the ‘brain-age gap’(Franke, Ziegler, et al., 2010). There are association between individual brain-age gap and adverse outcomes such as mortality (Cole et al., 2018), neurodegenerative disorders (Franke et al. 2010; Gaser et al. 2013; Gonneaud et al. 2021). Employing brain-age gap assessments in elderly could enrich our comprehension of resilience to structural and functional insults that accumulate with advancing age, and the repercussions of diseases on the aging brain. For ageing, resilience is particularly challenging. Because ageing may face a variety of challenges, such as chronic illness and disability (Madsen et al., 2019; Rentz et al., 2017). We aimed to develop a deep learning-based brain age prediction model using multimodal imaging data, including resting-state fMRI, MRI and DTI scans from 124 participants aged 53-76 years old.

Methods: Demographic variables were assessed at the time of the scan. The data were obtained from a cohort of 124 right-handed older adults who underwent a comprehensive neuropsychological assessment. The final sample consisted of 93 participants, with a mean age of 61.06 years (SD = 4.90 years, range = 53-76 years), including 33 females. This study received approval from the institutional review board of the Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, and all participants provided written informed consent. All participants underwent scanning on a 3T Scanner. The Braiinnetome Atlas, which contains 246 subregions of the bilateral hemispheres, was selected for this study due to its multimodal characterization of the human brain. The brain age prediction model employed in this study integrates a multimodal set of neuroimaging features to estimate an individual’s brain age. To comprehend the intricate interplay between the brain-age gap and network metrics, as well as cognitive and emotional assessments, supplementary partial correlation analyses were conducted.

Results: The model exhibited strong predictive performance, with a MSE of 19.218, indicating the model’s ability to minimize prediction errors. The R² value of 0.968 signifies the high proportion of variance in the data that could be explained by the model, underscoring its robust predictive capacity. The selection of 159 features with the highest contribution to the prediction
model, specifically in SC. Using the partial correlation, our analysis revealed a significant negative correlation between resilience and the brain-age gap.

Conclusions: In summary, this study highlights the brain-age gap as a potential biomarker for aging, underscores the role of resilience as a protective factor.

References

Poster No 1149

Assessment of gray matter features in reflecting advanced brain age in PCDS: A cross-national study

Chen-Yuan Kuo1,2, Li-Ning Peng3,4, Chih-Ping Chung1,3, Pei-Lin Lee3, Liang-Kung Chen3,5, Ching-Po Lin2,3,6, Kun-Hsien Chou2,7

1Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, 2Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan, 3Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, 4Center for Geriatric and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan, 5Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan, 6Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, 7Brain research center, National Yang Ming Chiao Tung University, Taipei, Taiwan

Introduction: Neuroimaging-derived brain biological age serves as a widely accepted health indicator, reflecting the potential advancement or delay in brain aging compared to chronological age. Various gray matter (GM) features have been utilized for this purpose. However, the comparative sensitivity and feasibility of GM feature-derived brain age models in reflecting advanced brain aging within neurodegenerative disorders using multi-center, cross-national cohort datasets remain understudied. Physio-cognitive decline syndrome (PCDS), characterized by concurrent mobility and cognitive impairment without dementia, represents a preclinical phenotype of dementia syndrome in older individuals1. Our recent single-cohort study uncovered an advanced brain age in PCDS using a brain age model based on GM volume (GMV)2. This current study focuses on utilizing PCDS as the disease group to assess the feasibility of two GM feature-based brain age models, specifically GMV and GM density (GMD), across multi-center, cross-national studies.

Methods: Participants of clinical datasets Two cohort datasets, I-Lan Longitudinal Aging Study (ILAS) from Taiwan (N=1193, 566M/627F) and the National Institute for Longevity Sciences, Longitudinal Study of Aging (NILS-LSA) study from Japan (N=2302, 1173M/1129F), were used in this study. Using consensus criteria, participants aged 65 and above were categorized as robust or PCDS based on sex-stratified MMSE scores, grip strength, and walking speed in the bottom or top 20%. The study comprised 163 robust (age = 71.36±5.08 years, 103M/60F) and 103 PCDS (age = 74.68±6.19 years, 48M/55F) participants from ILAS, along with 137 robust (age = 70.57±4.08 years, 61M/76F) and 74 PCDS (age = 78.28±4.99 years, 43M/31F) participants from the NILS-LSA study. Brain age model construction and evaluation We gathered 1482 healthy individuals (age range: 18-92; 681M/801F) from five sites in Taiwan, training brain age prediction models with their T1-weighted MRI scans. Following
our previous brain age model construction pipeline\(^3\), we constructed two SVR-RBF models based on gray matter GMV and GMD respectively. Model performance was assessed using minimum mean absolute error (MAE) and maximum coefficient of determination (R\(^2\)) between chronological and predicted age. The optimized brain age estimators were applied to ILAS and NILS-LSA datasets for individual predicted brain age and brain age gap (BAG) calculation, representing the difference between chronological age and predicted brain age. Statistical analysis Two ANCOVA models, incorporating age, age\(^2\), sex, education years, and total intracranial volume as confounders, compared the BAG between robust and PCDS groups in each dataset. A significance level of <0.05 was considered statistically significant.

Results: Constructing two brain age estimators based on GM features, our findings revealed superior prediction performance from the GMD brain age estimator (MAE=5.33; R\(^2\)=0.81) compared to the GMV brain age estimator (MAE=6.46; R\(^2\)=0.73) within the training dataset (Figure 1). Moreover, the utilization of both the optimized GMV and GMD brain age estimators consistently demonstrated advanced brain age within the PCDS group across two distinct cohort datasets (ILAS: GMV, \(p=0.011, \eta^2=0.025\); GMD, \(p=0.01, \eta^2=0.025\); NILS-LSA: GMV, \(p=0.027, \eta^2=0.024\); GMD, \(p=0.029, \eta^2=0.023\)) (Figure 2).

Conclusions: In summary, our study reveals the intricate relationship between diverse GM features and the effectiveness of brain age estimators. While the GMD brain age estimator shows superior predictive performance during training, both GMD and GMV estimators indicate advanced brain age within the PCDS group during subsequent case-control comparisons. This underscores the potential of neuroimaging-derived brain age as a reliable indicator of advanced brain aging, particularly within the context of PCDS. These findings provide insights for similar multicenter, multinational cohort studies exploring brain health status across diseases.
Poster No 1150

Which white matter measures best predict processing speed and intelligence in healthy aging?

Petar Raykov¹, Rafael Henriques², Kamen Tsvetanov³, Cam-CAN¹, Marta Correia¹, Richard Henson⁴

¹MRC Cognition and Brain Sciences Unit, Cambridge, United Kingdom, ²Champalimaud Research, Lisbon, Portugal, ³University of Cambridge, Cambridge, Cambridgeshire, ⁴MRC Cognition and Brain Sciences Unit, Great Shelford, Cambridgeshire

Introduction: Healthy aging is accompanied by decline in cognitive functions such as processing speed (PS) and fluid intelligence (gF). White matter (WM) integrity is important for both of these functions, and declines with age. However, it remains unclear which WM measures are most closely related to variation in cognitive performance. Furthermore, it’s unclear whether information from different imaging modalities (e.g., T1/T2) adds complimentary information beyond the multitude of metrics derived from diffusion magnetic resonance imaging (dMRI). Here we use adult life-span data from the Cam-CAN cohort to extract commonalities across 8 different WM measures using factor analysis, and examine how many latent factors are needed. Furthermore, we compare the factors scores, as well as the original WM metrics, in their ability to predict PS and gF, after accounting for effects of age and sex.

Methods: We used multimodal neuroimaging data from 651 adults from the Cam-CAN cohort, aged between 18-88 years (www.cam-can.org). We took six dMRI metrics from a previous analysis of dMRI data across 27 WM ROIs (Henriques et al, 2023): 1) Fractional Anisotropy (FA); 2) Mean Signal Diffusion (MSD); 3) Mean Signal Kurtosis (MSK); 4) Neurite Density Index (NDI); 5) Orientation Dispersion Index (ODI); 6) Free water volume fraction (Fiso). We then added two further WM metrics: 7) the ratio of two magnetisation-weighted images (MTR) and 8) the T1/T2 ratio from T1- and T2-weighted images. PS was calculated from a factor analysis across the mean and standard deviation of reaction times on a simple and a choice reaction task; gF was calculated from a factor analysis on four Cattell subtests. We performed factor analysis on the 8 WM measures, concatenating across participants and ROIs. We then performed regression analyses to examine how much of the variance in participants’ PS or gF was explained by each of the individual factor scores, or by each of the individual WM measures (averaged over all ROIs), after accounting for sex, linear and quadratic age, and their interactions. Additionally, we included a regressor to account for motion artefacts in the dMRI measures (see Henriques et al., 2023). Finally, we also regressed PS and gF on a whole-brain measure of 9) Peak Width of Skeletonized Mean Diffusivity (PSMD).

Results: We found that 3 factors captured 83% of the variance in the 8 WM measures. Given that Henriques et al. (2023) found that 3 factors also captured the majority of the variance in the 6 dMRI measures, this suggests that the addition of MTR and T1/T2-ratio measures did not add complimentary information about WM integrity. The three factors seemed to reflect 1) tissue microscopic properties; 2) free-water contamination, and 3) fibre complexity (e.g., crossing or dispersing, fanning fibres), and explained respectively 43%, 23%, 16% of the variance in data (see Fig. 1). Regression analyses showed that, of the three factors, Factor 1 explained the most variation in gF and in PS. Including all 3 factors scores in the same analysis showed that only Factor 1 explained unique variance in cognition. In terms of single metrics, MSD explained most variation in PS, but not so much variation in gF. The best individual predictor of both gF and PS was MSKI, which performed better than Factor 1 (see Table 1). The global PSMD metric showed the strongest association with age.
Conclusions: Our factor analysis suggest that MTR and T1/T2 measures do not add complimentary information about WM track integrity (in healthy adults) over the information already present in other dMRI metrics. Factor 1 from this analysis, reflecting age-related microscopic alterations, explained appreciable and unique variance in processing speed and fluid intelligence, after adjusting for age and sex. However, if one had to choose one MR sequence and measure, then MSKI estimated from a (multi-shell) dMRI sequence showed comparable associations across both processing speed and fluid intelligence.

References
Impact of Defacing Procedures on Brain Age Gap Estimation

Vivien Ivan¹, Marius Vach², Daniel Weiß³, Luisa Wolf³, Shammi More⁴, Kaustubh Patil⁵, Dennis Hedderich⁶, Nora Bittner⁶, Julian Caspers¹, Christian Rubbert¹

¹Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital, Duesseldorf, Germany, ²Juelich Research Center, Juelich, Germany, ³Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, NRW, Germany, ⁴Technical University of Munich, Munich, Bavaria, Germany, ⁵Institute for Anatomy I, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany

Introduction: Brain Age Gap Estimation (BrainAGE) is increasingly explored as an imaging biomarker for a variety of conditions, such as neurodegenerative diseases [Gaser 2013], or in the research of atypical aging, e.g., due to lifestyle risk factors [Bittner 2021]. BrainAGE is usually derived from applying machine-learning approaches to features derived from structural magnetic resonance images of the brain [Franke 2019; More 2023]. Removal of facial features from MRI scans is increasingly deemed mandatory from a data privacy perspective [Schwarz 2019]. However, defacing procedures may cause data integrity issues, e.g. affect regional brain volume measurements [Rubbert 2022], which could also compromise the quality of BrainAGE. Thus, this study aims to systematically assess the impact of defacing on BrainAGE.

Methods: A total of 364 Alzheimer’s disease (AD) patients and 717 cognitively normal (CN) participants were included from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). For those, unaccelerated (AD n=290 (46.2% female, 75.13±7.79 years, 55-90 years), CN n=386 (49.5% female, 74.66±5.87 years, 56-89 years)), and accelerated 3D T1 imaging (AD n=203 (40.9% female, 74.76±8.02 years, 55-90 years), CN n=500 (61% female, 71.34±6.44 years, 55-90 years)) was available. BrainAGE was derived using the best-performing model from [More 2023], trained on 2,953 non-ADNI healthy controls (18-88 years) from four large population-based studies. In essence, gray matter features were derived from standardized CAT12 for SPM12 preprocessing, smoothing with a 4 mm full-width-half-maximum kernel, resampling to 4 mm spatial resolution, and finally by principal component analysis for dimensionality reduction. Finally, Gaussian process regression was used to predict age, and BrainAGE was calculated by subtracting the chronological age from the predicted age. BrainAGE was derived for each AD and CN before and after defacing using afni_refacer, fsl_deface, mri_deface, mri_reface, PyDeface, and spm_deface. Furthermore, for AD n=74 (52.7% female, 75.51±8.19 years, 56-90 years) and CN n=84 (56% female, 75.93±4.97 years, 60-87 years) with no defacing within the session were available, and BrainAGE differences between the two scans within the same session were calculated without any defacing to serve as a benchmark. The difference in BrainAGE after defacing (BrainAGEdefaced – BrainAGEfullface), as well as the mean absolute error (MAE) and mean squared error (MSE) of BrainAGE with and without defacing were calculated separately for unaccelerated and accelerated imaging. Additionally, BrainAGE outliers due to defacing were identified using BrainAGE differences above the 75th or below the 25th percentile of the benchmark and Grubb’s test.

Results: MAE and MSE for BrainAGE difference between the initial and repeat scan in the benchmark, both with and without defacing, were 1.15 and 2.25 for CN (BrainAGE difference -0.15±1.5), and 1.43 and 3.29 for AD (BrainAGE difference of 0.15±1.82). Preprocessing with CAT12 for SPM12 or defacing failed in 1 afni_refacer and 275 mri_deface cases. PyDeface performed best with an overall MAE of 0.33 and MSE of 0.27 (mean BrainAGE difference of 0.08±0.52, range -1.93–6.19, inter-quartile range -0.17–0.26 (see table in Figure 1) and the lowest number of outliers according to the benchmark (99, see table in Figure 1 and Figure 2). The overall MAE for fsl_deface and spm_deface was 0.35, for mri_reface 0.41, for mri_deface 0.63, and for afni_refacer 1.04. The Grubb’s test identified 23 outliers after PyDeface, with spm_deface and mri_reface leading to a lower number of outliers (20 and 11, respectively, see table in Figure 1).
<table>
<thead>
<tr>
<th>Research group</th>
<th>Unaccelerated Imaging</th>
<th>Accelerated Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within session repeat imaging without defacing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>0.84</td>
<td>1.15</td>
</tr>
<tr>
<td>AD</td>
<td>0.74</td>
<td>1.43</td>
</tr>
<tr>
<td>sffs_refacer</td>
<td>CN</td>
<td>1.14</td>
</tr>
<tr>
<td>AD</td>
<td>0.299</td>
<td>1.31</td>
</tr>
<tr>
<td>fsl_deface</td>
<td>CN</td>
<td>0.41</td>
</tr>
<tr>
<td>AD</td>
<td>0.299</td>
<td>0.4</td>
</tr>
<tr>
<td>mri_deface</td>
<td>CN</td>
<td>8.414</td>
</tr>
<tr>
<td>AD</td>
<td>0.5299</td>
<td>0.73</td>
</tr>
<tr>
<td>mri_refacer</td>
<td>CN</td>
<td>0.41</td>
</tr>
<tr>
<td>AD</td>
<td>0.299</td>
<td>0.46</td>
</tr>
<tr>
<td>PyDeface</td>
<td>CN</td>
<td>0.414</td>
</tr>
<tr>
<td>AD</td>
<td>0.299</td>
<td>0.38</td>
</tr>
<tr>
<td>spm_deface</td>
<td>CN</td>
<td>0.414</td>
</tr>
<tr>
<td>AD</td>
<td>0.299</td>
<td>0.35</td>
</tr>
</tbody>
</table>

* BrainAGE difference = BrainAGE after defacing - BrainAGE without defacing, Benchmark = number of BrainAGE differences above the 75th or below the 25th percentile of the respective BrainAGE difference of the within session repeat imaging without defacing.
Conclusions: Brain Age Gap Estimation (BrainAGE) may be affected by defacing, however, in most approaches this influence is lesser than the variability observed in BrainAGE in repeat non-defaced imaging within the same session. Overall, PyDeface had negligible impact on BrainAGE, both in AD patients and healthy controls.

References

Poster No 1152
Cross sectional sex differences in cortical atrophy across an indigenous Bolivian population
Nikhil Chaudhari1, Phoebe Imms1, Nahian Chowdhury1, Margaret Gatzi1, Benjamin Trumble2, Wendy Mack1, Meng Law1, Linda Sutherland1, James Sutherland1, Christopher Rowan5, Samuel Wann6, Adel Alami2, Randall Thompson8, David Michalik9, Michael Miyamoto10, Guido Lombardi11, Daniel Cummings12, Edmond Seabright4, Sarah Alami5, Angela Garcia2, Daniel Rodriguez13, Raul Quijpe Gutierrez14, Paul Hooper15, Kenneth Buetow2, Jonathan Stieglitz16, Michael Gurven15, Gregory Thomas1, Hillard Kaplan13, Caleb Finch1, Andrei Irimia1

Introduction: The cross-sectional relationship of brain volume with age is a surrogate measure of brain atrophy, a proxy for brain health. Comparing atrophy trajectories across industrialized and non-industrialized populations can provide insights into lifestyle correlates of brain health. The Tsimane, a native Bolivian population, have lifestyles similar to those of our pre-modern ancestors (Gurven, Stieglitz et al. 2017). In contrast to the average person in developed countries, the Tsimane have higher levels of physical activity (Kraft, Stieglitz et al. 2018) and a diet richer in fiber. This unique combination of lifestyle factors renders the Tsimane uniquely attractive for studying brain atrophy. We compared Tsimane atrophy rates to those of a UK Biobank (UKBB) sample.

Methods: 746 Tsimane (346 males) aged 40–94 were scanned using computed tomography (CT). The regional brain volumes of 148 cortical brain structures were calculated using an automatic head CT tissue segmentation algorithm. These same regional volumes were computed from T1-weighted magnetic resonance imaging for 19,973 UKBB participants (same age range) using Freesurfer. Regional brain volumes were normalized by total intracranial volume to account for variation in head sizes. Linear regression coefficients describing the associations between age and Tsimane regional brain volumes (βT) were compared with those of UKBB participants (βUK). For each brain structure, Welch’s two-tailed t-test for independent samples with unequal variances tested the null hypotheses H(0):βT = βUK at α = 0.05.

Results: Notably, in Tsimane males, a small but significant cross-sectional positive trend of brain volume with age was observed in occipital and parietal structures (red structures in Fig. 1A-B). Over the entire cortex, Tsimane males exhibit slower rates of volume decrease than UKBB males in frontotemporal structures (blue structures in Fig. 1E). Conversely, Tsimane females exhibit faster rates of regional brain volume decrease with age than UKBB females (red structures in Fig. 1F). In structures supporting visuospatial skills, the Tsimane exhibit age-related regional brain hypertrophy. This has not been observed in any other human population and may reflect Tsimane’s high dependence on visuospatial navigation in dense Amazonian forests, a terrain with few visuospatial aids. Sex differences may involve differences in hormones, lifestyle, or health trajectories (Cowell, Turetsky et al. 1994, Blatter, Bigler et al. 1995, Coffey, Lucke et al. 1998, Trumble, Stieglitz et al. 2019).
ABSTRACTS

2015). Tsimane females exhibit higher obesity rates than males (Bethancourt, Leonard et al. 2019), which may be a byproduct of lifestyle differences. Tsimane females spend more time caring for children (breastfeeding, grooming), preparing food, and engaging in light physical activity. Males, especially those under 60, engage in more moderate-to-vigorous physical activity outside the home. Figure 1. Regression coefficients for the association between cortical structures and age in Tsimane males (A), Tsimane females (B), and British males (C) and females (D) in the UK Biobank. Brighter color indicates a larger magnitude of the regression coefficient for the corresponding structures. (E, F): Structures whose regression coefficients differ significantly from the UKBB in Tsimane. Blue indicates faster volume decrease in the UKBB compared to the Tsimane. Red indicates faster volume decrease in the Tsimane compared to the UKBB.

Conclusions: Living without modernization may protect men’s brain health but not women’s. Alternatively, unknown factors associated with industrialization may attenuate women’s rate of regional volume decrease with age. Future research should clarify the relationships between regional volume trends with age, physical activity, diet, neurodegenerative disease risk, and cognitive functioning.

References

Poster No 1153

Senescence affects local and global prediction errors at different rates

Yi-Fang Hsu¹, Chia-An Tu¹, Jarmo Hämäläinen²

¹National Taiwan Normal University, Taipei, Taiwan, ²University of Jyväskylä, Jyväskylä, Finland

Introduction: Predictive coding is postulated to be a fundamental principle of brain functioning. Previous research suggested that senescence is accompanied by an increased weighting of prediction (Moran et al., 2014; Wolpe et al., 2016; Chan et al., 2021) and a hierarchy-selective attenuation of prediction error (PE) (Hsu et al., 2021, 2023). However, it is less clear when it starts and how it develops across lifespan.

Methods: To delineate the developmental trajectory of predictive processing, we recorded EEG from a cohort of 406 healthy participants between 15-82 years of age using an auditory local-global paradigm, which orthogonally manipulated first-order and second-order regularities to elicit local and global PE (Bekinschelein et al., 2009). Cortical responses signalling PE were
identified with a temporal principal component analysis (PCA). Participants also underwent a neuropsychological test battery where their working memory was measured with subtests in Wechsler Adult Intelligence Scale IV.

Results: Significant age-related decline can be seen on local PE (MMN and P3a), global PE (FN and P3b), as well as working memory measures. PE declines at a slower rate locally (0.010-0.017 units/yo) and a faster rate globally (0.013-0.022 units/yo). Concerning the most significant change point, for local PE it happens earlier (37-43 yo) while for global PE it happens later (44-48 yo). Both happen after working memory decline (which declines at a rate of 0.071 units/yo with the most significant change point at 32 yo) and well before retirement age. Interestingly, only 12-13% of the variability in global PE can be explained by local PE. Age effect on global PE remains significant when local PE serve as mediators. Lastly, while local P3a correlates with working memory before age is partialled out, global P3b correlates with working memory both before and after age is partialled out. Further examination of the correlation across age shows that the association only starts to emerge from ca. 34 yo onwards.

Conclusions: Senescence affects local and global PE at different rates. While the aging brain shows a hierarchy-selective attenuation of PE, the attenuated local PE only contributes partially to the attenuated global PE. The attenuated global PE does not only reflect the process of aging but might serve as a marker for cognitive impairment.

References

Poster No 1154

Predictive Modeling of Brain Age for Evaluating Cognitive Brain Aging in Hearing Loss

Yen-Jung Pan1, Chen-Yuan Kuo1,2, Huei-Yu Tsai1, Liang-Kung Chen3,4, Ching-Po Lin1,4,5

1Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan, 2Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, 3Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan, 4Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, 5Department of Education and Research, Taipei City Hospital, Taipei, Taiwan

Introduction: The occurrence of hearing loss in midlife may play a pivotal role in contributing to dementia1. Prior research shows that prolonged auditory deprivation not only accelerates whole-brain atrophy and impairs executive function, but also leads to alterations in both auditory and visual connectivity, potentially affecting visual processing abilities2,3.4. These findings suggest potential advanced brain aging in hearing loss. However, it remains unclear whether this phenomenon impacts the whole brain or only accelerates aging in specific cognitions. Recently, the brain age prediction framework, utilizing extensive neuroimaging data and machine learning techniques, has been employed to capture and elucidate the process of brain aging5. Hence, our aims were to construct brain age frameworks encompassing both the whole brain and specific cognition, and to explore whether individuals with hearing loss undergo advanced brain aging.

Methods: T1-weighted MRI data from 1482 healthy participants (age range: 18-92 years; 681 males, 801 females) were obtained from 5 site for training dataset to construct the brain age estimators. The study comprised normal-hearing (NH) group (n=51, 22M/29F) and group with hearing loss (HL) (n=67, 46M/21F) from the I-Lan Longitudinal Aging Study (ILAS). All participants underwent two follow-up examinations, on average 2.28 years apart. T1-weighted image preprocessing followed a previously described procedure and individual gray matter volume (GMV) and gray matter density (GMD) maps were estimated6. The hearing-related cognitive masks, encompassing memory, hearing, executive, and vision, were defined through a meta-analysis utilizing a machine learning framework6. Subsequently, we utilized the structural covariance network framework with both the whole-brain and the hearing-related gray matter mask to independently extract 600 features of the GM signature (300 GMV and 300 GMD) for the brain age model construction. RBF-SVR algorithm was employed for constructing a brain age estimator.
with a nested 5-fold cross-validation scheme on the training dataset. Model performance was assessed using the mean absolute error (MAE) and \(R^2\) between chronological and predicted age. Each optimized brain age estimator was then applied to the HL and NH groups to estimate individual predicted brain age and calculate the brain age gap (BAG), representing the difference between chronological age and predicted brain age. To control for confounding effects, analysis of covariance (ANCOVA) was employed to compare global and hearing-related BAGs between NH and HL groups, with age, age\(^2\), sex, years of education, and total intracranial volume (TIV) included as nuisance variables. Significance was set at \(p < 0.05\).

Results: The constructed global brain age estimator and hearing-related cognitive brain age estimators demonstrated satisfactory performance in the training dataset (global: MAE = 4.27 years, \(R^2 = 0.92\); executive: MAE = 5.66 years, \(R^2 = 0.86\); hearing: MAE = 6.81 years, \(R^2 = 0.79\); memory: MAE = 6.50 years, \(R^2 = 0.82\); vision: MAE = 6.41 years, \(R^2 = 0.82\); Figure.1). Using the global brain age estimator, the HL group exhibited a significantly smaller BAG compared with the NH group in Wave 1 \((p = 0.034)\) but not in Wave 2. In both Wave 1 and Wave 2, the HL group showed larger BAGs than the NH group in memory, hearing, and executive function, and a smaller BAG in vision, with no statistical differences (Table.1).

Conclusions: In summary, we presented a framework for hearing-related brain age estimators to explore different cognitive brain aging in hearing loss individuals. Although our study did not yield statistically significant evidence of a noteworthy increase in the BAG within each cognitive brain age estimator for the hearing loss group, we observed an increasing trend in the BAGs for hearing, memory, and executive function. Cognitive brain age estimator showed promise in elucidating the mechanisms of brain aging associated with hearing loss.

References
ABSTRACTS

Poster No 1155

Parcel-wise stacking ensemble provides improved age prediction and brain-aging insights

Georgios Antonopoulos¹², Shammi More¹², Federico Raimondo¹², Simon Eickhoff¹², Kaustubh Patil¹²

¹Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Juelich, Germany, ²Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany

Introduction: Predicting chronological age using structural magnetic resonance imaging (MRI) has shown great potential for studying aging in health and disease. A model trained on MRI scans from healthy individuals can provide biological insights into healthy brain aging and it can also potentially assist in detection of abnormal aging in psychiatric, and neurodegenerative disorders¹². Such a model may lead to novel monitoring and treatment options. However, both accuracy and explainability of age prediction models need to be improved before they can be applied in the real-world. To this end, we propose parcel-wise stacking ensemble models (SEM)³. In SEM the voxels in each region are not weighted equally, as in the standard approaches. Regional models evaluate the contribution of each voxel in the process making this way, better use of voxels’ information. Moreover, combining predictions in sequential models leads to reduced overall bias and variance, of the final prediction.

Methods: We used T1w MRI scans of healthy subjects from 4 open datasets (IXI, eNKI, CamCAN and 1000Gehirne. N>500 each, total N=3103, age range 18-90 years). Voxel based morphometry using CAT12.8⁴ was employed to estimate gray matter volume (GMV) for each subject. Performance was estimated in terms of mean absolute error (MAE) assessed in leave-one-data-set-out (LODO) set up. Proposed SEM consists of two levels, denoted as L0 and L1 (Figure 1). GLMnet⁵ was used for both L0 and L1 models. The L0 uses an 873-parcel atlas and trains a model for each parcel using corresponding voxels-wise GMV. The features for the L1 model are obtained as out-of-sample (OOS) predictions from a 3-fold cross-validation scheme on L0 models. Two types of L0 models were obtained; either by pooling data from different sites (L0p) or by making predictions for each training site separately (L0s). Similarly, in L1 models were obtained by either pooling L0 predictions (L1p) or by training the L1 model for each site separately and averaging the per-site predictions (L1s). Additionally, to examine the case where enough data is available at an application site, we estimate L0 OOS predictions from that site (L0oos). These are then used to obtain predictions using the L1 models. As a baseline we also trained models using the average GMV in each parcel -by averaging predictions of the site-specific models or training models on pooled data across sites-, while ensuring use of consistent training samples across the set ups.

Results: The highest test performances were observed for the L0oos setups where L0 predictions came from the test site. The best predictions were for the L0oos-L1p (average MAE=4.8), closely followed by the L0oos-L1s (MAE=4.9). Setups using pooled L0 predictions to train L1, independently of how L0 was trained, L0p-L1p and L0s-L1p, had both MAE=5.1. Models using mean parcel-wise GMV had MAE=5.7 when the model was trained using the train sets together with the 2 folds of the test set. Performance was worse for the other two mean parcel-wise GMV models trained in three datasets, with the L1p setup being slightly better compared to L1s (MAE=6.2 and MAE=6.7 respectively). L0 models provided robust interpretation of regional aging effects, i.e. the Pearson correlation of real age with OOS predicted-age was higher than with GMV (averaged across all datasets used for training, Figure 2). While there is a considerable overlap in the identified regions between the two methodologies, SEM distinctly emphasizes certain areas, notably the subcortex and cerebellum.

Conclusions: SEM provides improved age prediction performance compared to using parcel-wise average of GMV as well as novel biological insights regarding healthy aging. Further improvements in the SEM design could be achieved by selecting suitable learning algorithms with appropriate hyperparameter tuning for L0 and L1 models.
References
Causal Relationship between Multiparameter Brain MRI Phenotypes and Age: Evidence from Mendelian Ran

Xinghao Wang¹, Han Lv², Zhenchang Wang²

¹Beijing Friendship Hospital, Capital Medical University, Beijing, Beijing, ²Beijing Friendship Hospital, Capital Medical University, Beijing, Beijing

Introduction: To explore the causal relationship between age and brain health related multiparameter imaging features using two-sample Mendelian randomization (MR).

Methods: Age was determined as chronological age of the subject. Cortical volume, white matter micro-integrity, white matter hyperintensity volume, and cerebral microbleeds of each brain region were included as phenotypes for brain health. Age and imaging of brain health related genetic data were analyzed to determine the causal relationship using inverse-variance weighted model (IVW), validated by heterogeneity and horizontal pleiotropy variables.

Results: Age is causally related to increased volumes of white matter hyperintensities (IVW, $\beta = 0.151$). For white matter micro-integrity, fibers of the inferior cerebellar peduncle (AD $\beta = -0.128$, OD $\beta = 0.173$), cerebral peduncle (AD $\beta = -0.136$), superior fronto-occipital fasciculus (ISOVF $\beta = 0.163$) and fibers within the limbic system were causally deteriorated. We also detected decreased cortical thickness of multiple frontal and temporal regions (IVW, $p<0.05$). Microbleeds were not related with aging (IVW, $p>0.05$).

Conclusions: Aging is a threat of brain health, leading to cortical atrophy mainly in the frontal lobes, as well as the white matter degeneration especially abnormal hyperintensity and deteriorated white matter integrity around the hippocampus.

References
ABSTRACTS

Poster No 1157

The brain age of hippocampus-centred regions and associations with APOE genotype

Chao Dong¹, Yuangang Pan², Anbupalam Thalamuthu¹, Jiyang Jiang³, Karen Mather¹, Perminder Sachdev¹, Wei Wen¹

¹Centre for Healthy Brain Ageing (CHeBA), University of New South Wales, Sydney, New South Wales, ²Centre for Frontier AI Research (CFAR), A*STAR, Singapore

Introduction: Brain age, a promising biomarker in neuroimaging, has been widely investigated by using the whole brain image. Deep learning, specifically convolutional neural networks (CNN), has been widely used in the field of brain age prediction. A recent study which used the hippocampal-centred regions to predict brain age found that brain age gap might be a biomarker to help AD and mild cognitive impairment (MCI) diagnosis (Poloni and Ferrari 2022). Deep learning models have identified the temporal lobes and hippocampus as high-risk regions for AD classification (Qiu, Joshi et al. 2020, Wang, Honnorat et al. 2023), or related dementia (Martin, Townend et al. 2023). Grey matter density around hippocampus and amygdala has been identified as a key factor influencing age predictions (Wang, Knol et al. 2019). However, associations between the age of hippocampus-related regions, Apolipoprotein E (APOE) genotypes, and other lifestyle patterns are unknown.

Methods: Left and right hippocampus-centred regions of interest (hippocampus ROI) age prediction models were developed based on three-dimensional convolutional neural network (3D-CNN) in UK Biobank, with 31370 healthy participants in five-fold cross-validation. The unhealthy participants were excluded from the model training set to maximize sensitivity. All the 31370 healthy participants with one time point image were randomly split into five equally sized folds, with 60% for training, 20% for validation, and 20% for test set. Model performance in the training set was assessed using 5-fold cross validation. The hippocampus ROI age (HA) gap was calculated as predicted age minus chronological age. Furthermore, the longitudinal change rate of HA gap was estimated based on another 3893 participants who have two-time points imaging data. We estimated the associations between hippocampus volume, volume change rate, and APOE genotype. Similarly, we also examined the associations between HA gap, cognition, and APOE genotype, as well as the associations between longitudinal HA age change rate and APOE genotype. In addition, a Cox proportional hazards model was used to perform survival analyses (positive HA gap was used as the outcome in the model).
ABSTRACTS

Results: Our model achieved a competitive state-of-the-art metric (MAE: 2.52 – 2.84 years in left HA model; 2.47 – 2.72 years in right HA model). In cross-sectional analysis, we found that HA gap in APOE ε4/ε4 carriers was significantly greater than that in APOE ε4 non-carriers: ε2/ε2, ε2/ε3, ε3/ε3 (left: β = 0.1663, 95% confidence interval [CI] = [0.0849, 0.2478], p = 6.30e-05; right: β = 0.1924, CI = [0.1106, 0.2742], p = 4.03e-06). Additionally, greater HA gap was correlated with worse cognitive performance. In longitudinal analysis, APOE ε4/ε4 carriers showed higher annual change rate in left HA gap compared with APOE ε2/ε2 carriers (β = 0.5805, CI = [0.0737, 1.0873], p = 0.0248), but this effect was not found in right HA gap or hippocampus volume. In survival analyses, hazard ratios (HR) with 95% CI for sex was 1.2694 (CI = [1.1595, 1.3898], p = 2.42e-07), for hypertension (HR = 1.4132, CI = [1.2711, 1.5713], p = 1.60e-10), for diabetes (HR = 1.5893, CI = [1.3060, 1.9340], p = 3.73e-06).

Conclusions: Our work revealed that the age gap in hippocampus ROI was associated with cognition and APOE genotypes, and demonstrated that the APOE ε4 carriers, especially homozygotes, tend to have greater HA gap and “accelerated hippocampus ROI ageing”. The left HA gap could be identified as a potential biomarker linked to APOE genotype and a health indicator.

References
Poster No 1158

Elevated brain iron is associated with higher R2 and more WMH in older adults

Md Tahmid Yasar¹, Ashley Bush², Scott Ayton², Puja Agarwal³, Sonal Agrawal³, David Bennett³, Julie Schneider³, Konstantinos Arfanakis¹,³

¹Illinois Institute of Technology, Chicago, IL, ²The University of Melbourne, Parkville, Victoria, ³Rush University Medical Center, Chicago, IL

Introduction: Iron is an essential micronutrient for brain health. Iron accumulates in the brain throughout lifetime and the variation in iron levels among individuals increases beyond the age of sixty¹. Elevated iron is a source of free radicals that cause oxidative stress which has been linked to neurodegenerative and cerebrovascular pathologies as well as cognitive impairment among older adults². Iron has a higher magnetic susceptibility than brain tissue and therefore magnetic resonance imaging (MRI) is sensitive to iron levels. To date, the association of iron measurements with various MRI characteristics has not been systematically investigated in older adults³-⁵. Therefore, the aim of this study was to quantify brain iron levels in a large number of community-based older adults and investigate the association of iron levels with transverse relaxation rate, R2, and white matter hyperintensities (WMH), independent of the effects of other metals and age-related neuropathologies⁶-⁸.

Methods: Cerebral hemispheres from 437 community-based older adults participating in the Rush Memory and Aging Project⁹ (Table 1) were involved in this work. All hemispheres were imaged ex-vivo at room temperature, at approximately 30 days postmortem using 3T clinical MRI scanners⁶. R2 maps were generated from multi-echo spin-echo data and then registered to an ex-vivo brain hemisphere template using ANTS⁷. WMH were segmented based on T2-weighted images⁸. WMH volume was normalized by the total hemisphere volume and then log-transformed to account for skewness. Following ex-vivo MRI, all hemispheres underwent detailed neuropathologic assessment. The assessed pathologies included Aβ plaques, neurofibrillary tangles, limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC), hippocampal sclerosis (HS), Lewy bodies, cerebral amyloid angiopathy (CAA), gross infarcts, microscopic infarcts, atherosclerosis, and arteriolosclerosis (Table 1). Inductively coupled plasma mass spectrometry was used on all participants to measure iron levels in four brain regions: mid-frontal, anterior cingulate, inferior temporal cortices, and cerebellum¹⁰. The log-transformed iron concentrations in the four regions were averaged to generate a global score. Other metals that were assessed included: boron, titanium, manganese, copper, zinc, selenium, rubidium, molybdenum, and mercury (Table 1). Linear regression models were used to test the voxel-wise association of R2 with iron levels, as well as the association of the total and lobar WMH burden with iron levels. All models were controlled for all other metals and neuropathologies listed above, demographics (age at death, sex, years of education), the presence of the APOE ε4 allele, postmortem interval to fixation and to imaging, and scanner. Statistical analysis was performed using PALM (FMRIB, Oxford, UK) with tail-accelerated 5,000 permutations. Statistical significance was set at p<0.05 after family wise error rate correction.
Results: The voxel-wise analysis revealed a spatial pattern of higher R2 values for higher iron levels, particularly in gray matter (Fig. 1a). The pattern included basal ganglia structures such as the globus pallidus and putamen, as well as cortical regions such as the precentral, postcentral and cuneus cortex (Fig. 1a). Higher lobar and total WMH burden were also associated with higher iron levels (Fig. 1b). No negative associations were observed.

Conclusions: This investigation combined ex-vivo MRI, neuropathology and mass spectrometry in a large number of community-based older adults and showed that higher iron levels are associated with higher R2 in gray matter and higher WMH burden. These associations were independent of the effects of other metal, neuropathologies, demographic and genomic risk factors, suggesting the presence of additional mechanisms of iron accumulation.
ABSTRACTS

References

Poster No 1159
Identity Preserving Diffusion Model for Brain Aging Modeling
Gexin Huang1, Mengwei Ren2, Guido Gerig2, Xiaoxiao Li1
1The University of British Columbia, Vancouver, BC, 2New York University, Brooklyn, NY

Introduction: Brain aging is a natural process that affects brain structure and function, leading to cognitive decline and increased risk of neurodegenerative diseases. Aging brain image generation is crucial for understanding aging, diagnosing disorders, predicting risk, and planning treatments. Deep-learning-based image-to-image generation methods could effectively study structural changes associated with aging. Keeping identity consistent in this process is crucial for understanding the underlying mechanisms and enabling personalized brain aging modeling. However, preserving identity consistency in longitudinal brain images has not been adequately addressed by previous works1,2,3. Thus, we propose a novel Longitudinal Transformation Diffusion model with an identity consistency module (LT-Diff) that achieves accurate brain age transformations while preserving identity using the OASIS Brain Dataset.

Methods: Aging brain generation is achieved via an image-2-image model that generates the target image based on the source image and the target age. We utilized the OASIS-3 brain dataset4, consisting of longitudinal MRI imaging data collected over 15 years from ongoing studies. It includes data from 1098 individuals, 493 of whom were at various stages of cognitive decline ranging in age from 42 to 95 years. The model takes the middle slice of each 3D MRI volume as its input. The dataset covers an age range from 40 to 100, divided into four groups: 40-55, 56-70, 71-85, and 86-100. Each MRI image is labeled with...
the corresponding age group. The stratified sampling strategy is used for train-validation-test data split. Model Architecture: The LT-Diff model (Fig. 1a) consists of three components: the Identity Preservation Module (Fig. 1b), the Age Encoder, and the DDIM Decoder (Fig. 1c) based on the DDIM backbone. Inspired by the Diffusion Autoencoder, the Identity Preservation Module decouples identity information using a ResNet-18 encoder, preserving identity consistency. The age encoder utilizes a four-layer MLP to generate a shared latent age feature. The DDIM decoder reconstructs the difference map between the target and source image, conditioned on concatenated identity and age features. The predicted target image is synthesized by fusing the difference map with the source image. Objective functions and Optimization: Two objectives are used for training (Fig. 1): Mean Square Error loss for difference map reconstruction and Identity Consistency Loss for preserving subject identity. The Identity Consistency Loss combines triplet loss, cosine similarity, and collapse regularization terms. The triplet loss maximizes inter-identity distance while minimizing intra-identity distance. The cosine similarity term promotes similarity within the same identity, and the collapse regularization term prevents identical features and avoids local minima during optimization.

Results: LT-Diff outperforms the state-of-the-art method (lifespan GAN) with a better FID score of 23.59 and KID score of 11.59e-4 (Fig. 2a). The brain age transformation (Fig. 2b) shows ventricles growing larger with increasing brain aging while maintaining subtle geometric variations for each subject, consistent with the transformation of brain aging in prior studies [10,11]. The t-SNE visualization (Fig. 2c) confirms LT-Diff’s accurate reconstruction of brain images while preserving identity consistency.

Conclusions: We propose LT-Diff, a method that preserves identity consistency in longitudinal brain imaging by leveraging decoupled identity features. By incorporating these features and age information as a condition for the diffusion decoder, LT-Diff successfully generates brain images with the desired target age. Experimental results on the Oasis-3 dataset show that LT-Diff outperforms the SOTA architecture in brain aging generation performance w.r.t aging modeling and identity preservation.

References
ABSTRACTS

Poster No 1160

A comparative study on thalamic subnuclear volume between premenopausal and postmenopausal women

Gwang-Won Kim¹, Kwangsung Park², Yun-Hyeon Kim³, Gwang-Woo Jeong³

¹Advanced Institute of Aging Science, Chonnam National University, Gwangju, Chonnam, ²Department of Urology, Chonnam National University Medical School, Gwangju, Chonnam, ³Department of Radiology, Chonnam National University Medical School, Gwangju, Chonnam

Introduction: Aging is a multifaceted and complex phenomenon characterized by neuro-physiological changes that exert a variety of effects on the structure and function of the brain. One such pivotal transition in women is menopause which encompasses the loss of ovarian reproductive function. However, menopause-related thalamic subnuclear changes are poorly understood. Thus, this study was aimed to compare the brain volume changes, focusing especially on the thalamic subnuclei, between premenopausal and postmenopausal women.

Methods: Twenty-one premenopausal women (mean age = 39.8 ± 7.6 years) and 21 postmenopausal women (mean age = 55.3 ± 2.5 years) participated in this study. Magnetic resonance imaging (MRI) scans were acquired using a 3.0 Tesla Magneton Tim Trio MR Scanner (Siemens Medical Solutions, Erlangen, Germany). Serum sex hormones, including total estrogen, estradiol (E2), free testosterone (free-T), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) were measured. The thalamic subnuclear volumes were measured using the FreeSurfer v7.2 software. Twenty-five thalamic subnuclei (50 regions of interest) were extracted from each hemisphere on T1 image. Each thalamic subnuclear volume was adjusted using the following equation: Adjusted volume = (Each thalamic subnuclear volume (mm3) / Whole brain volume (mm3)) × 1000.

Results: Compared with premenopausal women, postmenopausal women showed lower levels of total estrogen (p < 0.001) and E2 levels (p < 0.001); higher levels of FSH (p < 0.001) and LH (p = 0.005). Postmenopausal women showed significantly smaller cortical surface, especially in the left medial orbitofrontal cortex, right superior temporal cortex, and right lateral orbitofrontal cortex compared to premenopausal women (p < 0.05, Bonferroni-corrected). Notably, the thalamic subnuclear volume, especially in the right pulvinar anterior region, in the postmenopausal women was significantly decreased (p < 0.05, Bonferroni-corrected). The levels of E2 were positively correlated with the adjusted volumes of the right pulvinar anterior (r = 0.34, p = 0.030).

Conclusions: This study compared differential thalamic subnuclear volumes between premenopausal and postmenopausal women. It is suggested that diminished brain volume are potentially associated with menopause-related neuro-physiological change caused by the lower sex hormone levels. Our findings will be helpful for an understanding of the effects of menopause on the altered brain volume in postmenopausal women.

References
Exploring the link between resilience, brain pathology, and cognition in old age: sex differences

Caroline Dartora¹, Anna Marseglia¹, Johan Skoog², Sebastian Muehlboeck¹, Silke Kern², Anna Zettergren², Ingmar Skoog², Eric Westman¹

¹Karolinska Institutet, Stockholm, Sweden, ²University of Gothenburg, Gothenburg, Sweden

Introduction: Exposure to dementia risk factors throughout life can lead to brain atrophy and older-appearing brains on neuroimaging. Resilience mechanisms can help sustain the brain structure (brain maintenance, BM) and/or compensate for the neuropathological damage (cognitive reserve, CR), preserving cognition. Traditional proxy-based approaches (e.g., education) face challenges in measuring these mechanisms as they cannot capture the core biological dimension. However, with deep learning is possible to develop algorithms predicting the biological age of the brain from raw brain images. This study investigated whether differences between predicted brain age and chronological age (PBA-CA) can be used as a marker of BM and/or CR following the NIH-funded Collaboratory on Reserve and Resilience framework.

Methods: The study population included 719 dementia-free septuagenarians from the Gothenburg H70-1944 MRI cohort. We applied the deep learning model-developed in-house using minimally processed T1-w MRI from “17000 neurologically intact individuals from UK Biobank, ADNI, AIBL, and GENIC and validated via a cross-validation approach to H70 participants’ MRI to predict their brain age, and computed PBA-CA. MRI markers of brain pathology included cortical thickness (overall and Alzheimer’s disease-related), cerebral small vessel disease (SVD; individual markers and score), and white-matter microstructural alterations (DTI’s fractional anisotropy). Global and domain-specific cognitive function was based on composite scores from ten tests. Data analysis included regression models and stratification by sex.

Results: In the brain, decreasing differences between PBA and CA (reflecting younger-appearing brains) were associated with a thicker brain (overall and AD signature areas), lower SVD score-particularly lower white matter hyperintensities volume, lacunes, large infarcts-, and higher fractional anisotropy (more integrity). Decreasing differences were also related to better cognitive performance, globally and in attention/speed, executive function, and visuospatial abilities. In stratified analysis by sex, such associations were evident in men but not in women, except fractional anisotropy [robust regressions’ β-coefficients for men -4.89 (95%CI -8.87,-0.90) and men -23.7 (95%CI -32.9,-14.4)].

Conclusions: Negative differences PBA<CA are related to less atrophy, less cerebrovascular alterations, and better cognition, suggesting more preserved brain structure and cognition, thus BM. However, differences between the sexes suggest that women and men may have different pathways to resilience.

References

Spatiotemporal correlation between amyloid and tau underlies cognitive changes in aging

Chanmie Kim¹, Ibai Diez¹, Elisenda Bueichekú¹, Sung Ahn¹, Victor Montal², Jorge Sepulcre¹

¹Massachusetts General Hospital, Boston, MA, ²Universitat Autonoma de Barcelona, Barcelona, Barcelona

Introduction: It is still largely unknown how the two hallmarks of Alzheimer’s disease (AD) - amyloid-beta (Aβ) plaques and tau neurofibrillary tangles - interact and propagate spatiotemporally to produce synaptic dysfunction and neuronal death at the large-scale level¹². This study aimed to identify the spatiotemporal cortical patterns of Aβ-and-tau and longitudinal cognitive changes in cognitively normal older adults (CN).

Methods: A total of 91 participants, all deemed CN, from the Harvard Aging Brain Study (HABS), who completed cognitive assessment, T1 MRI, 11C Pittsburg Compound B (PiB) PET, and 18F Flortaucipir (tau) PET at both baseline and two-year FU visits, were included³. T1 MRIs were preprocessed by FreeSurfer recon-all procedure for spatial normalization, anatomical segmentation, reconstruction of cortical surfaces, and calculation of cortical thickness⁴⁶. PiB PET and tau PET images were co-registered to corresponding T1 MRIs and then spatially normalized to MNI/ICBM space. Both PET images were scaled by a mean value in the cerebellar gray reference region to calculate the standardized uptake value ratio (SUVR)⁷. We applied partial volume correction (PVC) in both PET images by using an extended Müller-Gärnter (MG) method to estimate a true concentration of radiotracer in GM⁸. After that, we resampled the PET SUVRs into the standard cortical surface. We measured vertex-wise correlations within and across PET modalities between baseline and FU. Each PET(BASE)-to-PET(FU) correlation was measured by the partial correlation between a z-score of baseline PET SUVR in vertex b and a z-score of FU PET SUVR.
in the paired vertex d across all possible pairs of vertices within a cortical surface while controlling for age, sex, and a z-score of FU PET SUVR in the vertex d that was not used for the correlation as a FU PET SUVR. Then, we calculated the weighted degree (WD) in each PET(BASE)-to-PET(FU) correlation matrix to identify which baseline cortical region displays hubness properties between baseline and FU PET images. The WD of each correlation matrix at column b was calculated as the sum of the significant correlation coefficients between baseline PET SUVR in vertex b and FU PET SUVRs in all possible paired vertices. Finally, the WDs of each correlation matrix were mapped to the cortical surface at the group level. To identify the contribution of baseline & FU PET SUVRs to cognitive changes, we measured partial correlations between the merged PET SUVRs, which were calculated by averaging between baseline PET SUVRs and FU PET SUVRs across all possible vertex pairs, and FU PACC-96 scores in each correlation combination. Then, we calculated the WDs and mapped these to the standard cortical surface to visualize the spatial patterns at the group level.

Results: We found significant patterns in uni- and multi-modal PET(BASE)-to-PET(FU) analyses, indicating positive spatiotemporal relationships between a given local pathology at baseline and distributed pathology accumulations at FU (Fig. 1). The temporal accumulations of interlinked Aβ and tau pathology display distinctive spatiotemporal correlations associated with early cognitive decline (Fig. 2). Notably, we observed that baseline Aβ deposits -Thal amyloid phase II- related to future increase of tau deposits -Braak stage I-IV-, both displaying linkage to the decline in multi-domain cognitive scores (Fig. 2A). We also found unimodal tau-to-tau and cognitive impairment associations in broad areas of Braak stages I-IV (Fig. 2B).
Conclusions: AD-related pathology is considered to affect the human brain via disconectomic processes, and interdigitated spatial correlations of Aβ and tau seem to be upstream factors that might promote the breakdown of brain circuits and produce, in turn, cognitive decline in older adults. Our findings suggest that those spatiotemporal network relationships between Aβ and tau contribute to cognitive changes in the trajectory toward AD.

References
Brain-Age: Advancing Dementia Biomarkers in Clinical Settings

Marcella Montagnese1,2, Serena Verdi3, James Cole3, Timothy Rittman1

1Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom, 2Christ’s College, University of Cambridge, Cambridge, United Kingdom, 3Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom

Introduction: The escalating incidence of dementia poses a great challenge to global healthcare, with projections indicating 135 million affected individuals by 20501. Neuroimaging has become an important tool in diagnosing dementia, with the potential to use imaging-derived metrics to revolutionise the field. An innovation in this domain is the ‘brain-age’ metric2, a computational estimation of the brain’s biological age, which is based on MRI scans and is indicative of brain atrophy. A brain that appears biologically ‘older’ than its chronological counterpart signals increased risk of age-related deterioration and death3. However, implementing these computational solutions in healthcare presents several barriers, including data-privacy and governance issues - limiting the application of such approaches to routinely collected clinical data. Computational tools for dementia are therefore often developed and tested on data that does not accurately represent real-life patients4. One important study to date has examined the prognostic value of brain-age within clinical cohorts5. Our work seeks to extend this exploration to encompass its diagnostic usefulness alongside routine cognitive tests in multiple diagnoses within memory clinics.

Methods: We used T1w MPRAGE scans from participants in the QMIN-MC cohort - recruited from memory clinics and community-based psychiatry-led clinics within the UK National Health Service (NHS) – encompassing a representative range of individuals. Patients were categorised into groups according to their diagnoses: Alzheimer’s Disease (N=111, 74.1 ± 8.6 years); Mild Cognitive Impairment (N=53, 74.5 ± 7.7 years); Non-Alzheimer’s Dementia (N=40, 76.1 ± 7.9 years), and Functional/Attentional Memory Symptoms (N=50, 59.5 ± 9.2 years). The brainageR tool (v2.1, https://github.com/james-cole/brainageR) was used to estimate brain age from raw T1w scans. For the initial pre-processing phase, SPM12 software was used for data segmentation and normalisation, followed by a predictive analysis. Brain-predicted age difference (brain-PAD), was determined by subtracting the individual’s age at scanning from predicted brain age. See schematics in Figure 1. For multi-diagnosis classification, a Gradient Boosting approach was employed, using brain-PAD and routine cognitive scores. Multicollinearity was evaluated with Variance Inflation Factors and feature importance with Recursive Feature Elimination. Model robustness was ensured through k-fold cross-validation, with model efficacy quantified by weighted F1-scores to account for class imbalance. Comparative analyses were then done to evaluate the added diagnostic value of brain-PAD, including permutation tests for p-value calculations.

Results: Comparative analyses between models (with vs without brain-PAD) revealed classification improvements across all diagnoses, alongside shifts in feature importance. Mean F1-score improved from 0.51 to 0.56 (p=.22). For Non-AD Dementia, precision improved from 0.23 to 0.41 (p<0.001), and F1-scores from 0.11 to 0.25. AD precision went from 0.61 to 0.63 (p<0.05),
and F1-score to 0.71. The model also showed gains for Functional/Attentional Memory Symptoms (F1-score 0.71; precision from 0.62 to 0.74, p<0.001), and MCI (F-score 0.39, precision from 0.39 to 0.41, p<0.05). The brain-PAD model was more parsimonious (3 vs 6 features), suggesting a simplification in the cognitive subdomains, with more reliance on brain-PAD. Shapley Additive exPlanations (SHAP) values echoed the feature importance findings, with brain-PAD showing higher impact on model output, particularly for the correct classification of AD and Non-AD Dementia. See Figure 2.

Conclusions: The integration of brain-PAD showed a relatively small but consistent boost in predictive performance across diagnoses. Looking at features importance showed that brain-PAD has the potential to be a crucial biomarker in the heterogeneous and multiclass diagnostic landscape of dementia even in smaller samples.

References

Poster No 1164
Brain Age Gap Estimation (BrainAGE): Influence of scanner manufacturer, field strength and sequence
Vivien Lorena Ivan, Marius Vach, Daniel Weiß, Luisa Wolf, Shammi More, Kaustubh Patil, Dennis Hedderich, Nora Bittner, Julian Caspers, Christian Rubbert

1Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital, Düsseldorf, NRW, Germany
2Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, NRW, Germany
3Institute of Systems Neuroscience, Medical Faculty, Düsseldorf, NRW, Germany
4Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Bavaria, Germany
5TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Bavaria, Germany
6Institute for Anatomy I, Medical Faculty, Heinrich-Heine University, Düsseldorf, NRW, Germany
Introduction: Brain Age Gap Estimation (BrainAGE) is explored as an imaging biomarker for several conditions, such as neurodegenerative diseases [Gaser 2013], or in lifestyle-choices-driven aging [Bittner 2021]. BrainAGE is usually derived from applying machine-learning approaches to features derived from structural magnetic resonance images of the brain [Franke 2019]. In cognitively normal, healthy subjects a BrainAGE of zero is expected, i.e. the predicted and the chronological age are the same, which is the underlying assumption of the current study. However, differences in BrainAGE, especially outside of the training cohorts, could arise due to different combinations of, e.g., study in- and exclusion criteria, MRI scanners, field strength or sequence parameters. Thus, this study aims to systematically assess the influence of the aforementioned.

Methods: A total of 2,414 normal participants from four population based studies were included, specifically from ADNI (n = 914, 55% female, 72.8±6.4 years, 55-90 years), HCPA (n = 725, 56% female, 60.3±15.7 years, 36-100 years), OASIS3 (n = 609, 58.9% female, 67.8±8.9 years, 42-95 years) and PPMI (n = 166, 36.7% female, 60.5±11.6 years, 30-82 years). BrainAGE was derived for each subject using the best-performing model from [More 2023], trained on 2,953 healthy controls (18-88 years, 3T scans only) from four population-based studies not used in the current study. In essence, gray matter features were derived from standardized CAT12 for SPM12 preprocessing, smoothing with a 4 mm full-width-half-maximum kernel, resampling to 4 mm spatial resolution, and finally by principal component analysis for dimensionality reduction. Finally, Gaussian process regression was used to predict age, and BrainAGE was calculated by subtracting the chronological from the predicted age. BrainAGE was then compared across the different cohorts. Furthermore, differences in BrainAGE based on scanner manufacturer, field strength, and choice of unaccelerated or accelerated T1-imaging were analyzed for each cohort, when data was available. Statistically significant differences (p<0.05), were analyzed using Welch two sample t-test or ANOVA, including the Tukey post-hoc test, as applicable. The mean absolute error between chronological and predicted age was calculated.

Results: Across the different cohorts, the BrainAGE for ADNI was -5.9±5.5 years (MAE 6.7), for HCPA -4.1±6.2 (MAE 5.9), for OASIS3 -4.8±5.4 (MAE 5.8), and for PPMI -3±5.8 (MAE 5.3) with a p<0.0001 (ANOVA) (Figure 1A). Only OASIS3/HCPA (p=0.17) and PPMI/HCPA (p=0.1) did not show significant differences. Comparing the field strength (Figure 1B), we found that scans performed at 1.5T resulted in a smaller BrainAGE (ADNI: -2.6±4.9 years, MAE 4.2; OASIS3: -2.4±4.6, MAE 4.1, PPMI: -1.6±4.8, MAE 4.2) than scans acquired at 3T (ADNI: -6.9±5.3 years, MAE 7.5; OASIS3: -4.9±5.5, MAE 5.9, PPMI: -3.5±6.1, MAE 5.8), p<0.0001 for ADNI, p=0.007 for OASIS3, and p=0.03 for PPMI. HCPA only acquired scans at 3T. Scans in ADNI and PPMI were acquired on scanners from different vendors (Figure 2A). In ADNI, scans acquired on GE scanners resulted in a BrainAGE of -6.3±6.2 years (MAE 7.3), on Philips of -4.9±5.1 years (MAE 6), and on Siemens of -6.1±5.3 years (MAE 6.7). p=0.03 (ANOVA), with statistically significant differences between Philips/GE (p=0.008) in the post-hoc analysis. For PPMI, the results were -0.5±7.7 years for GE scanners (MAE 6.2), -1.8±6.2 for Philips (MAE 5.1), and -4.1±4.8 for Siemens (MAE 5.1), p=0.005 (ANOVA), with statistically significant difference between Siemens/GE (p=0.008) in the post-hoc analysis. In ADNI, accelerated (-7±5.3 years, MAE 7.6) and unaccelerated (-7±5.3, MAE 7.3) imaging was available acquired at 3T (p=0.47, Figure 2B).
Conclusions: Researchers and clinicians should be aware that several factors, such as choice of scanner manufacturer and field strength, may influence certain Brain Age Gap Estimation (BrainAGE) and that comparisons across cohorts may not be suitable.

References

Multivariate Association Between Cognitive Function and Brain Tissue in Healthy Older Adults

Christophe Phillips¹, Daphné Chylinski², Maxime Van Egroo³, Justinas Narbutas⁴, Eric Salmon², Pierre Maquet², Fabienne Collette², Gilles Vandewalle⁵, Christine Bastin², Soodeh Moallemian²

¹University of Liège, Liège, Belgium, ²University of Liège, Liège, Liege, ³Maastricht University, Maastricht, Netherlands, ⁴Leibnitz research centre for working environment and human factors, Dortmund, Germany, ⁵Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège, Liège, Belgium

Introduction: The aging process is often accompanied by cognitive alterations, collectively known as cognitive aging, which can lead to a decline in functional capacity¹. Normal aging is also accompanied by macro- and micro- structural changes in the brain, such as gray matter (GM) and white matter (WM) atrophy²–⁴, iron accumulation, and demyelination⁵–⁷. Microstructural changes in the brain are interconnected; for instance, elevation in iron content is associated to demyelination, collectively
contributing to synaptic density loss and brain atrophy. Therefore, a comprehensive examination of these concurrent brain microstructural properties with respect to cognitive aging is imperative. This exploration can reveal regions in the brain that undergo changes at an earlier stage, potentially serving as early indicators preceding the onset of cognitive issues.

Methods: This study investigates the association between cognition and various brain micro- and macro-structural properties, as assessed by multiparametric quantitative MRI maps, in healthy older adults (baseline: n=101, 31.68% male, follow-up: n=67, 32.84% male). Participants underwent cognitive assessments at baseline and after 2 years, resulting in composite scores for attention, executive function, and memory. The preclinical Alzheimer’s cognitive composite (PACC5) was calculated for all participants. Quantitative MRI data were obtained at baseline using a multiparametric mapping protocol. The association between cognitive composite scores and tissue properties, both at baseline and for the rate of cognitive decline over 2 years, was tested using univariate and multivariate general linear models.

Results: The univariate analyses conducted at baseline revealed several significant associations between cognition and brain structural properties. Executive function showed a positive correlation with GM volume in the cerebellum, while memory exhibited positive associations with myelin content in the cerebellum and hippocampus. GM iron levels were linked to lower memory scores in the right insula. A significant positive correlation emerged between WM myelin content and PACC5 in the left middle temporal region. Conversely, higher iron levels in the medial orbitofrontal cortex were associated with smaller PACC5 values. Results from the univariate regression analysis are presented in Table 1. As illustrated in Figure 1, the multivariate regression analyses at baseline revealed significant associations between executive function and the combination of macro- and microstructural changes in the cerebellum, as well as between memory and combined changes in the cingulate gyrus and insula (See Table 2 for detailed results). Finally, multivariate regression did not reveal any significant correlations between the different maps and the rate of decline in cognition. Moreover, it is important to note that, throughout the study duration, we did not observe a decline in cognition among the subjects.
Conclusions: In summary, these findings highlight the intricate connections between cognition and brain micro- and macro-structural properties in aging, with a particular emphasis on the role of the cerebellum in cognitive aging. However, a more prolonged study is needed to further explore the association between the decline in cognition and concurrent changes in the brains.

References

Aging Effects the Glutamate-enriched Functional Connectivity in Resting-state fMRI

Zihao Zheng¹,², Ao Xie¹,², Wei Jian¹,², Yulin He¹,², Haiyang Sun¹,², Yulan Zhou¹,², Jianfu Li¹,², Li Dong*¹,², Dezhong Yao¹,²

¹The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China, ²School of Life Science and Technology, Center for information in medicine, University of Electronic Science and Technology of China, Chengdu, China

Introduction: In recent years, age-related changes in functional connectivity of older adults have been researched widely. According to the previous studies, obtained results are different which illustrated the functional connectivity decreased in large part of the brain (e.g. default mode network) and increased in some particular regions and areas such as sensorimotor areas (Farras-Permanyer et al., 2019). The glutamate receptor is a necessary component in the brain glutamatergic system and this receptor was proved to be associated with cognitive function and brain aging (Mecca et al., 2021). However, because the functional magnetic resonance imaging (fMRI) cannot directly provide a molecular insight into the main effect of compounds in brain aging research (Attwell and Iadecola, 2002), the potential functional network changes in older related to specific molecular systems of glutamate still unclear. Here we used a new method which utilizes the glutamate information about target distribution provide by Positron Emission Tomography (PET) to enrich the fMRI connectivity analysis in brain aging.

Methods: The resting-state fMRI (rs-fMRI) data were collected from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN, http://www.cam-can.org/) (Taylor et al., 2017). All fMRI images (Older:185, younger:198) were preprocessed using SPM as implemented in the Neuroscience Information Toolbox (http://www.neuro.uestc.edu.cn/NIT.html) (Dong et al., 2018). The first 5 scans were deleted. Then the images were preprocessed by following steps: realignment, slice time correction, spatial normalization (3×3×3mm3) and smoothing (8-mm full width at half maximum kernel, FWHM). The metabotropic glutamate receptor 5 (mGluR5) (Hansen et al., 2022) was used to enrich the resting-state fMRI by applying Receptor-Enriched Analysis of Functional Connectivity by Targets (REACT) (Dipasquale et al., 2019) to estimate subject-specific functional connectivity (FC) map in each group. Next, these glutamate-enriched connectivity maps of the older and younger were compared using two sample T-test. All voxel-wise statistical analyses were performed with false discovery rate correction (P<0.05, FDR corrected). In addition, we sought to describe whether effects of aging tend to be in specific functional brain networks, conducting network enrichment analysis (a spin-based spatial permutation test) (Baller et al., 2022).

Results: The effect of aging on FCs in the glutamate enriched maps involves different cerebral cortex and deep regions. Compared with young group (P<0.05, FDR corrected), FCs significantly decreased in the precentral gyrus and middle temporal gyrus in older group. And, FCs in older group increased in the middle frontal gyrus and middle occipital gyrus, as well as in the. caudate and thalamus regions. Network enrichment analysis further revealed that age-related declines in glutamate enriched FCs were most prominent in the ventral attention network (VAN, P=0.006) and somatomotor network (SMN, P=0.04). In addition, the FCs in SMN were significantly related with fluid intelligence (r=0.18, P=0.0008), and the FC in thalamus showed negative relationship with fluid intelligence (r=-0.20, P=0.00007). The details can be found in Figure1.

Conclusions: In conclusion, our results showed that aging related glutamate-enriched networks were mainly involved in the somatomotor network, ventral attention network and deep brain regions, and these effects perhaps were correlated with cognitive functions. The glutamate enriched FCs may provide insights into understanding brain aging in the light of the molecular mechanisms.
References

Poster No 1167
Network segregation mediates the association between motor imagery fMRI and walking function
Sumire Sato1, Valay Shah1, Grant Tays1, David Clark1, Daniel Ferris1, Chris Hass1, Todd Manini1, Rachael Seidler1
1University of Florida, Gainesville, FL

Introduction: Functional magnetic resonance imaging (fMRI) during imagined walking in older adults has shown increased recruitment in the premotor cortex and hippocampus compared to younger adults1,2. These brain regions are key projection areas from the vestibular cortex, which show structural declines in aging3. Resting state functional connectivity is associated with task-based fMRI activity during cognitive tasks4,5. Investigating the role of vestibular resting state brain activity on the association between motor imagery fMRI and function may help better understand how the brain activates in response to task demands. The objective of this study was to examine the mediation effect of vestibular resting state network segregation on the relationship between imaginary walking fMRI brain activation and walking function.

Methods: 20 typical younger adults (Age: 23 ± 3.5 yrs) and 36 typical older adults (Age: 75 ± 6.4 yrs) participated in this study (Full exclusion/inclusion criteria in6). Self-selected walking speed was assessed with a 400m walk. Brain images were collected using a Siemens Prisma 3T scanner with a 64-channel head coil. Structural T1-weighted images were collected using a magnetization-prepared rapid gradient echo sequence. fMRI scans were collected using a multiband, interleaved echo planar imaging sequence. During the motor imagery fMRI scan, participants were shown pictures of four conditions of uneven terrains with colored disks on which they had walked previously (For details, see7), and were instructed to imagine themselves walking on the treadmill belts (Figure 1A). Standard preprocessing steps were followed for structural and fMRI images8. For task-based fMRI, spherical ROIs were created from1 and2 for the left and right premotor cortex and left and right hippocampus. First-level contrasts (task > rest) were used to extract mean beta values from the ROIs. For resting state connectivity analysis we identified vestibular seed regions from a meta-analysis9. We quantified left and right vestibular network segmentation as the difference of the mean within-network connectivity and the mean between-network connectivity divided by the mean within-network connectivity10. Group and terrain differences in motor imagery brain activation were assessed through one-way ANCOVA (covariate = biological sex). The relationship between vestibular network segregation and motor imagery brain activation was assessed with a partial correlation. For the pairs of variables that demonstrated a significant relationship, we assessed mediation of vestibular network segregation on the association between motor imagery brain activation and walking function. Statistical significance was established with an alpha level = 0.05.
Results: We found no significant Group, Terrain, or Group x Terrain interaction effect for left and right hippocampus and left and right premotor brain activation during motor imagery (Figure 1B; all p-values > 0.05). We performed three mediation analyses based on the correlations found between motor imagery brain activity and resting state vestibular network segregation (Figure 2A), with walking speed as the dependent variable. Left vestibular network segregation mediated (1) the effect of left premotor activation during medium level terrain on walking speed and (2) right premotor activation during medium level terrain on walking speed. (3) Left premotor activation during medium level terrain showed a significant total effect on walking speed, but mediation effect of right vestibular network segregation was not significant (See Figure 2B and 2C for detailed statistical output).

Conclusions: Left vestibular network segregation may be especially important for age differences in brain activation in the premotor cortex that is associated with walking. Identifying the role of resting state network connectivity may be a promising biomarker to assess age differences in brain activation when individuals walk with different task demands.

References

Poster No 1168

Mapping Intrinsic Timescales of the Elderly Brain and the Relationship with Mnemonic Discrimination

Kaichao Wu¹, Leonardo Gollo¹

¹Monash University, Melbourne, Victoria

Introduction: Intrinsic timescales of brain regions indicate the duration of which neural information is likely stored in a given brain region, and may represent a fundamental property for understanding cognitive processes¹-². This study seeks to evaluate the alteration of intrinsic timescales in the elderly compared with young adults. Considering the neural timescale a basis of the functional hierarchy in the brain³-⁴, we examine the intrinsic timescales of fMRI BOLD signals across brain networks. In addition, as a typical example of brain processing sensory inputs, the mnemonic distinguish ability (the ability to distinguish existing memories from input⁵-⁶) of the brain was investigated together with its association with intrinsic timescales.

Methods: Resting-state fMRI scans were obtained from the University of North Carolina samples at Greensboro⁵. The participants were 28 elderly adults (61–80 years old, mean: 69.82, SD:5.64) and 34 young (18–32 years old, mean: 22.21, SD: 3.65). Participants’ mnemonic discrimination ability was measured by the lure discrimination index (LDI, the younger group: mean: 0.2630, SD: 0.1918; the elderly group: mean: 0.0992, SD: 0.1946), calculated as the difference in response probabilities if the participants give a similar response to lures and foils in the mnemonic discrimination task⁵. A spatial group ICA with a set of 100 components was performed on the preprocessed and denoised BOLD signal⁷ (see Fig. 1 A). After the removal of noise-related components, the 60 top components were retained. The time courses of non-noise components were then post-processed, and a band-pass filtered was applied (0.023–0.1 Hz). The intrinsic timescale was defined as the area under the curve of the autocorrelation function (ACF) from one to the time lag in which the autocorrelation first reaches a zero value (See Fig. 1 B). Repeating this procedure for all ICA components, an intrinsic timescale map of the whole brain was computed for each participant.
Results: The spatial map of the 60 recognized ICA components where they were assigned to 6 functional networks (details can be seen in Fig. 1C). As an example, Fig. 1D illustrates representative autocorrelation functions of the Anterior cingulum cortex (ACC). Figure 2A shows that the elderly population exhibits reduced whole-brain intrinsic timescales across all functional networks compared to younger adults. For the elderly cohort, the ANOVA test shows that the intrinsic timescale is different across networks (F = 15.76). In particular, a post-hoc t-test shows that the subcortical network has a significantly lower intrinsic timescale than the networks in the high-order functions (*p < 0.001, FDR corrected, see Fig. 2B), demonstrating the hierarchical structure of intrinsic timescale in the elder brain. Furthermore, we found that the cuneus area in the VIS network, which is most known for its involvement in basic visual processing, has a significant correlation with the LDI (r = 0.2532, p< 0.05, FDR corrected. Fig. 2C).
Conclusions: Our findings demonstrate that the intrinsic timescale of the elderly is significantly reduced. The reduced intrinsic timescales in the elderly brains could be associated with cognitive changes associated with aging, such as reduced Information Integration, and cognitive flexibility. The elder brain exhibits a hierarchy of the intrinsic timescales with shorter intrinsic timescales at the subcortical regions than other functional networks. Finally, we found a significant association between the intrinsic timescales of the cuneus area and mnemonic discrimination ability. This finding indicates that decreased intrinsic timescale in the cuneus can be linked to challenges in the discrimination and accurate retrieval of memories in the elderly. By examining the temporal dynamics of the brain's functional networks, this study not only advances our understanding of the aging brain but also offers cues for investigating cognitive changes in the elderly.

References

Poster No 1169

Links between gray-matter stiffness, age and memory using Magnetic Resonance Elastography

Grégoria Kalpouzos1, Zuzana Istvanfyova1,2, Göran Hagman1,2, Rebecca Ericsson1, Ronja Löfström1, Farshad Falahati1, Christoffer Olsson3, Rodrigo Moreno3, Jonas Persson1

1Karolinska Institutet, Stockholm, Sweden, 2Karolinska University Hospital, Stockholm, Sweden, 3KTH Royal Institute of Technology, Stockholm, Sweden, 4Örebro University, Örebro, Sweden

Introduction: Magnetic Resonance Elastography (MRE) applied to the brain has been recently developed to assess the biomechanical properties of the neural tissue such as stiffness (Yin et al 2018). Little is known about age effects on cerebral stiffness, and whether it can explain interindividual variability in cognitive performance. The few MRE studies in normal aging suggested a local reduction of cerebral stiffness and an association between hippocampal stiffness and memory (Coelho & Sousa 2022; Delgorio et al 2022). Our aims were to (1) characterize gray-matter stiffness as a function of age voxel-by-voxel, and (2) investigate age-independent associations between stiffness and visuospatial learning. Besides, we tested whether adding gray-matter density contributed to the associations between stiffness, age and cognition.

Methods: Twenty-six healthy volunteers (age range: 26-79 years old, 12 women) underwent magnetic resonance imaging and a battery of cognitive tests. MRI was performed on a 3.0T Philips Ingenia scanner, equipped for MRE with a pump connected to the scanner that sends waves through vibrations to a pillow on which the head lies, and a validated pulse sequence together with a direct inversion algorithm (Mayo Clinic, USA) that estimates the shear stiffness (i.e., resistance of a material to a shear deformation) and damping ratio (i.e., resistance of a material to oscillations). We here used the reconstructed stiffness maps whose values were expressed in pascals, and the T1-weighted images. Visuospatial learning was assessed using the Hagman test (Holleman et al 2022). The subjects were presented for 45 seconds with a 3x3 cells matrix, in which different symbols in a particular rotation and color were displayed. The instructions were to memorize the content and draw it in an empty matrix immediately after. The same test was repeated 30 minutes later to test learning. The T1-weighted images were segmented in Statistical Parametric Mapping (SPM12), and further processed using DARTEL (Ashburner 2007) to obtain spatially normalized maps of GMv (modulated images) and GMD (unmodulated images) into MNI space. The stiffness maps, coregistered to the T1s, were normalized using the flow fields from DARTEL. Images were smoothed with an 8-mm kernel. A GM mask was applied to all voxel-based analyses. To address aim 1, voxel-based regressions were performed between the stiffness maps and age at p FWE-corrected < .05. To address aim 2, voxel-based correlations were performed between the stiffness maps and performance at Hagman trial-2 at p < .001 (uncorrected), controlling for age and Hagman trial-1 score. Using
MarsBaR toolbox, mean stiffness was extracted from the significant MRE-clusters and applied to the GMv and GMD maps to further extract volume and density for follow-up stepwise regression analyses.

Results: With older age, lower stiffness was found in inferior frontal regions (BA 44/45, 47), premotor and somatosensory regions (BA 6, 3), lateral temporal areas (BA 21/22, 42) and insula (Fig 1A). These associations remained largely unaltered when adding GMv or GMD to the models (e.g., left frontal cluster: R2 model 1=0.792, R2 model 2 (adding GMD)=0.797, p for R2 change=.44). Controlling for age and Hagman test trial-1, better visuospatial learning was related to higher stiffness in posterior cingulate/retrosplenial area, frontal cortex, insula, striatum, and posterior hippocampus (Fig 1B). These associations remained largely significant when GMD or GMv were added to the models (e.g., for retrosplenial cluster: R2 model 1=0.560, R2 model 2=0.560, p for R2 change=.95).

Conclusions: Reduced GM stiffness may contribute to brain aging independently of atrophy. GM stiffness may also contribute to interindividual differences in cognition, as higher stiffness in key-regions for visuospatial processing and memory was associated with better visuospatial learning independently of age.

References

Poster No 1170

AgeML: a Python package for Age Modelling with Machine Learning made easy
Jorge Garcia Condado1,2, Iñigo Tellaetxe Elorriaga1,2, Asier Erramuzpe1,2,3, Jesus Cortes1,2,3

1. Biobizkaia Health Research Institute, Barakaldo, Spain, 2. UPV/EHU, Leioa, Spain, 3. Ikerbasque, Bilbao, Spain

Introduction: BrainAge models (Franke et al. 2010, Neuroimage) have had success in exploring the relationship between healthy and pathological ageing of the brain. Furthermore, this type of age modelling can be extended to multiple body systems and modelling of the interactions between them (Tian et al 2023, Nature Medicine). However, there is no standard for age modelling. There have been works attempting to describe proper procedures, especially for age-bias correction (de Lange and Cole 2020, Neuroimage: Clinical). In this work we developed an Open-Source software that allows anyone to do age modelling following well-established and tested methodologies for any type of clinical data. Age modelling with machine learning made easy.
Methods: AgeML is an Open-Source Python library for age modelling which can be found at https://github.com/compneurobilbao/AgeModelling. The package can currently do four types of processing: age modelling and prediction and calculation of age delta (the difference between predicted and chronological age), the association of age delta with lifestyle factors, evaluation of age delta for different clinical groups, and classification of groups based on age deltas. Age is modelled using classical machine learning algorithms to perform a supervised task of using the provided features to predict subject-wise chronological age using cross-validation. Age bias correction is also applied (de Lange and Cole 2020, Neuroimage: Clinical). The user can specify a covariate, such as gender, to train separate models and provide a file with information about clinical status to train only on controls. After the model is trained on controls it is applied to the other groups. A file is saved with the predicted ages and the age delta for possible further analysis. The three extra workflows require as input the output from the age modelling workflow. The association of the age deltas with lifestyle factors is done by running a correlation analysis between the deltas and the provided factors. Given a clinical file showing different clinical groups (healthy vs ill, disease subtypes) it computes which groups have deltas that are statistically significantly different. Finally, given two clinical groups and their age deltas, it can train a logistic regressor to classify between each group.

Results: To validate the workflow of this project data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (Petersen et al 2010, Neurology). This included 629 healthy controls (CN), 635 MCI and 208 AD subjects. From the MCI subjects, there were 152 pMCI subjects, those who converted to AD within 3 years from baseline, and 152 sMCI subjects, those who remained MCI for 3 years from baseline, were chosen at random to balance the dataset. This was used to train BrainAge models, show differences in deltas between CN, MCI, AD, pMCI and sMCI, and look at the classification power of the age delta between groups as shown in previous studies (Garcia Condado and Cortes 2023, Alzheimer’s & Dementia: DADM). The software package follows well-established Open Source development practices. It has a continuous integration pipeline to check for PEP8 compliance, unit testing and testing coverage. It is also open source and publicly available to encourage community-driven development, testing and transparency.

Conclusions: The objective of AgeML is to standardise procedures, lower the barrier to entry into age modelling and ensure reproducibility. The project is Open-Source to create a welcoming environment and a community to work together to improve and validate existing methodologies. We are actively seeking new developers who want to contribute to growing and expanding the package. Future steps are the implementation and easy access of foundational age models within the package.

References
Biopsychosocial Correlates of Edge-community Entropy and Modularity Across the Adult Lifespan

Anita Shankar¹, Madhura Phansikar¹, Richard Betzel², Ruchika Prakash¹

¹The Ohio State University, Columbus, OH, ²Indiana University, Bloomington, IN

Introduction: Contemporary models of cognitive aging emphasize the complex relationship between biological, environmental, and lifestyle factors as determinants of cognitive and brain health¹-³. However, few studies have examined demographic and biopsychosocial determinants of functional brain networks across the lifespan, and none, to our knowledge, have attempted to comprehensively account for collinearity among potential predictors. In our previous work, we used an edge-centric approach to demonstrate that community entropy, a measure of nodal despecialization, increases significantly across the lifespan and negatively impacts fluid cognitive performance⁴,⁵. In the current study, we used elastic-net regression to identify candidate biopsychosocial features that correlate with entropy cross-sectionally and potentially mediate these age-related entropy changes.

Methods: The current study used a subset of data from the Human Connectome Project 2.0 Lifespan Release from 528 individuals between the ages of 35 and 100 years with task fMRI, physical and emotional health, and demographic data for 33 literature-informed predictors. Entropy was calculated at the level of individual nodes as described in previous work⁴,⁵ and averaged across the whole brain. Elastic net regression was used to identify features associated with entropy from four conceptual groups: demographic factors, stress, physical health, and emotional well-being. We used a 70/30 training-test set split, using the training set to tune the model's hyperparameters and select predictors, and using the test set to determine the model's generalizability to unseen data.

Results: The final model identified 11 biopsychosocial factors, in addition to demographic factors of age, sex, and education, that predicted entropy across the lifespan. Application of the final model to the test set yielded a significant correlation between predicted and observed entropy values ($R = 0.58$, $p = 1.33e-15$; Figure 1a), which includes variance accounted for by age and variance accounted for by mediators of the relationship between age and entropy. Significant predictors above and beyond age consisted of, in order of importance: body mass index, sex, instrumental social support, average hours of sleep, visual acuity, hs-C reactive protein, perceived stress, life meaning and purpose, diastolic blood pressure, education, triglyceride levels, hemoglobin A1C, and social isolation. Removing the variance contributed by age completely, biopsychosocial factors still accounted for a significant portion of the variance in entropy ($R=0.24$, $p = 0.002$), suggesting certain factors act on entropy independent of the process of aging. We also probed how these features interact with age by running a second model that included the original features and their age-interaction terms. In the interaction model ($R = 0.59$, $p =6.17e-16$), sex exhibited the most significant moderation effect, with males demonstrating higher entropy across all ages and greater lifespan increases in entropy than females, starting at age 54 (Figure 1b). Finally, we performed these analyses using the network property whole-brain modularity and found similar model performance ($R = 0.57$, $p = 6.26e-15$) and feature selection differed by only a single predictor (systolic blood pressure instead of diastolic blood pressure), suggesting these biopsychosocial factors reliably influence multiple measures of whole-brain network organization.

Conclusions: In the current study, we examined biopsychosocial correlates of whole-brain entropy and modularity across the adult lifespan. We present evidence that certain demographic, metabolic, cardiovascular, and psychosocial factors have system-wide influences on the function of the human brain and identify candidate age-dependent and independent predictors of network measures across the lifespan. Given previous research implicating modularity and entropy's relationship with cognition, these results may inform treatment targets for cognitive health in aging.
References
5. Preprint available: https://www.biorxiv.org/content/10.1101/2023.10.11.561957v1

Poster No 1172
An ENIGMA Consortium Genome-Wide Association Study of Brain Age
Vilte Baltramoinityte1, Constantinos Constantinides1, Marlene Staginnus1, Neda Jahanshad2, Paul Thompson2, James Cole3, Sarah Medland4, Danai Dima5, Esther Walton1, ENIGMA consortium6

1University of Bath, Bath, United Kingdom, 2Imaging Genetics Center, Keck School of Medicine of University of Southern California, Los Angeles, USA, 3University College London, London, United Kingdom, 4QIMR Berghofer Medical Research Institute, Brisbane, Australia, 5City University London, London, United Kingdom, 6Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Marina del Rey, CA, CA

Introduction: Deviations from a typical ageing trajectory are an important risk factor for poor health outcomes.1 Brain-predicted age difference (PAD) – conceptualised as the difference between chronological and brain predicted age – is one such measure of deviation from healthy ageing and has been linked to over 40 traits.2 While brain-PAD is generally thought to be heritable, specific genetic loci that influence these deviations are still largely unknown. Three recent genome-wide association studies (GWASs) on brain-PAD in UK Biobank (n up to 28,104; age range: 40 to 84) identified a small number of associated genetic variants.3-5 This small number might be explained by the narrow age range and moderate sample size used in these studies. Larger samples covering the complete adult lifespan are needed to elucidate the genes implicated in brain-PAD, their impact on other biological systems in the brain and peripheral tissues, and the causal relationship between PAD and mental health.

Methods: Brain-PAD was derived using a ridge regression model with 77 FreeSurfer-derived structural brain imaging features of surface area, cortical thickness and subcortical volume as an input in a total of n=47,167 participants from 28 datasets within the ENIGMA consortium.6 For a subset of these (n=34,112), we carried out a genome-wide association meta-analysis (GWAS) of brain-PAD. Additive effects of genetic variants on brain-PAD were tested, adjusting for age, age2, sex, total intracranial volume, genetic ancestry, imaging covariates (e.g. multiple scanners) and disease status (for case-control studies). We applied
linear (mixed) models using BOLT-LMM, RareMetalWorker or PLINK2. Preliminary results were meta-analysed in METAL, weighing each cohort according to sample size.

Results: A total of n=47,167 participants were included in the phenotypic analysis (age range 18-75 years; 52.8% females). Brain age was predicted with mean unweighted absolute error of 9.58 years (range 4.67-21.29). For the subset of datasets included in the GWAS, the mean unweighted absolute error was slightly larger (14.25 years; range 6.30-21.29; age-bias corrected unweighted=9.08). Fixed effect meta-analysis using METAL identified 66 genome-wide significant variants associated with brain-PAD at P = 5 x 10^-8 (Figure 1). Three of these variants (on chromosomes 2, 15 and 16) were independent using r² = 0.1 and 500 kb window size. Two out of three variants identified had been previously implicated in brain-related phenotypes. SNP-based heritability was estimated at 0.1923 (SE=0.0167).

Conclusions: Our findings indicate that brain age deviations in adulthood might be moderately heritable. Genetic loci overlapped partially with previous studies using overlapping data (e.g., UK Biobank), but different brain age estimation methods, suggesting a degree of consistency across methods. Identifying the underlying genetic loci can help to shed light on the causal risk factors involved in brain aging, aiding in the prevention and treatment of age-related poor health outcomes, such as schizophrenia, Alzheimer’s disease, and other cognitive impairments.

References
6. Han, L. K. M. (2021), 'Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group', Molecular Psychiatry 26, 3124–3139.

Poster No 1173

Age-related changes in gray matter asymmetry: Will brains get more (a)symmetric?

Florian Kurth1, Nicolas Cherbuin2, Christian Gaser3, Eileen Luders1

1University of Auckland, Auckland, New Zealand, 2National Centre for Epidemiology and Population Health, Canberra, Australia, 3Jena University Hospital, Jena, Germany

Introduction: Structural and functional differences between the hemispheres are known to change over time (Ocklenburg and Gunturkun, 2018; Toga et al., 2009). Some theories suggest a progressive recruitment of homotopic contralateral brain regions with increasing age, which may manifest as decreases in asymmetry (Cabeza, 2002). Other theories support the assumption
of an accelerated atrophy of one hemisphere compared to the other (Kong et al., 2018; Minkova et al., 2017; Thompson et al., 2003), which may manifest as increases in asymmetry. Here we set out to explore age-related changes in gray matter asymmetry using a longitudinal design in a large sample of 2,324 participants (1151 women / 1173 men) spanning a wide age range (47 – 80 years).

Methods: T1-weighted brain images were obtained from the UK Biobank, only including participants who were scanned at two time points and without a history of neuropsychiatric conditions, cancer, or stroke. The time between baseline and follow-up scans ranged between 1 and 7 years (mean ± SD: 2.39 ± 0.82). All brain images were preprocessed using the CAT12 toolbox (Gaser et al., 2022) applying the longitudinal workflow for age effects. The resulting tissue segments were registered to MNI space using affine transformations, flipped in the x-axis, and both original and flipped tissue segments were then warped to a symmetric Shooting Template in MNI space and modulated (Kurth et al., 2015). Subsequently, the asymmetry index was calculated as $AI = \frac{\text{right-left}}{0.5 \times [\text{right} + \text{left}]}$, duplicate information in the left hemisphere was discarded and the AI values within the remaining right hemisphere were smoothed using an 8 mm FWHM kernel (Kurth et al., 2015). Finally, all AI values were converted into absolute values and the absolute AI values at baseline were subtracted from the absolute AI values at follow-up. The resulting difference maps served as the dependent variable in the statistical model. Changes in asymmetry were assessed in a general linear model with sex and brain volume as covariates. Results were corrected for multiple comparisons on cluster level by controlling the family-wise error, using a cluster-forming threshold at $p \leq 0.001$ and correcting for non-stationarity (Hayasaka et al., 2004).

Results: Our study revealed brain regions where (a) asymmetry remains stable over time, (b) significantly decreases over time (Figure 1), or (c) significantly increases over time (Figure 2). More specifically, decreases in asymmetry were detected in the temporal lobe, extending into inferior parietal and occipital regions. In contrast, increases in asymmetry were evident in the frontal cortex and orbitofrontal regions as well as the insula, posterior parietal and medial frontal/parietal regions.
Conclusions: Our study revealed that asymmetry remains stable over time in most parts of the brain. However, there were some regions where asymmetry significantly increased or decreased. As far as this change over time is concerned, there seems to be a predominant decrease of leftward asymmetries as well as an increase of rightward asymmetries. Overall, the observed effects suggest a more pronounced gray matter loss in the left hemisphere compared to the right, supporting previous reports (Thompson et al., 2003).

References

Poster No 1174
Investigating network changes in typical aging trajectories of adulthood by cross-frequency coupling
Taha Liaqat¹, Vasily Vakorin¹, Hayyan Liaqat¹, Sam Doesburg¹, Sylvain Moreno¹
¹Simon Fraser University, Vancouver, British Columbia

Introduction: Typical cognitive aging trajectories can be understood as changes in neurophysiological mechanisms over the lifespan. Such mechanisms can be described with Magnetoencephalography (MEG) (Ishii et al., 2018). In turn, MEG rhythms
provide insights into the temporal hierarchy of information processing in the brain through the mechanism of cross-frequency coupling (CFC) (Buzsáki & Watson, 2012). A specific form of CFC is phase-amplitude coupling (PAC), which has been linked to cognitive performance across resting-state brain networks (Canolty & Knight, 2010). However, how PAC evolves within different networks across the lifespan is still an open question. In our study, we define trajectories of cross-frequency coupling in healthy brain aging over a wide age range and explore how they vary across resting-state networks.

Methods: We analyzed data from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) cohort study (Taylor et al., 2017). The dataset included resting-state MEG scans for 605 healthy participants aged 19 to 89. We divided all participants into five non-overlapping age groups. We reconstructed source dynamics mapped onto Schaefer’s cortical atlas with 400 regions of interest (ROI) representing 17 fMRI-defined resting-state networks (Schaefer et al., 2018). For each ROI, we estimated PAC as a normalized modulation index, quantifying associations between the phase of lower frequency oscillations and the amplitude of higher frequency oscillations (Roehri et al., 2022). Specifically, we applied a complex wavelet transform to compute the phase of twenty frequencies between 1Hz and 12Hz, and the amplitude at thirty frequencies between 13Hz and 75Hz, equally spaced on a logarithmic scale. For each network, we applied a multivariate analysis, Mean-Centered Partial Least Squares (MC PLS), to explore how PAC changed across age groups (Krishnan et al., 2011). The PLS analysis decomposed our data into a set of latent variables (LV). We focused on the first LV, which explains the largest variance in the data. Each LV was associated with (i) a vector of group contrasts, representing changes in PAC strength across age groups, and (ii) a vector of z-scores, representing how the PAC for each ROI and given higher and lower frequency combination contributes to the identified group contrast. To focus on the most robust effect in each network, we computed the median of z-scores across ROIs within each network.

Results: The PLS analysis revealed statistically significant results for 14 of the 17 networks. The group contrasts, representing the ageing trajectories in PAC demonstrated either monotonic decreases or U-shaped changes in PAC strength across the lifespan, depending on the network. The median z-scores showed the most robust change in phase-amplitude coupling between the theta (6 Hz–8 Hz) and lower beta (15 Hz–18 Hz) frequency bands. To exemplify the effect, we showed the results for the Control A network (Figure 1). Here the contrast represented a trend of monotonically decreasing PAC strength across the five age groups. The largest z-scores, reflecting the most robust effects, are clustered around theta-beta cross-frequency coupling.

Conclusions: We identified distinct spatiotemporal patterns of age-related changes in PAC, showing their variability across resting-state networks. In turn, these patterns can be considered part of the complex neurophysiological profile in which the synchrony of distinct neural rhythms can serve as a biomarker for cognitive changes in aging in adulthood. By evaluating multiple networks under the same methodology, we have shown that the shape of the trajectories depends on the network, highlighting the variability in the aging brain at the functional level. This aligns with similar findings based on the structural parameters of the brain (Nyberg et al., 2023). Understanding relationships between this network variability and cognitive performance will further help to understand ageing trajectories in typical cognitive ageing.

References
Poster No 1176

Neuroimaging-based brain age estimation using Artificial Intelligence(AI)-integrated prediction model

Eun Ji Yang¹, Young Hyun Lee¹, Ji Eun Park¹, Song E Kim¹, Hyang Woon Lee¹

¹Ewha Womans University, Seoul, Korea, Republic of

Introduction: Estimated Brain Age, derived from brain Magnetic Resonance Imaging(MRI) data, serves as a biomarker for assessing brain aging compared to chronological age. The gap between brain age and actual chronological age, known as the Brain Age Gap (BAG), is an important indicator of the acceleration or delay in the biological aging process. A brain age predicted higher than the chronological age suggests accelerated aging of the brain, potentially associated with cognitive decline and the onset of brain diseases. Alzheimer’s and similar neurodegenerative diseases have been shown to exhibit older brain ages in affected individuals, with differences in the brain age gap based on sex. This study aims to predict brain age and calculate the brain age gap using an Artificial Intelligence(AI)-integrated prediction model, focusing on the differences based on sex.

Methods: This study utilizes the Human Connectome Project’s HCP-YoungAdult (ages 22-35, 1,206 individuals, of which 1,113 underwent structural MR scans) and HCP-Aging (ages 36-100, 725 individuals) datasets. Our analysis involves structural MRI images obtained from the HCP’s structural preprocessing pipeline and brain volume values derived from FreeSurfer files. To estimate brain age, we employed an AI-integrated prediction model using the Simple Fully Convolutional Network (SFCN) model, which is based on three-dimensional(3D) T1-weighted images. This SFCN model was pre-trained using the extensive and diverse UK Biobank dataset, enhancing its accuracy and generalizability. Additionally, advanced visualization techniques were applied to generate heatmaps, highlighting areas significant for model predictions. This approach provides better interpretation of the model’s predictions and enhance the transparency of the analysis results.

Results: In this study, the aforementioned heatmaps revealed notable differences in the brain regions influencing aging in males and females. Certain brain areas were more pronounced in one sex compared to the other, suggesting the possibility of sex-specific patterns in brain aging. Furthermore, our preliminary results indicated clear differences in the brain age gap (BAG) based on sex. This finding suggests that the process of brain aging and its potential impact on neurological health may significantly differ between males and females. Such insights are crucial for understanding sex-specific aging patterns and could influence future research and clinical approaches in the field of neuroscience.

Conclusions: Our findings including AI-derived brain age predictions, associated brain age gaps and sex differences offer significant insights into understanding the progression of brain aging. These results are instrumental in suggesting practical measures for early diagnostic strategies in patients with neurological conditions, highlighting the potential of AI in contributing to advanced healthcare solutions. Supported by the National Research Foundation of Korea (NRF) (No.2020R1A2C2013216, 2019M3C1B8090803, 2019M3C1B8090802, and RS-2023-00265524), Institute of Information & Communication Technology Planning & Evaluation (IITP) grant (No. RS-2022-00155966) by the Korea government (MSIT), and BK21-plus FOUR and Artificial Intelligence Convergence Innovation Human Resources Development programs of Ewha Womans University.

References

Cortical Depth Dependent Microstructural Variations in Aging using Diffusion Tensor Imaging

Yutong Sun¹, Jordan Chad², J. Jean Chen¹

¹Medical Biophysics, University of Toronto, Toronto, Ontario, ²Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario

Introduction: Although the utilization of diffusion-tensor imaging (DTI) in cortical gray matter (GM) is limited, previous findings have demonstrated an increased GM mean diffusivity (MD) and fractional anisotropy (FA) with aging¹,². However, their interpretations remain unclear. Since the cyto- and myelo-architecture vary along the cortical laminae³, we hypothesize that age effects in DTI parameters also vary across cortical layers. In this study, using a recently published approach⁶, we investigate the cortical depth dependence of DTI age effects.

Methods: 700 subjects were taken from the UK Biobank, with 100 subjects of balanced sex ratio in each quinquennial. Data were collected using a Skyra 3T scanner with 50x b=1000 and 50 2000s/mm², voxel resolution=2mm³. We applied eddy-current and susceptibility-induced distortions using EDDY, as well as 3D gradient distortion correction. The b=1000 data was used to calculate MD. The norm of anisotropy (NA) was calculated using the orthogonal-tensor decomposition method to measure anisotropy without bias from MD⁵. For MD and NA, age effects (%change/year) were projected onto the FreeSurfer cortical surface. These were sampled between projfrac of 0.0 (representing the WM boundary) and 1.0 (representing the pial surface) at step of 0.1.

Results: We found a positive association between MD and age across the cortex, and both positive and negative age-associations in NA. Stronger MD-age effects on the pial surface (Fig. 1): This is true in most cortical regions, whereby for most regions showing a strong positive NA-age association, it was stronger on the pial surface. There was no such preference for the negative NA-age associations. Stronger MD-age effects on the WM surface (Fig. 2): MD-age effects were stronger on the WM surface for the right entorhinal, right isthmus cingulate, as well as the parahippocampal gyrus. NA-age effects displayed different depth dependencies across hemispheres. For instance, the parahippocampal and left entorhinal regions showed a negative NA-age association stronger on the WM surface, whereas the negative association in the right entorhinal region was stronger on the pial surface. Lastly, a positive NA-age association was only found in the right but not the left isthmus cingulate, being stronger on the WM surface. The few regions (e.g. left isthmus cingulate) without cortical depth dependence for MD-age associations also lacked it for NA-age associations.

Conclusions: For the dominant trend of MD-age effects being positive and stronger on the pial surface, negative NA-age associations greater on the pial surface may suggest increasing partial-volume effects with cerebrospinal fluid (CSF), resulting from cortical atrophy (Fig.1a, b). Positive NA-age associations stronger on the pial surface may suggest selective degeneration of crossing fibres in the superficial cortical layers (Fig. 1c, d). Positive NA-age associations stronger on the WM surface may indicate the co-existence of cortical atrophy and selective degeneration of crossing fibres in the base cortical layers (Fig. 1e, f). Negative NA-age associations stronger at the WM surface may be driven by a co-existence of atrophy and demyelination in the base cortical layers (Fig. 1g, h). With positive MD-age associations stronger on the WM boundary, a concurrent positive NA-age associations stronger on the WM surface (Fig. 2c, d) could suggest selective degeneration of crossing fibres in the base cortical layers. A negative NA-age association stronger at the pial surface (Fig. 2a, b) could suggest the tensor shape is becoming more isotropic but disproportionate to demyelination. Lastly, a negative NA-age association stronger on the WM boundary (Fig. 2b) could suggest demyelination potentially accompanied loss of WM packing density in the base cortical layers. Stronger MD-age effects on the WM boundary versus the pial surface likely suggests different stages of degeneration.
Figure 1. Cortical-depth profiles of age effects for regions with stronger MD-age effects on the pial surface. Age effects for each parameter are shown in terms of % change per year. NA is negatively associated with age on pars triangularis, with the effect being stronger on the pial surface, while for paracentral gyrus, there is a positive NA-age association that is stronger on the pial surface. There is also a positive association between NA and age in the superior parietal gyrus, but with the effect being stronger on the WM boundary. For pars opercularis, there is a negative association between age and NA, also stronger on the WM boundary.

Figure 2. Cortical-depth profiles of age effects for regions with stronger MD-age effects on the WM surface. Age effects for each parameter are shown in terms of % change per year. The entorhinal cortex shows age effect differently in the two hemispheres, with the negative NA-age association being stronger on the WM surface for the left hemisphere, and stronger on the pial surface for the right hemisphere. In the right isthmus cingulate, a positive association between NA and age is stronger on the WM surface.
References

Poster No 1178
Exploring Age-Related Morphological Changes in Cerebral Arteries: A 7T TOF MRA Study
Zonghua Shi1, Jiatai Li2, Yuanzhe Huang3, Noah Schweitzer3, Bistra Iordanova3, Tamer Ibrahim3, Shaolin Yang3, George Stetten3, Howard Aizenstein3, Minjie Wu3
1Washington University in St. Louis, St. Louis, MO, 2Carnegie Mellon University, Pittsburgh, PA, 3University of Pittsburgh, Pittsburgh, PA

Introduction: Aging-related changes in cerebrovascular health include vessel structural alterations, reduced vessel elasticity, reduced blood flow, and impaired blood-brain barrier permeability, which may contribute to neurological and neurodegenerative diseases, such as Alzheimer's Disease (AD) (Zimmerman et al., 2021). In this study, we used 7T Time-of-flight (TOF) magnetic resonance angiography (MRA) to investigate age-related differences in arterial diameter and tortuosity in the brain in cognitively normal older adults.

Methods: Our study comprised 25 older adults with normal cognition (20 females, average age of 68.3 ± 9.7 years). Whole-Brain TOF MRA images were acquired using a 7T Siemens scanner at the University of Pittsburgh, slice number=354, voxel size=0.38*0.38*0.38 mm³, 12 mins. Manual skull-stripping was performed to remove non-brain tissues on each TOF image, and the resulting brain mask was further dilated with 2-mm sphere to preserve vessels traveling along the surface of the brain. The cerebral arterial tree was segmented using VesselMapper, an automated vessel segmentation tool recently developed in our lab (Li et al., 2023). Arterial morphology was assessed using vessel diameter and vessel tortuosity. For each subject, vessels were further categorized into three types based on vessel diameter, in which large vessels were defined as vessels with the top 33% diameter size, and small vessels as vessels with the bottom 33% diameter size. Pearson correlation analysis was performed to evaluate the association between age and vessel diameter and tortuosity.

Results: As seen in Fig. 1, there is a significant positive association between age and large vessel diameter, so that older age is associated with a larger median diameter (r=0.42, p=0.03) (Fig. 1b). In contrast, there is a significant negative association between age and small vessel diameter, so that older age is associated with a smaller median diameter (r=-0.44, p=0.03) (Fig. 1c). As seen in Fig. 2, while large vessel tortuosity is not associated with age (r=0.06, p=0.78) (Fig. 2b), small vessels demonstrate an age-related decrease in median vessel tortuosity (r=-0.53, p=0.006) (Fig. 2c).
Conclusions: The observed age-related increase in large vessel diameter (Fig. 1b) aligns with the gradual decrease in blood flow with age (Ryspek et al., 2021), with larger diameter vessels being associated with lower blood flow velocity. Age-related decrease in tortuosity may be a reflection of lower velocity in the small tortuous vessels. Acknowledgement: This work was supported by the National Institute on Aging (R01AG067018 to Wu andRF1AG025516 to Aizenstein).

References

Poster No 1179

Functional alterations contribute to memory deficits in aging and AD: an fMRI and PET study

Xi Chen1, Leah Varghese2, Suzanne Baker3, William Jagust4
1Stony Brook University, Stony Brook, NY, 2Stanford University School of Medicine, Palo Alto, CA, 3Lawrence Berkeley National Laboratory, Berkeley, CA, 4University of California, Berkeley, CA

Introduction: The anterior temporal (AT) and posterior medial (PM) networks, and hippocampus in the medial temporal lobe (MTL) are functionally responsible for object/item-based, scene/context-based, and association/integrative processing for episodic memory, respectively. These systems are also vulnerable to aging and Alzheimer’s disease (AD)2,3. AD pathology of beta-amyloid (Aβ) and tau begins to emerge in cognitively normal people before clinical symptoms4,5, and it preferentially deposits first in AT, PM, and MTL in this pre-clinical, asymptomatic stage2. Given the functional specificity of these regions and their particular vulnerability to AD pathology, we hypothesize that age-related and pathology-related memory deficits may be explained by functional alterations in these regions. Here, we utilized multimodal neuroimaging, including task fMRI to assess functional activation during incidental memory encoding, and PET imaging to measure Aβ and tau burden in cognitively normal older individuals. We aimed to study the neural bases of memory deficits in normal aging and early AD.

Methods: Twenty-seven young (19-34 yrs) and 51 older (60-91 yrs) participants completed a memory task6 where the incidental encoding of object, scene, and object-in-scene pair images was scanned during fMRI and a subsequent recognition test approximately 45 minutes later was performed outside the scanner (Fig 1A). Forty-one older participants also underwent PiB and FTP PET scans to measure their Aβ and tau burden. We examined age-related (young vs. older) and AD pathology related (Aβ- vs. Aβ+, continuous tau) effects for subsequent memory performance, indexed by accuracy and d’, and brain activations. The fMRI analysis was focused on the composite regions of interest (ROIs) of AT and PM (Fig 1B), as well as the hippocampus, for the pair > object + scene contrast.

Results: Behaviorally, older people had worse object and pair memory, primarily driven by an increased difficulty in distinguishing lures (Fig 1C). Older people in the pre-clinical stage of AD, evidenced by Aβ positivity and elevated temporal meta tau burden, exhibited even worse memory, with a greater difficulty in remembering the previously presented pictures, compared to those without AD pathology (Fig 1C). FMRI results show that all three ROIs had significant activations during the processing of pairs in contrast to object-alone and scene-alone materials (Fig 2A), where greater activation was predictive of better subsequent memory performance indexed by accuracy (Fig 1D). Older age was associated with reduced activation in AT
Conclusions: Older adults have worse memory, especially for complex object-in-scene pairs, primarily driven by greater false recognition of lures. AT, PM, and hippocampus are all significantly involved in processing object-in-scene pairs. The age-related functional reductions in AT regions contribute to worse task performance, especially the greater difficulty in rejecting lures. Additionally, AD pathology was associated with a further reduction in pair memory performance, most evident in failure to remember old pictures. Greater tau pathology was associated with increased activation that contributed significantly to worse subsequent memory. In conclusion, functional activation may play important roles through different mechanisms underlying memory deficits in normal aging and early AD: functional reduction in key task regions may contribute, to some extent, to worse memory task performance in aging, whereas tau-induced hyperactivation explains the disproportionately worse performance in pre-clinical AD.

References
Poster No 1180

Functional connectivity upregulation in post-menopause in healthy females

Ceren Tozlu¹, Parker Singleton², Louisa Schilling³, Catherine Liu⁴, Susan Gauthier¹, Keith Jamison³, Amy Kuceyeski³

¹Weill Cornell Medicine, NYC, NY, ²Weill Cornell Medicine, New York, NY, ³Weill Cornell Medicine, New York City, NY, ⁴Cornell University, Ithaca, NY

Introduction: Menopause is characterized by abrupt changes in sex steroid hormones which impacts multiple organ systems, including the brain. The impact of menopause on the brain is an understudied topic; however, one of the few studies investigating brain biomarker changes during menopause found decreased white matter volume and cerebral glucose metabolism and increased cerebral blood flow during the peri-menopause compared to pre-menopause (Mosconi et al. 2021). However, it is still unclear how menopause impacts the brain’s functional connectivity architecture. In a densely-sampled neuroimaging study from one healthy female, the brain’s functional connectivity networks were found to be linearly associated with changes in the sex steroid hormones during the menstrual cycle (Pritschet et al, 2020). However, no study to date has investigated how menopause, which is associated with even larger changes in sex steroid hormones, impacts the brain’s functional and structural connectome in the healthy female brain. Here, we compared the brain’s structural and functional connectivity networks derived from advanced neuroimaging techniques between different menopause stages (i.e. pre, peri, and post-menopause) in healthy females.

Methods: Four hundred and four females (age: 60.05 ±15.74) from the Human Connectome Project-Aging (HCP-A) dataset (Van Essen et al., 2013) were used in this study. SC and FC metrics were extracted using diffusion and resting state functional MRI, respectively, via the FreeSurfer-based atlas of 86 cortical and subcortical regions. Regional SC was computed as the sum of the columns in the SC matrix, while regional FC was calculated by taking the sum of the columns in the FC matrix after removing the negative entries. Menopausal status for each individual was defined based on the STRAW criteria (Harlow et al., 2012). ANCOVA was applied to compare each region’s SC and FC strength across each pair of menopause groups, with age included as a covariate. The statistics derived from the Student’s t-test were visualized to show the amplitude and the direction of the difference. Group differences were considered significant when p<0.05 after Benjamini–Hochberg (BH) correction for multiple comparisons.

Results: There were no significant differences in the regional SC and FC between the pre vs peri-menopausal groups. However, the post-menopausal group had weaker regional SC compared to pre and peri-menopausal groups, particularly in frontal and subcortical regions. Regional FC, particularly in regions of the frontal, visual, and cerebellar networks were greater in the post-menopause compared to pre and peri-menopausal groups.

Conclusions: Increased regional FC in post-menopause may reveal a potential compensatory mechanism in response to decreased regional SC, as seen in other diseases associated with white matter damage (Tozlu et al., 2023). Overall, our
findings suggest that the menopausal transition impacts both the structural and functional connectome of the brain. Future studies are needed to identify how brain changes during menopause may associate with symptoms during the menopausal transition, such as hot flashes and brain fog, to provide novel and personalized treatment plans for this large portion of the population.

References

Poster No 1181

Functional and microstructural measures of brain aging subgroups in cognitively unimpaired subjects
Ioanna Skampardoni1, Junhao Wen2, Ilya Nasrallah1, Zhijian Yang1, Dhivya Srinivasan1, Guray Erus1, Elizabeth Mamourian1, Randa Melhem1, Haochang Shou1, Konstantina Nikita3, Christos Davatzikos1

1University of Pennsylvania, Philadelphia, PA, 2University of Southern California, LA, CA, 3National Technical University of Athens, Athens, Attiki

Introduction: Brain aging is accompanied by several neuropathologies, often co-occurring, heterogeneously affecting brain structure and function. Unraveling the heterogeneity of complex neuroanatomical and functional changes at early asymptomatic stages may aid in revealing vulnerability or presence of neurodegeneration with potential biological and clinical implications. Here, we examine the functional connectivity (FC) and white matter (WM) integrity of three brain aging subgroups identified via a deep learning method applied to T1- and T2-weighted magnetic resonance imaging (MRI) data of a harmonized multi-cohort sample of 27,402 cognitively unimpaired individuals from the iSTAGING consortium (Habes et al. 2021).

Methods: The three subgroups were separately modeled in four decade-spanning age brackets along the 45-85 years range using the Smile-GAN method (Yang et al. 2021) built on regional volumetrics and white matter hyperintensities (WMH). We investigated internetwork connectivity based on 21 FC networks extracted using group-independent component analysis (ICA) on resting-state functional MRI (rsfMRI) data of the UK Biobank study (Miller et al. 2016). Additionally, fractional anisotropy (FA) maps derived from diffusion tensor imaging (DTI) data from the UK Biobank (Miller et al. 2016) were used to measure WM microstructural integrity. The mean FA values were extracted within 48 WM tracts using the Johns Hopkins University tract atlas. We used linear regression to associate the Smile-GAN subgroups with the 210 internetwork FC and 48 FA features, adjusting for age, sex, and subgroup labels.

Results: The three subgroups of brain volumetric measures displayed consistent patterns relative to the reference group A0 across the four age intervals: typical brain agers (A0) with mild atrophy and WMH load, and two accelerated aging subgroups, one with elevated WMH burden and vascular risk factors (VRF) enrichment but moderate atrophy (A2); and a second with diffuse severe atrophy, probably driven by lifestyle factors, and modest WMH load (A3) (Figure 1). Given the subgroup consistency across the four age intervals, functional connectivity and fractional anisotropy were examined in the entire 45-85 years age range. Internetwork connectivity analysis (N=19,143; 47% males) revealed that A3 had the most significant differences relative to the reference A0 group. We observed increased connectivity for several pairs of networks, such as the default mode - motor, somatosensory - occipital visual, and dorsal attention - occipital visual networks, and decreased connectivity for other pairs, such as the default mode - frontotemporal, subcortical - frontotemporal, and occipital visual - fronto-insular-parietal networks (Figure 2A). Our results align with the literature showing both increased (Betzel et al. 2014; Grady et al. 2016) and decreased (Onoda, Ishihara, and Yamaguchi 2012; Huang et al. 2015) internetwork connectivity, uncovering a complex functional reorganization of the brain with aging. Regarding the fractional anisotropy analysis (N=3,443; 48% males), consistent with the known associations of WMH and VRF (Power et al. 2017; Hannawi et al. 2018; Wassenaar et al. 2018).
with the WM integrity, the A2 subgroup showed significant microstructural WM integrity disruption relative to A0 for 41 tracts, with the most prominent disruption observed in posterior thalamic radiation, corona radiata, superior fronto-occipital and longitudinal fasciculus, and anterior limb of the internal capsule (Figure 2B).
Conclusions: The neuroanatomical heterogeneity of brain aging was modeled with subgroups designated by regional atrophy and WMH load in a multi-cohort cognitively unimpaired population. The subgroup characterized by elevated WMH burden and presence of VRF was associated with severely disrupted white matter integrity, while the subgroup with widespread atrophy underwent multiple changes in rsfMRI internetwork connectivity.

References

Poster No 1182

Habenula functional connectivity predicts individual sleep in healthy adults: A 5.0 T fMRI study

Lei Gao1

1Wuhan University, Wuhan, Hubei

Introduction: Sleep is an evolutionarily conserved behavior in animals and humans, which plays crucial role in strength recovery, memory consolidation, synaptic homeostasis, and waste clearance from the nervous system. (Verweij et al., 2014) Brain connectivity encoding individual sleep regulation may be rooted in small, evolutionally conservative nuclei, for example, the habenula (Hb). (Namboodiri et al., 2016) (Killgore, 2013) The habenula (Hb) is a phylogenetically brain region in a small structure with a volume of 31-36 mm3 and its accurate outlining has been a challenge on conventional functional imaging. (Aizawa et al., 2013) Despite in small size, the habenula acts as a critical neuroanatomical hub that regulates behavioral responses to pain, stress, anxiety, reward and sleep. (Boulou et al., 2017) It has been proven that intersubject variability in sleep predicts resting fMRI functional connectivity. (Li et al., 2020) Herein, we investigate the potential role of Hb in sleep-related attention and memory loss.

Methods: 2.1 Participants The research comprised 267 healthy volunteers without DSM-V axis 1 illnesses. Sleep and water intake during the night before the MRI were self-reported. 2.2 MRI data MRI data were collected at Zhongnan Hospital of Wuhan University utilizing a 5.0 T MRI (uMR Jupiter, UH, China) included: (1) 3D T1 (slice thickness 0.7 mm, 250 sagittal slices); (2) field map; (3) resting-state BOLD (TR = 1.6 s, multiband factor = 5, slice thickness 1.6 mm, no gap, 85 axial slices, 300 functional volumes); (4) DTI data (99 axial slices, 1.05 mm slice thickness, b values = 0, 1020, and 2025 s/mm2) in 32 directions. 2.3 Self-reported questionnaire Before the MRI scan, participants completed an online questionnaire about their sleep hours previous night, the average sleep time in the preceding three months, and their 24-hour alcohol, tea, and coffee use. Two blinded neurologists performed neurobehavioral examinations. 2.4 Habenula segmentation The Hb can be divided into lateral (LHb) and medial (MHb) parts. Using the ST MRI and various scanning sequences, including T1-3D (0.4 mm*0.5 mm*0.5mm), T2-3D, 3D T2-FLAIR, and MTC, particularly, the MTC sequences are sensitive to neuromelanin and suitable for the outlying of the boundaries. Two senior neuroradiologists segmented the Hb from LHb and MHB. 2.5 Hb functional connectivity Hb functional connectivity was performed using the standard processing steps in the CONN toolbox (Ver 22a; https://www.nitrc.org/projects/conn). 2.6 Hb structural connectivity Hb structural connectivity was obtained using DSI Studio. 2.7 Metanalytical mapping and functional decoding of the Hb To gain a deeper understanding of the coupling network systems and functional roles associated with the identified clusters, we utilized the NeuroSynth.
Results: We have identified that the lateral and medial portions of the Hb are structurally connected to the insula and ventral prefrontal cortices. Functionally, the lateral and medial portions of the Hb are anticorrelated to the visual and salience networks. In the association analysis with individual sleep amounts, we found that average sleep amount rather than last night’s sleep time predicted the anticorrelation between the visual and salience networks. Further lifespan trajectory analysis revealed that these anticorrelations are age-dependent.

Conclusions: This high-resolution functional and structural imaging of the Hb and its association with individual sleep suggest the critical role of the Hb in the regulation of cognitive and emotional processes. Our work is the first to link the habenula to sleep in a high-resolution, large-sample population of healthy people with a lifespan trajectory. It reveals the brain underpinnings of sleep regulation and provides insight into associated sleep problems.

References
are discernible differences between sexes in the clinical risk factors influencing brain atrophy and/or cognitive decline by aging have not been understood so far. This study aims to underscore the impacts of modifiable risk factors in brain atrophy and cognitive impairment in middle-to-old-aged general population, with the emphasis on sex differences between men and women.

Methods: A total of 1,227 participants between the ages of 49 to 80 were enrolled in the Korean genome and epidemiology study (KoGES), which provided the data for this population-based cohort study. The comprehensive evaluator methods including biochemical, metabolic, psychiatric assessment as well as whole night polysomnography & T1-weighted magnetic resonance imaging (MRI). Sleep habits by sleep efficiency (%) scores and Beck’s Depression Inventory (BDI) for depressive symptoms. Physical activity was evaluated using metabolic equivalent of task (METs) to assess intensity. Analysis of covariance (ANCOVA) was utilized to interaction effects, with the aim of discerning potential sex differences in the process of brain aging. In addition, mediation analyses were performed after adjusting demographic and clinical factors to find out the mediating effects of each risk factor in between age-associated cognitive decline in each sex.

Results: Risk factors in cognitive decline for females are physical activity, sleep deficiency, depression, and menopausal changes. The analysis of covariance (ANCOVA) demonstrated a reduction in central cingulate cortex volume in postmenopausal compared to menopausal and pre-menopausal groups. Additionally, simple mediation model highlighted, age had direct effects on executive function tests, with indirect path via Sleep efficiency and depressive symptoms (BDI) respectively. Similarly, physical activity, as a mediator showed significant indirect effects in age related gray matter volume changes. In males, the change in cognitive function according to aging does not differ by education level, while for female, the group of under middle school and graduate showed a steep decline in cognitive function in the age of 65 or older.

Conclusions: Our findings suggest risk factors for accelerated brain aging in female. More specifically females are more vulnerable to early brain aging attributable to factors such as physical activity, sleep deprivation, menopausal transition and psychological, education level influences. These changes highlight the significance of improving lifestyle choices and identifying factors for preserve brain health in each sex.

References
Poster No 1184

Quantifying spatially-specific impact of white matter hyperintensity on cortical atrophy in aging

Ami Tsuchida¹, Iana Astafeva¹, Victor Nozais², Philippe Boutinaud², Stéphanie Debette¹, Marc Joliot¹

¹Bordeaux University, Bordeaux, Gironde, ²Fealinx, Lyon, Rhône

Introduction: Covert cerebral small vessel disease (cSVD) is common among neurologically asymptomatic older adults, and is a leading cause of stroke and dementia¹. Among the established markers of cSVD, white matter hyperintensity (WMH) is one of the most frequently observed. Although less specific, brain atrophy is also considered as the recurring pathology in cSVD, and it has been hypothesized that it may occur as a secondary degeneration through the damaged white matter tracts². However, the direct evidence for the effects of WMH on atrophy in the connected grey matter (GM) regions is lacking. Here we present a preliminary analysis from 800 UK Biobank subjects spanning the age range of 40 to 80 years, testing the regionally-specific effects of WMH on the GM volumes by deriving subject-specific disconnectome maps from the WMH masks.

Methods: Two hundred UK Biobank subjects (50% female) were randomly selected from each decade of age-range from 40 to 80 years, based on the availability of both WMH lesion map and FreeSurfer-derived grey matter volumetric phenotypes computed by the UK Biobank neuroimaging pipeline⁴. Disconnectome maps were computed using the individual WMH mask as a lesion mask in QuickDisco tool in Functionnectome package⁵. The mean connectivity scores were extracted for each cortical region of DKT atlas (31 regions per hemisphere) using subject-specific FreeSurfer-derived parcellations (Fig. 1). For each region, we tested the impact of WMH-derived disconnectivity scores on the GM volume, in a linear model with GM volume as a dependent variable and age and disconnectivity score as main predictors, and sex and total intracranial volume as additional covariates. We also replaced the disconnectivity score with the overall WMH load to gauge whether disconnectivity derived from WMH rather than the overall load per se had stronger association with regional GM volume variations across subjects.

Results: Fig. 1 shows the age-related variations in the overall WMH volumes across the sampled population, and the examples of WMH and disconnectome maps derived from them in subjects with extensive or limited WMH. Fig. 2A shows the median disconnectivity scores across DKT atlas regions, indicating a higher disconnection in frontal region, likely as a result of WMH caps commonly found in anterior periventricular regions. The analysis of relative effects of age and WMH disconnectivity on regional GM volume revealed a wide-spread negative effect of age on cross-sectional GM volume variations (Fig. 2B). In contrast, the negative effects of WMH disconnection were limited to a few cortical regions that were somewhat right-lateralized after Bonferroni correction for the 62 regions tested (Fig. 2C). There were paradoxical positive effects on bilateral pericalcarine region, which may indicate erroneous over-segmentation of this cortical region in the proximity of posterior horn WMH. Importantly, repeating the same analysis by replacing the region-specific disconnectivity score with the global WMH load failed to show any significant impact of WMH on GM cortical volume after multiple comparison corrections.

![Figure 1. Age-related changes in the WMH load distributions in the 800 UK Biobank subjects and examples of WMH-derived disconnectivity scores from subjects at two extreme ends of WMH distribution.](image)
Conclusions: Our findings revealed a relatively circumscribed association of WMH-derived disconnectivity scores to the individual variability in the regional GM volumes and wide-spread age effects, suggesting that age-related GM atrophy may be largely independent of WMH-derived disconnection. Nonetheless, disconnectivity scores showed more robust associations with regional GM volumes than global WMH load. Future work is needed to clarify relative contributions of cortical atrophy and WMH disconnectivity to the age-related cognitive decline.

References

Poster No 1185
Sex Differences in the Impact of Obstructive Sleep Apnea on Age-Related Brain Aging: A KoGES Study
Maithreyee Devi, aram cho, Song E Kim, Regina EY Kim, Soriul Soriul Kim, Seung Ku Lee, Hyeon Jin Kim, Chol Shin, Hyang Woon Lee

1Computational Medicine, System Health Science & Engineering Program, Ewha Womans University, Seoul, South Korea, 2Nursing Science, System Health Science & Engineering Program, Ewha womans university, Seoul, South Korea, 3Departments of Neurology, College of Medicine, Ewha Womans University, Seoul, South Korea, 4Institute for Human Genomic Study, College of Medicine, Korea University, Ansan, South Korea, 5Department of Neurology, College of Medicine, Korea University, Ansan, South Korea, 6Departments of Neurology,Computational Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea

Introduction: The intrinsic connection of obstructive sleep apnea (OSA), a sleep-breathing disorder with accelerated cognitive aging, has been the center of interest in recent studies. Individuals with obstructive sleep apnea are found to exhibit structural and functional brain alterations. Furthermore, the pattern of brain aging differs by sex and/or gender. This study targets to investigate sex/gender-specific changes in the complex relationships between age and cognitive function, underscoring the impact of the severity of OSA on brain atrophy and cognitive impairment among middle- to elderly-aged healthy individuals.

Methods: In this population-based cohort study, data were provided by the Korean Genome and Epidemiology Study (KoGES), where approximately 2,457 individuals (50.1% men) aged between 49 and 80 years were participated. For the study purpose,
participants were categorized into four age groups: ~55 years (36.5%), 56-60 years (31.9%), 61-65 years (13.6%), and ~66 years (18.1%). The comprehensive evaluation methods include whole-night polysomnography, neuropsychological assessment, and T1-weighted magnetic resonance imaging (MRI). OSA was assessed by apnea-hypopnea index (AHI) scores. An analysis of covariance (ANCOVA) interaction effects was done to determine sex differences in the severity of OSA in various age ranges. In addition, multiple mediation analyses were performed after adjusting demographic and clinical factors to find out the mediating effects of OSA in between age-associated cognitive declines.

Results: Analysis of covariance (ANCOVA) showed a significant interaction effect between the sex* age subgroups on AHI (F:4.56, p:0.003), suggesting the association between sex and AHI scores is influenced by age. Notably, scores of AHI increase were generally higher for men in most age groups, showing a tendency for accelerated deterioration in older adulthood. Additionally, in men, multiple mediation results revealed the significance of AHI alongside total gray matter volume, particularly involving cortical areas in the parietal and cerebrum, as mediators between age and cognitive scores, including verbal fluency, mini-mental state examination (MMSE), and trail-making test, respectively. whereas there is no significance for women.

Conclusions: Our findings suggest the sex-specific effects of obstructive sleep apnea on accelerated brain aging, as demonstrated by MRI volumetry across diverse age groups. Notably, this study highlights the complex relationships among OSA severity on brain aging and how these factors are influenced by age and sex. Men are more vulnerable to the detrimental effects of OSA related to early cognitive decline, affecting a wide range of brain areas, including the cortical gray matter. These findings highlight the significance of improving lifestyle choices to maintain optimal brain health, particularly in men, who tend to have greater rates of hazardous lifestyle habits and substantial cardiovascular co-morbidity. However, further investigation is warranted to unravel the underlying factors contributing to these sex-specific differences.

References

Poster No 1186

Functional reorganization of the prefrontal cortex in aging

Ping Wang1, Zi-Xuan Zhou1, Peng Gao2, Hai-Yan Hou3, Jia-Xin Zhang3, Hui-Jie Li3, Xi-Nian Zuo4

1Beijing Normal University, Beijing, Beijing, 2Taiyuan University of Technology, Taiyuan, Shanxi, 3Institute of Psychology, Chinese Academy of Sciences, Beijing, Beijing, 4Xi-Nian Zuo, Professor, Beijing Normal University, Beijing
Introduction: The posterior-to-anterior developmental trajectory of brain structure leads to posterior-to-anterior reorganization of brain function in aging (Grydeland et al., 2013), with the relative preserved prefrontal cortex compensating for decline in primary sensory cortex through increased functional activity (Davis et al., 2008). However, the prefrontal cortex itself undergoes differential subregional decline, with the rostral prefrontal cortex showing relative preservation throughout life (Bethlehem et al., 2022). We propose a posterior-to-anterior functional organization in the prefrontal cortex, with the preserved rostral prefrontal cortex compensating for decline in the dorsolateral prefrontal cortex, located in the middle and posterior regions and considered as the apex of the prefrontal cortex’s functional hierarchy (Badre et al., 2018). To test this hypothesis, a gamified working memory training was conducted with older adults, targeting the dorsolateral prefrontal cortex, while the rostral prefrontal cortex is considered lack of involvement in working memory (Mansouri et al. 2017). If no functional reorganization occurs, the training would affect the dorsolateral prefrontal cortex and related brain regions, leaving the rostral prefrontal cortex unaffected. Conversely, if a posterior-to-anterior shift exists, the training would not only affect the dorsolateral prefrontal cortex but may also induce changes in the rostral prefrontal cortex.

Methods: We developed a gamified working memory intervention based on the classic n-back task and created an active control game with similar features. Seventy-six older adults were randomly assigned to either the working memory intervention group (n-back game) or the active control group (0-back control game). All participants completed 12 1-hour training sessions over 6 weeks. Structural magnetic resonance imaging (MRI) and resting-state functional MRI scans were conducted before and after the intervention. Cognitive assessments targeting working memory and other cognitive domains, such as processing speed, attention, visuospatial ability, episodic memory, and inhibition, were administered at pretest, posttest, and six months after the intervention. Changes in structure (cortical thickness, surface area and volume) and function (surface-based regional homogeneity and functional connectivity) of each subregion in prefrontal cortex, as well as changes in cognitive functions induced by the training was examined. The multivariate pattern classification analysis was conducted to test the consistency and discriminative power of changes induced by the intervention in both the structure and function of the prefrontal cortex, as well as working memory performance.

Results: The results indicated that the working memory, inhibition, visuospatial processing, and episodic memory of older adults were all significantly improved after the intervention. The MRI analyses revealed thickening of the left frontal pole (part of rostral prefrontal cortex) in the prefrontal cortex and weakened regional homogeneity and functional connectivity with the left inferior temporal gyrus. Further statistical learning analytics showed that these neurocognitive changes might be the neurobiological mechanisms underlying the working memory improvements due to the current gamified digital working memory intervention.

Figure 1. Parcellations of the prefrontal cortex from the Desikan-Killiany cortical atlas (a), significant cortical thickness changes in the left frontal pole (b), 2dReho changes in the left frontal pole (c), and functional connectivity changes between the left frontal pole and the left inferior temporal gyrus (d)
Conclusions: The training-induced structural and functional changes observed in the frontal pole, rather than the typically assumed dorsolateral prefrontal cortex, suggest that the frontal pole may play a crucial role in working memory in aging. This finding implies a functional reorganization of the prefrontal cortex with increasing age. The current study provides preliminary evidence for a potential posterior-to-anterior functional shift within the prefrontal cortex, highlighting the importance of the rostral prefrontal cortex as a critical biomarker for maintaining normal cognitive function in older adults.

References

Poster No 1187
Brain age based signatures as a tool for differentiating neurological conditions
Rafael Navarro-González1, James Cole2,3, Rodrigo De Luis-García1, Santiago Aja-Fernández1
1Laboratorio de Procesado de Imagen, UVA, Valladolid, España, 2Centre for Medical Image Computing, UCL, London, United Kingdom, 3Dementia Research Centre, UCL, London, United Kingdom

Introduction: Brain age, a measurement derived applying machine learning to brain MRI images for age prediction, has demonstrated being valuable in characterizing diseases like Alzheimer’s and multiple sclerosis2-3. However, it is a reductionist approach which simplifies all the information of an image into one number, the predicted age. Further information about different diseases could be captured if the image is transformed into a brain age signature which could be later used as the input of a classification task among different diseases. In this work, we study this approach by training a brain age model.
on the output of the brain volume segmentation of a manifold of T1w MRI images from healthy adults. The selected features for the brain age task were then used for a classification task between healthy adults, chronic schizophrenic and chronic migraine patients.

Methods: A total of 2850 T1w MRI images from different free access datasets and 191 local data acquisitions have been used for the brain age task, while 65 schizophrenic patients, 74 chronic migraine patients, from our own institution and 94 healthy individuals, subset of the healthy patients selected for the study, ages between 18 to 60, were selected for the classification task (See Table 1). FastSurfer, a deep learning whole brain segmentation method trained on the Desikan-Killiany atlas, was utilized to segment the dataset acquisitions and feature extraction. A total of 624 morphological features were calculated over the segmented regions of interest (ROIs) encompassing area, volume, curvature and thickness of cortical and subcortical brain ROIs. The dataset was split into training and testing (80/20 ratio). Training involved a three-fold cross-validation with a Multilayer perceptron (MLP) regressor. In each fold, outliers (defined as 2.5 and 97.5 quantile values) were removed, data was normalized (range -1, 1) and feature selection was performed. Three feature sets (25, 50, and 100 features) were created using a two-step method: initial filtering for the top 20% of features by mutual information with age, followed by refinement with a forward feature selection algorithm using Gaussian mixture models. The same process was used for an MLP classifier. Hyperparameters for both MLPs were determined during validation, and models were retrained on the entire training cohort and tested on test data. Brain age prediction was evaluated using mean absolute error (MAE), Pearson’s correlation (r), and R-squared (R²), while classification performance was measured by Precision, Recall, Area Under the Curve (AUC), and Matthew’s Correlation Coefficient (MCC). Following the same scheme, another MLP was trained in selecting features with the disease label as the target. A comparison between the brain age-based classification and this procedure was performed.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>n</th>
<th>Age (years, mean)</th>
<th>Age σ</th>
<th>Age range</th>
<th>Sex (M/F)</th>
<th>Scanner B0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoRR</td>
<td>894</td>
<td>25.03</td>
<td>9.23</td>
<td>18-60</td>
<td>448/454</td>
<td>3.0T</td>
</tr>
<tr>
<td>SALD</td>
<td>383</td>
<td>30.10</td>
<td>14.36</td>
<td>18-60</td>
<td>140/243</td>
<td>3.0T</td>
</tr>
<tr>
<td>CowCon</td>
<td>380</td>
<td>41.32</td>
<td>11.33</td>
<td>18-60</td>
<td>187/193</td>
<td>3.0T</td>
</tr>
<tr>
<td>IKI</td>
<td>376</td>
<td>29.60</td>
<td>11.69</td>
<td>19.98-55.99</td>
<td>178/196</td>
<td>1.5T and 3.0T</td>
</tr>
<tr>
<td>OASIS-2</td>
<td>211</td>
<td>31.62</td>
<td>13.42</td>
<td>18-60</td>
<td>69/122</td>
<td>1.5T</td>
</tr>
<tr>
<td>Private Dataset</td>
<td>191</td>
<td>32.74</td>
<td>11.46</td>
<td>18-60</td>
<td>83/108</td>
<td>3.0T</td>
</tr>
<tr>
<td>NatureCog</td>
<td>182</td>
<td>24.28</td>
<td>8.33</td>
<td>18-60</td>
<td>78/104</td>
<td>3.0T</td>
</tr>
<tr>
<td>DLIR</td>
<td>170</td>
<td>39.27</td>
<td>11.67</td>
<td>26.57-59.98</td>
<td>60/110</td>
<td>3.0T</td>
</tr>
<tr>
<td>NRI</td>
<td>138</td>
<td>35.50</td>
<td>12.97</td>
<td>18-60</td>
<td>51/87</td>
<td>3.0T</td>
</tr>
<tr>
<td>Agerisk</td>
<td>118</td>
<td>35.94</td>
<td>12.29</td>
<td>10.23-58.08</td>
<td>55/63</td>
<td>3.0T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regression dataset</th>
<th>3641</th>
<th>33.26</th>
<th>13.10</th>
<th>18-60</th>
<th>1600/1361</th>
<th>1.5T and 3.0T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy Patients</td>
<td>94</td>
<td>33.23</td>
<td>13.56</td>
<td>18-60</td>
<td>43/51</td>
<td>3.0T</td>
</tr>
<tr>
<td>Chronic Schizophrenic</td>
<td>65</td>
<td>36.27</td>
<td>9.94</td>
<td>19-55</td>
<td>28/37</td>
<td>3.0T</td>
</tr>
<tr>
<td>Chronic Migraine</td>
<td>74</td>
<td>37.84</td>
<td>9.70</td>
<td>18-60</td>
<td>68/66</td>
<td>3.0T</td>
</tr>
</tbody>
</table>

| Classification dataset | 233 | 36.10 | 11.72 | 18-60 | 86/147 | 3.0T |

Table 1: Datasets used in this work. All datasets are available online, except for the private dataset and the chronic migraine and chronic schizophrenic group. Datasets have been acquired from different scanners and vendors, with different B0 field and acquisition parameters.

Results: The models trained on 100 features were selected since they showed the best performance during validation. Validation results for the brain age task presented an MAE, r and R² of 5.15 years 0.85, 0.70, respectively using 100 features, while test results were 5.08 years, 0.87 and 0.73 (See figure 2C). Validation for the classification task using the 100 brain age signature showed the next results:metrics among the 0.6-0.7 level Prec = 0.70, recall = 0.67, AUC = 0.83, MCC = 0.51 (see figure 2D). While on the test group results were, Prec = 0.63, recall = 0.63, AUC = 0.78, MCC = 0.45. Furthermore, these results
are similar, although slightly inferior, to a classification task based on features selected on the disease labels (Test results 100 features: Prec = 0.64, recall = 0.66, AUC = 0.81, MCC = 0.49).

Conclusions: Features selected for brain age estimation effectively classify conditions such as schizophrenia and chronic migraine. These brain age signatures accurately predict brain age and capture disease degeneration patterns. Future work could apply these methods in broader clinical settings, enhancing understanding of neurodegenerative diseases.

References

Acknowledgements
This work was supported by Ministerio de Ciencia e Innovación of Spain with research grants PID2021-124407NB-I00, TED2021-130758B-I00 and PRE2019-089176.

Poster No 1188
Multimodal phenotyping of successful cognitive aging
Eoin Molloy1,2, Niklas Behrenbruch2, Svenja Schwarck1,2, Beate Schumann-Werner1,2, Berta Garcia-Garcia2,3, Niklas Vockert2, Barbara Morgado3, Michael Rullman4, Patrick Mueller1,2, Anne Hochkeppler1, Larissa Fischer2, Kathrin Baldauf2, Peter Schulze2, Andrew Stephens5, Marianne Patt4, Andreas Schildan4, Hermann Esselmann5, Jens Wiltfang6,7,8, Henryk Barthel4, Osama Sabri4, Michael Kreßl1,2, Emrah Düzel1,2, Anne Maass2
1Otto von Guericke University Magdeburg, Magdeburg, Germany, 2German Center for Neurodegenerative Diseases, Magdeburg, Germany, 3University Medical Center Göttingen, Göttingen, Germany, 4University Hospital Leipzig, Leipzig, Germany, 5Life Molecular Imaging, Berlin, Germany, 6Department of Psychiatry and Psychotherapy, Medical University Göttingen, Göttingen, Germany, 7German Center for Neurodegenerative Diseases, Göttingen, Germany, 8University of Aveiro, Aveiro, Portugal
Introduction: While some memory decline in old age is “normal”, there is a small group of “SuperAgers” that maintain mnemonic performance in older age. While many approaches have attempted to study this, exactly how these individuals maintain performance is unclear, with key questions relating to how the brains of these older adults differ in terms of tau load and brain structure. Using a multimodal approach including neuroimaging, blood, and fitness markers, we aim to test which factors are related to successful cognitive aging.

Methods: A sample of 166 cognitively normal (based on age-, sex- and education-adjusted scores on the CERAD neuropsychological battery) older adults age ≥ 60 years were included in the current analyses. Participants were on average 71 years old (SD=7.6), 43% female and highly educated (152 years). The sample is part of an ongoing study (SFB1436 - Neural Resources of Cognition). For all participants, we determined Abeta42/40 ratio from blood plasma (assay: Lumipulse G Fujirebio). T1-weighted images (0.8×0.8×0.8 mm3; N=89) were segmented with FreeSurfer, focusing on the medial temporal lobe (MTL; composite of entorhinal, parahippocampal and fusiform), anterior cingulate cortex (ACC) and whole brain thickness. We also determined temporal lobe tau burden with 60-minutes dynamic 18F-PI-2620 tau PET imaging (n=53). We calculated distribution volume ratio (DVR) images using Multilinear Reference Tissue Model2, with the inferior cerebellum as reference region. Cardiovascular fitness (aerobic capacity) and muscular capacity (hand grip strength, appendicular skeletal muscle mass, and walking performance) were measured in 95 participants. Measures of state and trait anxiety were available in 160 individuals based on self-reports (State-Trait Anxiety Inventory). To assess differences in tau pathology, brain structure, fitness or mental health measures related to “SuperAging”, we grouped individuals age ≥ 79.5 years into SuperAgers (based on delayed verbal recall performance at or above average normative values of 50-60 years) versus typical agers. In addition, we calculated a cognitive age gap (CAG) based on the difference between cognition-predicted age and chronological age. We derived cognition-predicted age with partial least square regression using 16 scores of different memory tests in a larger cohort of 187 older individuals with available cognitive data (see Figure 2A). In multiple regression models, we then assessed how CAG is related to Abeta/tau, brain structure, fitness and mental health measures covarying for chronological age, sex and education.

Results: Our sample included 37 individuals aged ≥ 79.5 years, of whom 18 were SuperAgers and 19 typical agers. SuperAgers and typical agers did not differ in age, sex, years of education, fitness measures, mental health measures (anxiety) or Abeta42/40 plasma ratio (all p-values>0.1). However, in the small subgroup with available PET data, SuperAgers (N=6) had less temporal tau burden than typical agers (N=8; t(12)=−2.9, p=0.01; Figure 1). In addition, SuperAgers trended towards higher ACC thickness (t(20)=2.0, p=0.06) with no differences in the other regions of interest (all p>0.5). In the whole sample, including participants between 60 and 89 years of age, lower CAG (i.e. younger cognitive age) related to less anxiety, higher hand grip strength, and higher cortical thickness in the MTL as well as whole cortex (all p<0.05; Figure 2B). There were no significant associations between CAG and Abeta42/40 or temporal lobe tau (p>0.1).

Conclusions: These are the first results from our ongoing study and suggest that SuperAgers have less temporal lobe tau and may have increased thickness in the ACC. These results tentatively support outcomes from previous studies. Furthermore, younger cognitive age is linked to better mental and physical health as well as higher global cortical thickness independent of education.
Are older adults meaner to others? Age differences in emotion-related social decision making

Hong-Zhou Xu1, Xue-Rui Peng1,2, Jing Yu1,3

1Faculty of Psychology, Southwest University, Chongqing, China, 2Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany, 3Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China

Introduction: In social interaction, there are often differences in emotional processing between young and older adults, such as the perception of others’ sadness (Löckenhoff, Costa Jr et al. 2008, Hayes, McLennan et al. 2020), which may affect emotion-related social decision making in older adults. With aging, brain functions related to social-emotional processing deteriorate in older adults (Dobrushina, Arina et al. 2020, Baez-Lugo, Deza-Araujo et al. 2023), and alterations in the function and structure of the medial prefrontal cortex are likely to influence their value representation in decision making (Samanez-Larkin and Knutson 2015). However, how these neural changes would affect emotion-related social decision making in older adults remains unresolved. Thus, a more comprehensive investigation is warranted to elucidate the nuanced connections between aging, others’ emotions, and the neural bases of social decision making.

Methods: Thirty-one young adults (aged 18~24 years) and 32 older adults (aged 59~78 years) were recruited to perform a variation of the dictator game task in the fMRI scanner (Figure 1A). In this task, we used neutral and sad emotional facial pictures to manipulate the emotional characteristics of the recipients and to investigate how others’ emotions influence social decision making in young and old individuals from both behavioral and neurological perspectives. After the experiment, participants also completed a questionnaire outside of the scanner and were asked to self-report how much they had allocated. Repeated measures analysis of variance was used to analyze the behavioral data, while representational similarity analysis was used to analyze the fMRI data. Mediation analysis was also used to examine the mediating role of neural representation between age and allocation behavior. Given the significant differences in education between young and older adults, this was controlled for as a covariate in all analyses.
Results: Behavioral results showed that young adults’ allocation behavior was regulated by others’ emotions, as young adults allocated more money to sad recipients than to neutral recipients, whereas there was no significant difference in older adults’ allocation behavior (Figure 1B&1C). Neurally, the similarity scores of the neural representation in the right insula, the left dorsomedial prefrontal cortex (DMPFC), left caudate and left anterior cingulate cortex (ACC) were higher in young adults than in older adults, but the similarity scores in the right angular gyrus in older adults was higher than in young adults (Figure 2A). Besides, the neural representation between the right insula and the DMPFC played a significant mediating role between age and allocation behavior (Figure 2B).

Figure 1. (A) The experimental procedure and types of recipients. (B) The behavioral results in scanner. (C) The behavioral results outside scanner.
Conclusions: In conclusion, the present study indicated that aging weakened the regulatory effect of others’ emotions on social decision making from behavioral and neural perspectives. More importantly, the neural representation between the right insula and the left DMPFC played an important mediating role between age and allocation behavior. Considering that the insula and the DMPFC had important roles in processing social emotions and representing value for others, respectively (Rogers-Carter and Christianson 2019, Tomova, Saxe et al. 2020, Gangopadhyay, Chawla et al. 2021). One possible explanation is that the diminished moderating effect of others’ emotions on older adults’ decision making may be related to their reduced ability to process sadness and further affect their value representation for others, rather than because older adults are more miserly. Therefore, this study provided a potential neural pathway to explain age differences in emotion-related social decision making.

References
Quantifying late-life alterations in brain white matter microstructural properties

Rowena Chin¹, Carissa Cocuzza¹, Avram Holmes²

¹Yale University, New Haven, CT, ²Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ

Introduction: Understanding brain aging requires characterizing how and where brain changes vary with age. White matter (WM) is highly relevant to aging: late-life cognitive decline may partly be caused by microstructural deterioration of the brain’s connective pathways through processes such as axonal demyelination that reduces information transfer efficiency across networks. Although evidence exists for cognitive dedifferentiation and in task-based fMRI work, there is a gap regarding the dedifferentiation hypothesis in whole brain neural aging, which suggests that interindividual differences in brain structure and function become increasingly related in older age. This stems from a common cause theory of neurodegeneration which posits a general system-wide breakdown of physiological function shifts overall levels of integrity across brain areas. Given these sources of variance are shared across brain regions, the resultant signature should be a stronger relationship among regionally distributed neuronal measures with age. Using a large-scale cohort study, we seek evidence for structural dedifferentiation from mid to old age, which could be an important marker of an aggregation of deleterious effects operating on distributed brain connections.

Methods: Diffusion metrics for structural white matter tracts were derived from the UK Biobank, a large-scale population-based cohort (N=29,862). We first undertook an analysis of age associations by conducting regression analyses independently across the 9 diffusion measures for 48 white matter tracts. Quantitative variables were z-transformed. The effect of age on the respective white matter diffusivity measures were estimated, covarying for height, weight, sex, age, age2, age*sex, combined gray/white matter volume, T1 inverse SNR, number of dMRI outlier slices, diastolic and systolic blood pressure, head position coordinates (X, Y, Z), and UKB imaging acquisition center. Following this, we examined de-differentiation of white matter microstructure, i.e., do white matter tracts tend to lose their individuality in older age? Cross-sectionally, we tested the de-differentiation hypothesis that microstructural properties of WM tracts across the brain become more similar at later ages across distributed brain connections.

Results: Older age was significantly associated with lower coherence of water diffusion (FA; β≥-0.436), lower neurite density (ICVF; β≥-0.284), lower tract complexity (OD; β≥-0.167) and conversely, with a higher magnitude of water diffusion (MD; β≤0.426) and ISOVF (β≤0.476) across whole brain WM tracts (Figure 1). Across a range of varying diffusion measures, these results broadly indicate a decline in WM microstructural health with older age. We next present a series of six heatmaps (Figure 2) to illustrate the increasing relatedness of white matter tract microstructure across six age groups with approximately “5 year intervals (age range: 45-75 years). Age groups created were respectively: 44.99–50.00 years (n=1091, M=49.1±1.05); 50.01–54.99 (n=4120, M=53.2 ±1.39); 55.00–60.00 (n=5174, M=58.1 ±1.41); 60.01–65.00 (n=6378, M=63.0±1.42); 65.01–70.00 (n=7182, M=68.0±1.41); 70.01–78.00 (n=6055, M=73.6±2.34). Qualitatively stronger associations among tracts with increasing age were evident for FA, MD, and NODDI measures such as ICVF, ISOVF and OD.
Conclusions: Consistent with prior work, spatial distribution of age associations across whole brain WM depicts significant age associations across multiple diffusivity measures. Higher covariation across WM microstructural tract phenotypes was observed with age increments, supporting age-related de-differentiation and a decrease in prominence of interindividual tract variation. Future analyses including examining whole brain functional networks could provide converging evidence for neural de-differentiation and if these vary across networks. Probing cellular mechanisms and the role of neurotransmitter systems underlying this increasing generality may shed light on the brain basis of aging.

References
ABSTRACTS

Poster No 1191

Mind-body and physical training on cognitive functions of elderly with mild cognitive impairment

Sam Chi Chung Chan1, Wayne L. S. Chan1, Tom C. W. Tsoi1, Michael K. C. Yeung2, Sunny H.W. Chan3

1The Hong Kong Polytechnic University, Hong Kong, 2The Education University of Hong Kong, Hong Kong, 3University of the West of England, Bristol, United Kingdom

Introduction: It has been shown that cognitive or physical training approaches could improve the cognitive functions of those with mild cognitive impairment (MCI)4. The effects of cognitive and physical trainings on cognitive, affective and physical functions of people with MCI have not been well studied. This study aimed to investigate the differential effects of the mind-body intervention (MBI) and physical exercises (PE) on cognitive, affective and physical functions of older adults with MCI in terms of neuropsychological measures and functional near-infrared spectroscopy (fNIRS).

Methods: Fifty-seven participants with MCI (mean age 68.3 (4.94)) were randomized into (1) 4-week MBI, (2) 4-week PE or (3) control group. Each participant was required to complete a series of neuropsychological and fNIRS before and after the completion of the group assigned. The neuropsychological measures were used to capture the between-group treatment effects, including Color Trails Test, Hong Kong List Learning Test, 10-meter walk test, 6-minute walk test. The participants were also engaged in emotional recognition task, N-back task, and single-task and dual-task walking while counting numbers backward. Frontal cortical activities were concurrently acquired using fNIRS.

Results: Repeated measures ANOVA showed significant group x time significance effect between the reaction time of exercise and control groups (F1,41=3.73, p=0.05) with exercise group performing 2-back task faster across time. It also showed marginal group x time significance at right VLPFC activation of the mindfulness and control groups (F1,24=6.02, p=0.022) with VLPFC activity reduced in the mindfulness group. Besides, Repeated measures ANOVA showed significant group x time interaction in accuracy rate of both exercise (F1,38=4.66, p=0.037) and mindfulness groups (F1,33=5.73, p=0.022) performing backward counting task. In terms of brain activations, repeated measures ANOVA showed significant group x time interaction at the right VLPFC in mindfulness group (F1,24=4.52, p=0.044). Repeated measures ANOVA showed significant group x time interaction in accuracy rate of mindfulness groups (F1,33=5.51, p=0.025) when performing dual-task with walking and backward counting. Repeated measures ANOVA showed significant group x time interaction at left OFC in the exercise group (F1,24=7.66, p=0.009).

Conclusions: This would suggest that mindfulness training was showed to enhance working memory function. Both exercise and mindfulness training would enhance sustained attention, as reflected in backward counting and executive function as shown in dual task. Mindfulness training may lead to more mental effort to monitor the level of attention as shown by higher activation of the VLPFC. Exercise may enhance to more executive as shown in increased OFC activation. Long-term effect of mindfulness and physical training could be further investigated in future studies.

References
Aging effects on task-based activity and functional networks during semantic processing and rest

Sandra Martin¹, Philipp Kuhnke², Curtiss Chapman³, Gesa Hartwigsen²

¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, ²Leipzig University, Leipzig, Saxony, ³MPI CBS, Leipzig, Saxony

Introduction: Semantic knowledge is essential for everyday human cognition, such as recognizing and using objects, or speaking and comprehending language. It is usually well preserved in healthy aging (Verhaeghen, 2003). However, semantic control processes, which guide semantic access and retrieval, decline with age (Hoffman, 2018). In light of the intact semantic knowledge system in healthy older adults, these changes have been attributed to declining cognitive control functions, which contribute to successful semantic processing when ambiguities need to be resolved or irrelevant information needs to be inhibited (DeDe and Knilans, 2016). A central question is how cognitive aging modulates the contribution of cognitive control networks to semantic processing in the brain. To date, most studies focused on large-scale network interactions at rest but little is known about the differences in network organization between rest and task states and their age-related modulation.

To address these questions, the current neuroimaging study explored the interaction between neural resources of domain-specific semantic processing and domain-general cognitive control in healthy young and older adults. We applied univariate task-based analyses and characterized whole-brain functional connectivity profiles during rest and semantic processing to explore the relationship between these states and their modulation through age.

Methods: 41 older adults (M: 66, SD: 3.17 years) and 43 young adults (M: 28, SD: 4.3 years) performed semantic judgment tasks (taxonomic or thematic judgments) on pairs of images (e.g. monkey and banana) during fMRI. A scrambled mirror judgment task was included as a non-semantic control task. Task-related whole-brain activation was investigated via two-level GLM analyses in SPM12. Individual time series of 400 parcels (Schaefer, 2018) were extracted for rest and task runs separately, while performing rigorous denoising. Whole-brain functional connectivity estimates were calculated across the time series using Fisher’s z coefficients. Matrices of rest and semantic processing were correlated within participants and an effect of age was explored via a t-test.

Results: fMRI analyses showed activity in a left-lateralized fronto-temporo-parietal network for semantic > non-semantic tasks (Fig. 1). In both groups, activation peaks lay within networks of semantic control and domain-general cognitive control. Interaction analyses showed that young adults more strongly activated left frontal and parietal regions, and fusiform gyrus, for semantic vs. non-semantic tasks than older adults. Older adults, on the other hand, showed increased activity only in right-hemispheric frontal and parietal regions (Fig. 1 bottom). Whole-brain functional connectivity analyses revealed enhanced connectivity in young relative to older adults during rest and task states (Fig. 2A). Whole-brain connectivity matrices for rest and semantic processing were strongly interrelated within participants (Fig. 2B). However, these correlations did not show an effect of age (t(82) = 1.08, p = 0.28).

Figure 1: Whole-brain activation for semantic vs non-semantic tasks. Upper figures show contrast Semantic > Non-semantic task in each age group.
Conclusions: Our results demonstrate age-related changes in functional activity during semantic processing, driven by neural reorganization. While young adults showed increased activity in domain-specific semantic regions in left frontal, parietal, and inferior temporal lobes, older adults showed upregulation in right-hemispheric frontal and parietal regions, which have been associated with the frontoparietal control network. These results illustrate the increased involvement of domain-general resources in the aging brain to maintain goal-directed task processing when cognitive demands are high (Martin et al., 2022). We did not detect age differences in the synchronization of whole-brain networks during rest and task demonstrating a relatively stable functional network architecture across age groups.

References

Poster No 1193

Brain change in healthy adults links with genetic Alzheimer’s risk and lifespan memory decline

James Roe¹, Didac Vidal-Piñeiro², Esten Leonardsen³, Øystein Sørensen², Håkon Grydeland¹, Olena Iakunchykova¹, Kristine Beate Walhovd³, Anders Fjell⁵, Yunpeng Wang¹

¹University of Oslo, Oslo, Norway, ²Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway, ³NORMENT; University of Oslo, Oslo, Norway, ⁴University of Oslo, Oslo, Oslo, ⁵Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Oslo

Introduction: Across healthy adult life our brain's undergo widespread structural change. Many of these changes occur gradually and are qualitatively similar to atrophy patterns that are accelerated in Alzheimer's disease (AD)¹², raising the possibility accelerated brain change across healthy adult life may relate to genetic AD-risk.

Methods: We modelled subject-specific structural brain change relative to that expected given age, in dense longitudinal adult lifespan data (1430 scans from 420 individuals aged 30 to 89 years; 2-7 timepoints). Using polygenic AD scores (PRS-AD) from four GWAS³⁶, we first tested PRS-AD associations with age-relative change in early Braak stage regions – namely hippocampus, entorhinal cortex, amygdala, and medial temporal cortex. Next, following the hypothesis that brain changes in ageing and AD are largely shared, we performed machine learning classification on brain change trajectories conditional on age in longitudinal AD patient-control data, to obtain a list of AD-accelerated features and model change in these in adult lifespan data, and test PRS-AD-change associations via multivariate methods. Lastly, we tested whether high PRS-AD individuals also high on a multivariate marker of brain change exhibit more longitudinal memory decline over their healthy adult life (30-89 years).
Results: Healthy individuals losing more brain volume than expected for their age in early Braak stage regions had significantly higher genetic risk for AD, beyond the risk conferred by APOE alone. We found PRS-AD was associated with a multivariate marker of accelerated change in many AD-accelerated features in healthy adults, and that most individuals above ~50 years of age are on an accelerated change trajectory in AD-accelerated brain regions. Directly applying the AD-derived model weights to healthy adult lifespan data also enabled detection of PRS-AD-change associations in healthy adults. Finally, high PRS-AD individuals also high on a multivariate marker of change showed more adult lifespan memory decline, compared to high PRS-AD individuals with less brain change.

Conclusions: The results support a dimensional account linking gradual lifespan brain changes with AD, suggesting AD risk genes speed up the shared pattern of ageing- and AD-related neurodegeneration that starts early, occurs along a continuum, and tracks memory change in healthy adults.

References

Poster No 1194
Age-related changes in the neural representation of naturalistic events
Selma Lugtmeijer¹, Djamari Oetringer², Linda Geerligs³, Karen Campbell⁴
¹University of Birmingham, Birmingham, West Midlands, ²Radboud University, Nijmegen, Gelderland, ³Donders Institute, Nijmegen, Gelderland, ⁴Brock University, St. Catharines, Ontario

Introduction: How do people segment ongoing experiences into separate events? Segmentation is a crucial process that improves understanding of current events (Zacks et al., 2001) and the recall of past events (Flores et al., 2017). Naturalistic stimuli like movies provide an opportunity to study event segmentation with functional magnetic resonance imaging (fMRI). Transitions between distinct neural states may be the mechanism underlying event segmentation (Baldassano et al., 2017). Neural state boundaries are organized in a hierarchical manner across the cortex, with short states in primary sensory regions, and long states in the prefrontal cortex (Geerligs, 2022). Perceived event boundaries overlap with neural state changes across the cortical hierarchy, especially state changes that are shared between many regions. An open question is whether these neural state changes related to event segmentation are stable across the adult lifespan.

Methods: Participants from a lifespan cohort (N = 577, age 18–88; Cam-CAN; Shafto et al., 2014) viewed an 8 min movie during an fMRI scan. To identify neural state boundaries, we applied the greedy state boundary search (GSBS; Geerligs et al., 2021). Participants were sorted into 34 age groups (Geerligs et al., 2021). GSBS identifies the optimal number of state boundaries based on brain activity time courses from spherical searchlights covering the entire cortex. This metric identifies the optimal number of state boundaries within a timeseries, such that the correlations of timepoints within a state are maximized and correlations of timepoints in consecutive states are minimized. Perceived event boundaries were based on an external dataset in which participants were asked to indicate when they felt one event ended and another began (Ben-Yakov and Henson, 2018). To determine the similarity between neural state boundaries and perceived event boundaries, we computed the boundary overlap defined as the number of timepoints where neural state and perceived event boundaries overlapped. We computed Spearman correlations (FDR corrected) to relate neural state duration and boundary overlap to age.

Results: The median duration of neural states differed greatly between brain regions. In line with Geerligs et al (2022), we observed particularly short neural states in visual cortex, early auditory cortex, and somatosensory cortex. The longest states were observed in high-level regions such as the medial prefrontal gyrus and anterior portions of the lateral prefrontal cortex.
(Figure 1). There was a significant effect of age on neural state duration, with longer states with increasing age. This effect was strongest in the visual cortex and medial and lateral frontal cortex (Figure 2). Brain regions throughout the cortical hierarchy, showed significant overlap between neural state boundaries and perceived event boundaries. In particular, we observed that the anterior cingulate cortex, dorsal medial prefrontal cortex, frontal gyrus, and anterior insula show strong overlap. This suggests that neural state changes in these regions are most likely to underlie the experience of an event boundary. There was no significant effect of age on the overlap between neural state boundaries and perceived boundaries.

![Image](image1.png)

Figure 1: The cortical hierarchy of neural state durations. Median state duration varied greatly between regions.

![Image](image2.png)

Figure 2: Effect of age on median state duration. Significant correlations after false discovery rate (FDR) correction.

Conclusions: Our results show a hierarchy of neural states during movie viewing in a large lifespan cohort. We found that neural state durations were longer in older than younger adults in many cortical areas. This suggests that neural dedifferentiation with aging is not only reflected in decreased category specificity (Koen and Rugg, 2019) but also decreased temporal differentiation. Critically, the relationship between neural states and perceived event boundaries remained similar with age, suggesting that neural state boundaries that may underlie the experience of distinct events remains stable across the adult lifespan. This is in line with findings that show that older adults identify the same event boundaries as younger adults (Reagh et al., 2020).

References

Poster No 1195

Predicting Brain Age from T2-FLAIR Captures White Matter Aging Associated with Cardiovascular Risks

Cong Zang¹, Elizabeth Haddad², Gilsoon Park¹, Sook-Lei Liew³, Neda Jahanshad⁴, Hosung Kim⁵

¹University of Southern California, Los Angeles, CA, ²USC, Marina Del Rey, CA, ³University of Southern California, San Diego, CA, ⁴Imaging Genetics Center, Keck School of Medicine of University of Southern California, Los Angeles, California, ⁵University of Southern California, Los Angeles, CA

Introduction: In brain age prediction (BAP) studies, machine learning, especially deep learning, is commonly used to estimate ‘brain age’ (BA). The brain age gap (BAG) is measured as the difference between predicted brain age and chronological age (CA) and offers a quantitative measure for assessing normal versus abnormal aging. Various modalities of brain MRI data, including T1, T2-FLAIR, functional, and diffusion MRI, provide distinct features of brain structure and function that change with aging. T1 MRI is optimal for evaluating morphological changes in the gray matter (GM) and white matter (WM), while the visibility of lesions, such as white matter hyperintensities (WMH) or ischemic stroke lesions, is more pronounced on T2-FLAIR⁸. Recently, studies have employed T2-FLAIR to predict brain age trajectories from the whole WM volume⁷ or WMH volumes⁵. However, they do not examine the relationship between the spatial distribution of WMH and aging. Given the distinctive association of cardiovascular diseases with WMHs in deep WM and periventricular WMHs⁴, we aimed to examine brain age as predicted by the spatial distribution of WMH. We modeled medial surfaces generated at various depths from the WM-GM boundary to the ventricles and projected T2-FLAIR intensity values onto these medial surfaces. These values at different depth surfaces were then inputted into graph convolutional networks (GCN) to predict brain age. We hypothesize that the BAGs derived from T2-FLAIR signals sampled at various depth levels within WM represent WM-specific brain aging and will be associated with cardiovascular risks.

Methods: The UK Biobank dataset was used in this study (Fig. 1A). T1 images were processed through the CIVET pipeline (Fig. 1B) to construct inner cortical surfaces (namely WM surfaces)⁹. SynthSeg was used to run whole-brain segmentation. We generated the Laplacian field vectors (LFV) from the WM surface to the ventricular boundary⁵,⁶. Vertices on the GM-WM boundary were deformed along the LFV, and medial surfaces were constructed using vertices at the given depth ratios (Fig. 1C) whose mesh topology was kept as the original GM-WM boundary (SurfStat, 2009). T2-FLAIR images were sampled onto the nearest neighboring vertices across all medial surfaces to form a feature matrix (5124 vertices x 9 surfaces, Fig. 1D). We then randomly split the dataset into i) training data (7631 subjects, age = 62.7±7.4 years, range 46-80) and test data (3370 subjects, age = 62.1±7.1 years, range = 48-77). The feature matrix was normalized to (0,1) before feeding it into the GCN. In this preliminary study, one BAG representing the whole WM was calculated. However, with this method, we could compute BAGs for different WM depth surfaces and left and right hemispheres separately. We then applied a general linear model, including risk factors, diseases and life habits as covariates. Results are Bonferroni-corrected by multiplying the original p-value with the number of comparisons (23 in total) made.
Results: Our WM-BAP model predicted brain age with a mean absolute error of 3.08 on test data. Various cardiovascular risk factors such as hypertension, high BMI, high WMH burden, high blood pressure, and high heart rate were associated with increased WM-BAG (Fig 2).
Conclusions: Our BAP model based on T2-FLAIR signals at various WM depths captured accelerated aging associated with cardiovascular risk factors and diseases. WMH at different depths may impact brain aging differently, e.g. periventricular WMH may be associated with mild parenchymal changes, possibly due to nonischemic causes such as ependymal gliosis, demyelination, and discontinuation of the subependymal lining, while deep WM WMH may show more severe parenchymal changes, considered to be of ischemic origin. This study establishes a foundation for WM BAP studies, which could enable future analyses of aging trajectories in specific depths of WM and their contribution to cerebrovascular diseases.

References
Disentangling the Effect of Brain Size from Sex Differentiated Aging Trajectories

Aliza Brzezinski-Rittner1,2, Mahsa Dadar1,2, Yashar Zeighami1,2

1McGill University, Montreal, Quebec, 2Douglas Mental Health University Health Centre, Montreal, Quebec

Introduction: The aging process leads to loss of cortical and subcortical gray and white matter volumes, and these changes are differentiated between females and males (Bethlehem et al., 2022). Although there are general aging trajectories, different biological and environmental factors lead to distinct outcomes, and sex is one of these factors. However, many volumetric sex differences found in the brain are induced by differences in brain size and disappear once adjusting for intracranial volume (Sanchis-Segura et al., 2020). In this work, we seek to disentangle the effects of sex from those derived by allometric differences in regional aging trajectories as estimated by deformation based morphometry (DBM), and volumetric data from the UK Biobank (UKBB) dataset.

Methods: Average cortical and subcortical DBM values (Zeighami et al., 2015) were extracted based on Schaeffer 1000 (Schaefer et al., 2018) and Xiao (Xiao et al., 2019)atlases, respectively. Precomputed FreeSurfer-based volumetric information was provided by the UKBB based on the DKT atlas (Desikan et al., 2006). Following visual quality control, data from 35,752 participants was included. We then created an age and total intracranial volume (TIV) matched sample of males and females (with a threshold of maximum one month of age difference at acquisition time and 0.2% difference in TIV) of 13,200 participants (referred to as matched sample), another sample of the same size matched just by age (age matched sample), and a non-matched sample of the same size (non matched sample). We modeled the sex differentiated aging trajectories for all the regions in each of the samples. We examined how the model estimates for different statistical contrasts change between these matching strategies and which coefficients were significant before and after multiple comparisons corrections for the different samples. We tested two different linear models to model aging trajectories. Model one tested the linear interaction between age and sex (ROI $\sim 1 + \text{age} \times \text{sex}$), while the second model also included a quadratic interaction (ROI $\sim 1 + (\text{age} + \text{age}^2)\times \text{sex}$). A series of paired t-tests were used to assess the significance of the differences in model estimates for each sample.

Results: For the DBM data, overall, model one fit the regional sex differentiated aging trajectories best according to the Akaike information criterion (AIC). We found that after multiple comparisons correction, the proportion of regions in which sex showed a significant effect in their aging trajectories was smaller in the matched sample than in the others (8.1% for the non matched sample, 3.2% for the age match sample and only 0.8% for the matched sample for the interaction between sex and age) (Fig. 1). Interestingly, only one subcortical region showed a significant effect of sex in the matched sample, namely the right nucleus accumbens. Model estimates were significantly different between the samples (Fig. 2, A). For the Freesurfer volumetric data, overall, model two fit the regional sex differentiated aging trajectories best according to the AIC. Model estimates were significantly different among samples (Fig. 2, B). For both DBM and the volumetric models, the linear effect of age was negative for all samples, showing a general trend of loss of gray matter tissue. The main effect of sex was very pronounced in the non-matched sample and even in the age-matched sample, however, after matching for age and TIV, this effect diminished and in some cases it disappeared altogether. Furthermore, in the case of the volumetric data, there was a sex differentiated effect of the quadratic term for age, however, in the matched sample, this trend diminished greatly, while the main effect of the quadratic term of age became stronger (Fig. 2).
Conclusions: Our results suggest that in most cases, the regional differences that can be found between females and males in aging trajectories can be attributed to the brain size differences between the two populations.
References

Poster No 1197
Relationship of fMRI-derived arousal patterns to healthy aging
Sarah Goodale¹, Shiyu Wang¹, Kate Wang¹, Catie Chang¹
¹Vanderbilt University, Nashville, TN

Introduction: In aging populations, daytime fatigue and sleepiness can be prominent and can impact everyday behavior and cognitive function¹. Moreover, aging can be accompanied by disruptions of subcortical brain regions that are implicated in the regulation of arousal. Investigating the whole brain correlates of arousal may, therefore, contribute to our understanding of age-related functional changes. In this study, we leverage subject-specific arousal patterns to investigate how arousal-related hemodynamic fluctuations across the brain correlate with healthy aging.

Methods: This study used 3T fMRI data (n = 499) from the Human Connectome Project – Aging dataset⁶, spanning an age range of 36-85 years. We use an established arousal “template” map⁶, created from simultaneous EEG-fMRI data, to extract subject-specific arousal maps for each subject using a method akin to dual regression⁸. We then evaluated how arousal patterns correlate to healthy adult aging using voxel-wise regression to evaluate their relationship. We co-varied for sex, race, education, and total intracranial volume. Significant clusters were identified using a threshold-free cluster enhancement from FSL Randomise⁹.

Results: Voxel-wise regression analysis demonstrated that arousal-related fMRI activity was significantly (p < 0.01, TCFE multiple comparisons) associated with age in regions such as the lingual gyrus, superior temporal gyrus, insula, cuneus, post-central gyrus, amygdala, thalamus, and lateral ventricles (Figure 1).

Conclusions: Overall, this analysis reveals significant relationships between age and fMRI arousal fluctuations, suggesting that further investigation of the functional circuits linked with arousal could contribute to our understanding of age-related changes in the brain. Future work will conduct complementary analysis of arousal-related brain signals, leverage other forms of tracking arousal such as simultaneous pupil data, and compare these findings with age-related changes in the fMRI global signal¹⁰. Additionally, we will explore how age-related changes in whole-brain arousal fluctuations could be implicated in cognitive decline.

References
Introduction: Extensive research has established the difference between neuroimaging-predicted and actual chronological age (brainAGE), as a robust and biologically meaningful measure of brain health (Franke et al., 2019). We have previously released brainAGE models in development (Modabbernia et al., 2022) and across the lifespan (Yu et al., 2023). However, brainAGE is generally computed as a global index of age-related brain changes, disregarding information about spatial variation. In this study, we expand on our previous work to develop large-scale brainAGE models for specialized brain networks in healthy individuals across the lifespan.

Methods: The process for generating network-based brainAGE will follow our previous work (Modabbernia, 2022). The T1w structural images will be processed using standard pipelines in the Freesurfer software (version 7.1) in 9473 healthy individuals (aged 3-92 years; mean [SD] = 24.89[20.49]; N [%] female = 5126 [54.11%]) across 9 datasets: Adolescent Brain Cognitive Development (N = 3779); Pediatric Imaging, Neurocognition, and Genetics (N = 736); Brain Genomics Superstruct (N = 1570); 1000 Functional Connectomes (N = 1000); Brain Imaging Consortium (N = 203); Southwest University Adult Lifespan Dataset (N = 494); Information eXtraction from Images (N = 563); Cambridge Centre for Ageing and Neuroscience (650); and Australian Imaging Biomarkers and Lifestyle Study of Ageing datasets (N = 478). Subsequently, the Schaefer atlas was used to generate parcels (200, 400, 600, 800, 1000) of cortical thickness and cortical surface area, each assigned to one of the 7 Yeo networks (Yeo et al., 2011). Sex-specific pooled datasets were split into a training (80%) and testing (20%) subsets. Model performance was assessed by mean-absolute-error, root-mean-squared-error, and the correlation between predicted and chronological age in the test set after age-related bias adjustment.

Results: For all networks except the visual network, the mean-absolute-error reduced with increasing number of parcels (ranges across all: visual = 6.00 - 6.70; somatomotor = 5.00 - 5.67; dorsal-attention = 6.91 - 7.32; salience = 5.31 - 5.92; limbic = 5.82 - 6.65; control = 5.46 - 6.20; default = 4.89 - 5.51). For all networks, the root-mean-squared-error reduced with increasing number of parcels (ranges across all: visual = 8.03 - 9.32; somatomotor = 6.71 - 7.97; dorsal-attention = 9.22 - 9.86; salience = 7.43 - 8.41; limbic = 8.00 - 9.27; control = 7.63 - 8.68; default = 6.73 - 7.83). The correlation between predicted and chronological age was high across all networks (mean correlation across networks = 0.93) and varied by maximally 0.02 with increasing parcels. The results for the models using the 1000 parcels of the Schaefer atlas are presented in Figure 1. Correspondence between males and females for mean-absolute-error across networks was high (>0.97).

Conclusions: This study introduces novel network-specific brainAGE models indicating variability in model performance across specialized networks. These models offers potential applications in clinical samples that might demonstrate stronger associations with cognitive deficits, psychopathology, and risk factors.
Poster No 1199

Cerebrovascular Reactivity, Brain Structure, and Cognition in Aging: Heart and Brain Study

Congxiyu Wang1,2, Raihaan Patel1,2, Lucy Jobbins3, Clare Mackay1,2, Graham Reid1, Georgina Hobden4, Klaus P. Ebmeier1,5, Daniel Bulte5, Sana Suri1,2

1Department of Psychiatry, University of Oxford, Oxford, United Kingdom, 2Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging (WIN), Oxford, United Kingdom, 3Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom, 4Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, 5Wellcome Centre for Integrative Neuroimaging (WIN), Oxford, United Kingdom, 6Department of Engineering Science, University of Oxford, Oxford, United Kingdom

Introduction: Cerebrovascular reactivity (CVR) refers to a vasodilation response of brain blood vessels to vasoactive stimuli. Impaired CVR is related to neurodegenerative diseases including dementia (Hayes et al., 2022). However, the mechanisms underlying the relationship between CVR and age-related cognitive impairments remain unclear. As brain atrophy is a biomarker for Alzheimer’s Disease and aging (Pini et al., 2016), our study aims to explore the relationships between CVR, grey matter volume, white matter hyperintensities, white matter integrity, and cognitive function in aging. Additionally, we examined the moderating effect of dementia risk, computed using an established score, on these relationships, aiming to inform the potential interventions of the modifiable dementia risk factors in midlife.

Methods: We recruited 163 participants (mean age=76.9±4.5) for the Heart and Brain Study (Suri et al., 2021). Participants underwent functional magnetic resonance imaging (fMRI) to measure CVR under a 5% carbon dioxide respiratory challenge, structural MRI for grey matter volume (GMV), fluid attenuated inversion recovery for white matter hyperintensities (WMH), and diffusion tensor imaging for assessing white matter integrity (WMI). Cognition was evaluated using a battery of cognitive tests. Participants were stratified into high- or low-risk groups using the UK Biobank Dementia Risk Score (UKBD Risk Score) (Anatürk et al., 2023), which estimates midlife (mean age=52.5±4.4) dementia risk using retrospective records. Linear regression was performed to analyse associations between CVR (whole brain and lobe), and the MRI and cognitive outcomes while adjusting for age, sex, and total GMV. We also examined these associations separately for the high- and low-risk groups. Figure1 shows the details about the explanatory and outcome variables.

References
Results: In all participants, lower whole brain CVR significantly associated with smaller left nucleus accumbens (NAc) (p<0.01) and left thalamus volumes (p<0.05). Lobar analysis showed significant positive associations: parietal CVR with left hippocampus volume (p<0.05); temporal CVR with thalamus volume (p<0.05); frontal CVR with left thalamus and right NAc volumes (p<0.05); occipital CVR with right putamen (p=0.05). When stratifying by risk group, temporal CVR was positively related to left thalamus volume (p<0.05) exclusively in the high-risk group. In the low-risk group, whole brain CVR positively associated with temporoparietal junction volume (p<0.01). Left hippocampus volume positively associated with whole brain, frontal, parietal, and temporal CVR (p<0.05); frontal CVR positively related to right NAc volume (p<0.05). Regarding cognition, lower whole brain CVR was associated with worse fluency (p<0.01, primarily influenced by parietal CVR) and lower intelligence (p<0.05, primarily influenced by temporal CVR) only in the high-risk group. We found no associations between CVR with WMH or WMI in all participants or in either risk group.

Conclusions: This study demonstrates how global and lobar CVR relates to brain structure and cognitive functions, and how these relationships are moderated by dementia risk, contributing to a more comprehensive understanding of cognitive aging. Impaired CVR associates with smaller NAC (reward processing) and smaller thalamus (sensory perception and memory). Significant positive associations between the hippocampus (cognitive processes), temporoparietal junction (social cognition and theory of mind), and CVR were only shown in the low dementia risk group. Conversely, positive associations between fluency and intelligence were evident only in the high dementia risk group. There could potentially be a cerebrovascular-brain structure reserve for individuals with high midlife dementia risk. However, they may exhibit diminished CVR and cognitive function in later life. Future research could explore mediating relationships among midlife dementia risk, vascular health, brain structure, and cognition.

References

Poster No 1200

Interrogating network connectivity differences in older adults using music

Sarah Faber¹, Alexander Belden², Psyche Loui², Randy McIntosh³

¹Simon Fraser University, Burnaby, BC, ²Northeastern University, Boston, MA, ³Simon Fraser University, Vancouver, BC

Introduction: Music is an enjoyable stimulus that has been used therapeutically in a variety of health care settings. Despite many promising clinical reports, how music is able to effect change, and how it remains accessible to individuals with neurodegeneration remains unknown. In the present study, older adults listened to a selection of music excerpts both familiar and novel while fMRI was recorded before and after an eight week music listening intervention. We used hidden markov modelling (HMM, Vidaurre et al., 2016) and partial least squares (PLS; McIntosh et al., 1996) to identify patterns of network engagement and transition during music listening and how these patterns differed before and after the intervention.
Methods: We collected fMRI data from 15 cognitively healthy older adults (M = 62.67, SD = 15.35) during a music listening task. Excerpts were 20 seconds long and included self-selected familiar, well-liked songs; and excerpts selected by experimenters (popular and novel excerpts). Participants provided liking and familiarity ratings on a 4-point Likert scale following each excerpt. This protocol was completed twice: once before the intervention, and once following the intervention. We processed the fMRI data using the TVB-UKBB pipeline (Frazier-Logue et al., 2022) and completed all analyses in MatLab (Mathworks, 2019).

Results: We identified 4 brain states or functional networks. We calculated the fractional occupancy (time spent in each network) and transitional probability (the weighted, directed pairwise likelihood of transitioning between networks) for each excerpt, pre- and post-intervention. We averaged these values by stimulus category and modelled intervention effects using PLS. PLS results showed higher fractional occupancy in a bilateral temporal network pre-intervention, and higher fractional occupancy in a bilateral temporal mesolimbic network post-intervention. These networks are functionally analogous to the auditory network and auditory-reward network respectively. Transitional probability was higher for the temporal network pre-intervention, and higher for the temporal mesolimbic network post-intervention. Liking and familiarity ratings did not differ significantly between pre- and post-intervention scans.

Conclusions: Activity in a network containing regions related to auditory and reward processing was increased in a population of older adults following 8 weeks of music-based intervention. These findings indicate that music listening may be able to change dynamic network activity patterns in favour of musical reward. Increased reward stemming from increased music listening is one way music may be an effective therapeutic tool, and these findings raise many fascinating questions for future work with clinical populations.

References

Poster No 1201

Subclinical Vestibular Function is Associated with Surface Shape Changes in the Prefrontal Cortex

Dominic Padova1, Andreia Faria1, Yuri Agrawal2, Tilak Ratnanather1

1Johns Hopkins University, Baltimore, MD, 2University of Colorado School of Medicine, Denver, CO

Introduction: Aging-associated decline in peripheral vestibular function is linked to deficits in cognitive abilities like attention, executive function, and motor planning, highlighting the prefrontal cortex’s significance. Functional neuroimaging suggests a vestibular-thalamus-prefrontal cortex pathway, with notable activations in the frontal gyri, but the exact neuroanatomical pathways remain unclear. Subclinical declines in vestibular function correlate with thalamic shape abnormalities, yet the specific involvement of prefrontal cortex subregions is not consistently demonstrated in structural neuroimaging of vestibular patients. To bridge this knowledge gap, this study investigates the relationship between subclinical vestibular function and surface shape changes in eight prefrontal cortex subfields, considering age, intracranial volume, and sex.

Methods: Data from 117 participants aged 60+ from the Baltimore Longitudinal Study of Aging, who underwent concurrent end-organ-specific vestibular tests (cVEMP for the saccule, oVEMP for the utricle, and vHIT for the horizontal canal) and T1-weighted MRI scans, were analyzed. This data was used in a previous study of a different cognitive network. MRI scans were segmented automatically using MRICloud. Surface meshes were generated using a restricted Delaunay triangulation. Population templates were created independently for each hemisphere of every region of interest and mapped to individual surfaces to measure surface shape change (tangent, normal). To streamline statistical testing, the 800 surface vertices were clustered into k patches of ≈150 mm2 based on surface geometry, reducing the number of comparisons thirtyfold. Shape variables were linearly regressed on standardized vestibular variables and covariates. Hypotheses were tested using 10,000
permutations, with a FWER rejection threshold set at the 0.05 level based on the maximum test statistic across the surface. Quality control was performed at each stage.

Results: No relationships between vestibular function and the shape of the superior frontal gyrus (SFG, SFG_PFC, SFG_pole) or the MFG_DPFC survived FWER correction at 0.05 level. A 1 standard deviation (SD) increase in saccular function was associated with ≈ 0.102% compression tangent to the cortical surface in Cluster 11 of the left pars opercularis (p = 0.027) and with ≈ 0.077% expansion normal to the cortical surface in Cluster 13 of the left middle frontal gyrus (p = 0.072). A 1 SD increase in utricular function correlated with ≈ 0.093% and ≈ 0.065% compressions tangent and normal to the cortical surface in Cluster 3 of the right pars orbitalis, respectively (p = 0.017 and p = 0.008). A 1 SD increase in horizontal semi-circular canal function correlated with ≈ 0.1% and ≈ 0.074% compression tangent and normal to the cortical surface in Cluster 4 of the left pars triangularis (p = 0.004 and p = 0.0001).

Conclusions: We found associations between reduced saccular function and significant cortical surface compression in the middle frontal gyrus and expansion in the pars opercularis, and reduced utricular and canal functions and significant surface expansion in the pars orbitalis and pars triangularis of the inferior frontal gyrus, respectively. Our significant regions agree with some of those reported in several neuroimaging studies of healthy adults and vestibular patients, clarifying previous equivocal findings. Furthermore, these findings may provide the neuroanatomical links through which vestibular end-organ function impacts higher-order cognitive abilities in the aging population.

References

Poster No 1202

The virtual ageing brain: structure-function relationship and cognitive decline in longitudinal data

Jan Fousek¹, Christiane Jockwitz², Nora Bittner², Meysam Hashemi³, Spase Petkoski³, Svenja Caspers³, Viktor Jirsa³

¹CEITEC, Masaryk University, Brno, Czech Republic, ²Institute for Anatomy I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany, ³Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France

Introduction: The human brain changes during healthy aging with large individual variation in the cognitive decline (Oschwald 2020). Sources and mechanisms of this variability have been previously linked with whole-brain reorganisation, specifically in terms of the white-matter fibre tracts (structural connectivity, SC), and functional co-activations (functional connectivity, FC) of brain regions (Suárez 2020, Cabeza 2002), e.g. hemispheric asymmetry reduction. Recently, a causal framework employing whole-brain modelling where the individual SC informs a computational brain network model (Lavanga 2023) was developed on cross-sectional data of a large ageing cohort. Here, we validate the virtual ageing brain on the longitudinal data, and use it to unfold the variability of the individual cognitive decline. The prediction from the cross-sectional study was such that the subjects with stronger cognitive decline will move away from their optimal working point in terms of the network coupling, that is have a smaller slope of the change in parameter G than the subjects with well maintained cognitive performance.
Methods: We used the SC and regional BOLD (Schaefer parcellation with 100 regions) signal of older subjects from the 1000BRAINS dataset (Caspers 2014) (full cohort: n=649, age range [51.1–85.4], nfemales=317; subjects with a follow-up: n=220, mean Δt=3.8 years). In particular, we have focused on data features with significant cross-sectional trends: from the SC we computed the average weight of the inter-hemispheric connections, from the FC we used the mean of weights of the homotopic connections, and from the FC dynamics (FCD, that is FC in a sliding window) we computed fluidity: variance of the upper triangle of the FCD (Lavanga 2023). The brain network model implemented in The Virtual Brain (Schirner 2022) was constructed from individual SC with the neural mass model (Montbrió 2015) governing the node dynamics enabling simulation of resting-state BOLD data. For each subject we employed Simulation Based Inference (SBI) to compute the posterior estimate of the global modulation from the empirical functional data (Gonçalves 2020). To assess the longitudinal change of the empirical data features and estimated parameters of the model, we computed the rate of change for the individual variables as X(t2)-X(t1) / (t2-t1).

Results: The cross-sectional study relied on three pillars: structural and functional data features, individualized model parameters, and cognitive scores. Compared to the cross-sectional trends, the rates of change in the longitudinal dataset (Figure 2A,B) were preserved for the structural data (decrease of interhemispheric connections), estimated model parameters (increase of the global coupling strength), and in the cognitive scores (increased time to complete the selective attention task). Furthermore, for the older subjects (age >67) the change in estimated global coupling between the two sessions was higher for the subjects with good cognitive performance (Figure 2C).

Conclusions: Our results indicate that the deterioration of the interhemispheric SC is accompanied by increased modulation of the functional brain dynamics. The SC reorganisation might reflect a potential scaffolding of the brain during the ageing process. This effect is weaker for the cognitively well performing subjects, which suggests a process of brain maintenance. The decline in functional data features was not significant in the relatively short time span between the two visits, however it was sufficiently informative on the individual level for the estimation of the global coupling. The confrontation of this framework with the longitudinal dataset provides an important validity check as well as it opens an opportunity for further extensions by including other factors beyond ‘age’ and more nuanced relationships between aspects of cognitive decline and the brain changes.

References

Poster No 1203

Presbycusis impacts resting-state networks

Yingying Wang¹, Lauren Secilmis², Jordan Bollinger³

¹Special Education and Communication Disorders, Lincoln, NE; ²University of Nebraska, Lincoln, Lincoln, NE; ³University of Nebraska-Lincoln, Lincoln, NE

Introduction: Presbycusis occurs in one in three people in the United States between the ages of 65 and 74 years¹. Sensory degradation and/or deprivation due to hearing loss can result in significant changes in the gray and white matter of the brain²,³. Presbycusis presents a multifactorial and complex problem. The neural mechanism of presbycusis remains unclear and is controversial at many levels. The present study investigated the brain-behavioral relationship between the degree of hearing loss and functional connectivity using resting-state functional magnetic resonance imaging (fMRI) in 35 adults aged range from 40.0 to 74.3 years old.

Methods: Participants: A group of 35 native-English-speaking and adults with self-reported normal hearing (age range: 40.0-74.3, 9 male and 26 female, 34 right-handed and one left-handed) were included in this study. We divided them into three age groups, including middle age (40.0-49 years old, N=8), young old (50 – 64 years old, N=16), and old (65 years and older, N=11). The study was approved by the Institutional Review Board at the University of Nebraska–Lincoln. Written consent forms were obtained from each participant prior to the research visit. Imaging acquisition: Brain imaging data were acquired by using a 3.0 Tesla Siemens Skyra scanner (Siemens Medical Solutions, Erlangen, Germany) with a 64-channel head coil. A high-resolution T1-weighted 3D structural image and EPI functional image were acquired. Imaging data analysis: Preprocessing of the Rs-fMRI imaging was performed with the CONN toolbox including functional realignment, outlier scrubbing, structural segmentation, normalization (MNI space normalization), and spatial smoothing. A band-pass filter (0.01 – 0.09 Hz) was applied to the time series. White matter and cerebrospinal fluid time series were regressed out. Linear detrending was performed during the denoising step. After the denoising step, the distribution of voxel-to-voxel connectivity was visualized for each step. All participants showed normally distributed data after denoising and were included in further analyses. Identifying the central auditory network: The data-driven approach uses group independent component analysis (gICA) in GIFT (version 4.0b) to decompose all preprocessed data into independent components (ICs), including dimensionality reduction, IC estimation, and back-reconstruction. Specifically, a two-step principal component analysis (PCA) was applied to reduce the data. The auditory network (AN) was then manually identified⁶ to include mainly the primary auditory center (Brodman areas 41, 42, 22) and back-reconstructed into individual time courses and spatial maps using a spatial-temporal dual-regression model. At the individual level, voxels in each subject-specific AN spatial map were used to compute the intra-network functional connectivity (FC) values, which represent the degree of synchrony between regions within AN. At last, the intra-network FC were converted into Z scores⁷. Statistical Analysis: The group differences were investigated by regression analyses. The group was defined as independent variable, while the intra-network FC values defined as dependent variables with age, PTA scores, and sex included as covariates. Results were reported at the significant level of p < 0.05 (cluster-wise AlphaSim threshold).

Results: The final cohort information was summarized in Figure 1. There were significant differences in the left PTA average of 4kHz and 8kHz (p = 0.046, Kruskal-Wallis rank sum test) and in the right PTA average of 4kHz and 8kHz (p = 0.006, Kruskal-Wallis rank sum test). The intra-network FC values of AN showed significant group effects in the left middle temporal gyrus within the AN.

*Chi-square test was done using https://www.icalcu.com/stat/chisqtest.html.

*Kruskal-Wallis rank sum test was done using RStudio.

¹p < 0.05, PTA: pure tone average.
Conclusions: Our findings suggest that age-related hearing loss can be reflected by resting-state connectivity in AN. The causal relationship between the two needs longitudinal investigation.

References
1. NIDCD 2022
3. Jang et al. 2020 Medicine (Baltimore) 99(9): e19344

Poster No 1204
Distinct Structural Covariance in the Limbic Cortical Network between Women and Men along with Aging
Chang-Le Chen1, Hecheng Jin1, Mary Pangburn1, Akiko Mizuno1, Howard Aizenstein1, Minjie Wu1
1University of Pittsburgh, Pittsburgh, PA

Introduction: The topological configuration of structural connections across the human brain is hypothesized to underlie functional organizations1. The patterns of morphological covariance are presumed to be vulnerable to disruption from aging, neurodegeneration, and other biological effects2,3. Covariance in local morphological metrics such as cortical thickness is frequently associated across disparate neuroanatomical regions between individuals, reflecting mutual trophic influences across distributed networks4. To elucidate age-related alterations in coordinated structural brain networks, we investigated structural covariance specifically within limbic-affiliated cortical circuits, which are critical hubs for multiple cognitive abilities5, across an extensive age span in a population-based cohort. We postulated that altered structural covariance would be relevant to both advancing age and sex-dependent dimorphic processes.

Methods: We analyzed T1-weighted structural MRI data of 725 cognitively normal healthy adults aged from 36 to 100 years old from the Lifespan Human Connectome Project in Aging Project6. All T1-weighted images went through quality assurance7, and surface-based morphometry was used to estimate cortical thickness using CAT127. Regional cortical thickness within the limbic cortical network was sampled according to DK40 atlas8 including orbitofrontal gyri, anterior, posterior, and isthmus cingulate gyri, parahippocampal gyri, entorhinal gyri, temporal pole, and insula. Since the images were acquired from four distinct scanners, thickness measures were harmonized using ComBat9. All subjects were stratified into female and male cohorts, and each cohort was further stratified into three age cohorts including young-middle (YM, 36-50 years, 131 females and 99 males), middle-old (MO, 51-70 years, 158 females and 118 males), and elder (EL, 71-100 years, 117 females and 102 males) cohorts considering the balanced sample size and the menopause record in the dataset. To calculate structural covariance in the limbic cortical network, we estimated partial correlation between regions of interest based on cortical thickness measures while adjusting for age, education, race handedness, and follicle-stimulating hormone levels within each cohort. To analyze structural covariance matrices, graph analysis was used to estimate global connectivity for the entire network and betweenness centrality for each node to represent general network properties10. Bootstrapping was used to estimate the empirical distribution of graph estimates.

Results: The general partial correlation between regions displayed a pattern of stronger connection with age in females than in males (Figure 1A). The analysis of variance further supported the observed pattern with a significant age-by-sex interaction (p < 0.001) and age main effect (p < 0.001) in terms of global connectivity while the sex main effect was not significant (p = 0.758) (Figure 1B). Additionally, specific regions exhibited heightened betweenness centrality in young-middle aged females that appeared to progressively decline with advancing age (Figure 2). An opposing pattern was observed in males with centrality measures increasing from young-middle to elder cohorts. However, the interaction between age and biological sex on centrality averages was only marginally significant (p = 0.057).
Conclusions: Distinct patterns of structural covariance between females and males were observed along with aging; the overall network connectivity became stronger in women than men, implying a more aggregated limbic network in healthily aged women. This could also be a survival bias as compensating for higher prevalence of cognitive decline in women population. Also, the centralities became weaker in women cohorts, suggesting less cluster hubs exist over time and may be relevant to age-related de-differentiation. Collectively, these results suggest divergent network trajectories between women and men in the limbic network.

References
Complex Regulation of Protocadherin Epigenetics on Aging-Related Brain Health

Vanessa Schmithorst¹, Daryaneh Badaly², Julia Wallace³, Vince Lee¹, Cecilia Lo⁴, Ashok Panigrahy³

¹UPMC Children's Hospital, Pittsburgh, PA, ²Child Mind Institute, New York, NY, ³UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, ⁴University of Pittsburgh, Pittsburgh, PA

Introduction: The clustered protocadherin (PCDH) gene clusters comprising three distinct gene families (α, β and γ) encode homotypic cell adhesion proteins regulating synaptic connectivity via specification of neuronal identity with combinatorial expression of genes in the three clusters (Yagi, 2008; Flaherty & Maniatis, 2020; Jia & Wu, 2020). Epigenetic alterations are a hallmark of aging; we investigate the impact of DNA methylation in the PCDH clusters on brain volume and neurocognitive outcomes.

Methods: We acquired subject data (N = 1936) from the Framingham Heart Study (FHS) Offspring Cohort, which was formed in 1971 to include children of participants consented into the original study. MR brain imaging outcomes were acquired using 1.0/1.5T scanners, and volumes were quantified from T2-weighted double spin-echo coronal sequences. Neuropsychological measures included: measures of language/verbal reasoning, verbal/visual memory, executive functions, and visuospatial skills. DNA methylation levels were quantified using the Infinium HumanMethylation450 BeadChip platform from Illumina. For the current study, we investigated total, PCDHA, PCDHB, and PCDHG methylation. To examine the relationship between age, methylation, brain volumes and neurocognitive outcomes, we performed the following analyses. The outcomes (dependent variables) were either brain volumes or cognitive performance. The best model for each outcome was found using the following procedure. Models were tested for each methylation value: 1) Completely excluded from the model; 2) Main effect only; 3) Main effect and interaction (with the independent variable); 4) Main effect and quadratic term; 5) Main effect, interaction, and quadratic term. As there are 5 options for each of four methylation values, a total of 5^4 = 625 linear regression models were tested. The best model was selected using the Aikake's Information Criterion (AIC).

Results: For each brain region and type (gray/white matter) except frontal gray, an increase in PCDHA methylation resulted in a retardation of age-related volume loss in both white and gray matter (Figure 1). An increase in PCDHB methylation resulted in a retardation of age-related volume loss in frontal gray matter. However, an increase in PCDHG methylation resulted in an acceleration of age-related volume loss in parietal white matter and temporal white matter. An increase in PCDHA methylation (Figure 2) also results in age-related preservation of acquired verbal skill as measured by Word Reading on the Wide Range Achievement Test (WRAT), while an increase in PCDHB methylation results in a retardation in age-related cognitive decline for the similarities test (SIM; verbal reasoning). However, an increase in PCDHG methylation results in an acceleration of age-related cognitive decline for the WRAT and the SIM tests.

Figure 1. An increase in PCDHA methylation resulted in a retardation of age-related volume loss in both white matter and gray matter of multiple lobes.
Figure 2. An increase in PCDHA/PCDHB methylation or a decrease in PCDHG methylation results in age-related retardation of cognitive loss as measured by the WRAT/SIM.

Conclusions: Our results show that normal aging processes affecting the brain and cognition are regulated by epigenetic configurations, particularly at PCDH loci. Unlike the characteristic pattern often seen for Alzheimer’s, in which memory impairments are often an initial and core feature, we showed that PCDH methylation affects a set of cognitive skills unrelated to memory. We hypothesize that these results reflect optimal conditions for synaptogenesis during aging, specifically synaptic specificity, which differ from optimal conditions during neurodevelopment. Synaptogenesis during normal aging is a likely mechanism for maintaining cognitive function in the presence of synaptic loss and efficiency, as well as retarding the process of synaptic loss. Synaptogenesis likely enables aging individuals to retain more language ability in a manner similar to second language acquisition, as distinct from executive function and memory, involving a refinement process and increased specialization.

References

Poster No 1206

The age effect on the genetic architecture of the WM microstructure as measured by FA

Long Wei¹, Xin Xu¹, Suyu Zhong²

¹Shandong Jianzhu University, Jinan, Shandong, ²Beijing University Of Posts And Telecommunications, Beijing, Beijing

Introduction: Using diffusion MRI, a number of studies have explored white matter microstructure highly relevant to ageing¹. It has been shown that the white matter microstructure may be influenced by genetic variants²-³. However, how the genetic contributions affect brain microstructural aging and particularly if existing homogeneous heritability aging pattern and distinct genetic architecture remain largely unknown. Here, we aim to identify the underlying genetic aging pattern and genetic variants of the white matter microstructure measured by fractional anisotropy (FA), which explains the mechanisms of aging changes.

Methods: We used dMRI and imputed SNP data from 22936 UKB individuals. We firstly performed the following SNP data quality controls using PLINK⁴, excluding subjects with >2% missing genotypes, only including SNPs with MAF > 0.01, INFO score >0.7, and passing Hardy–Weinberg test (p value > 1 × 10⁻⁷)⁵. This resulted in 15847 individuals and 8063,552 biallelic
variants. We further used a sliding window approach of every 16 years range to examine genetic contributions vary with age (i.e., 40–55 years, 41–56 years, ..., 55–70 years). Specifically, we estimated the proportion of variation explained by all autosomal SNPs with using GCTA-GREML analysis to estimate the SNP-based heritability for FA of each tract. Then we assessed whether heritability estimates exhibited a homogeneous trend with age and explored heritability aging patterns. To capture the distinct, significantly SNP association, and independent lead SNPs with FA of each age range, we finally used FUMA (version 1.4.0) applying to the results from GWAS. In addition, we re-ran the above analyses with the second sliding window strategies for all subjects to further assess the genetic influence reproducibility.

Results: Fig. 1 showed FA heritability varying pattern of left and right tract with age. As shown in Fig.1, there were 12 tracts exhibiting a significant hemisphere × age interaction effect on the heritability, suggesting a significant hemisphere difference in the association between heritability and age. Specifically, there are three pattern types of these tracts. Fig. 1A illustrated 7 tracts showing a significant reduced trajectory for left tract heritability as age increased. Fig. 1B illustrated 4 tracts showing a significant trajectory of first decreasing and then increasing for left tract heritability as age increased. And Fig. 1C exhibited 1 tract of a significant increased trajectory for left tract heritability. Mean age of each age range was shown in Fig. 1D. Based on the heritability trajectory pattern of left tract, we summarized them into 3 categories (Fig. 2). As illustrated in Fig. 2, the number of significant SNPs discovered for tracts with decreased heritability in the left hemisphere (Fig. 2A), increased heritability in the left hemisphere (Fig. 2B) and first decreasing and then increasing heritability in the left hemisphere (Fig. 2C) were exhibited. And we annotated SNPs to genes by three strategies: physical position, expression quantitative trait locus (eQTL) information, and chromatin interactions. The numbers of annotated genes were shown in Fig. 2D-E.
Conclusions: Our study has demonstrated that genetic contributions varied with brain microstructural aging. Particularly, three types of genetic influences were explored based on that some tracts exhibited relatively consistent heritability trajectory pattern. In addition, our genetic variants analysis revealed the significant genetic effects on each type tracts as well as the gene mapping for the three patterns. Taken together, the present study explored the age effects on genetic architecture of white matter microstructure and identify some genetic age-varying patterns and variants, which may provide valuable implications for understanding observed white matter microstructure aging mechanisms.

References

Poster No 1207
Sex Differences in Age-Related Changes in Brain Network Segregation
Abhijot Sidhu¹, Kauê Duarte¹, Louis Lauzon¹, Cheryl McCreary¹, Andrea Protzner¹, Bradley Goodyear¹, Richard Frayne¹
¹University of Calgary, Calgary, Alberta

Introduction: The cortical regions of the human brain are organized into several functional networks that interact to facilitate higher-order cognition¹. Resting-state functional magnetic resonance imaging (rs-fMRI) studies suggest that this interaction changes over the healthy adult lifespan, such that connectivity between networks strengthens as we age²⁻³. This redistribution is thought to be a compensatory response to age-related neurodegeneration to preserve cognitive function⁴⁻⁶. Sex differences in this aging process, however, have not been well characterized across the lifespan. Here we examine the influence of sex differences in a large cognitively healthy cohort.

Methods: rs-fMRI and 3D T1-weighted magnetic resonance (MR) data from 377 cognitively healthy adults (age range: 18.2–91.8 y; 56.1% female; MoCA ≥ 24) of the Calgary Normative Study were used for this study⁵. Follow-up data from 77 participants (21.3–80.8 y, 64.9% F, interval 2.0–3.9 y) were also included. Connectivity within and between the somatomotor (SMN), ventral attention (VAN), dorsal attention (DAN), frontoparietal (FPN), default mode (DMN), and visual (VIS) networks were computed. For each network, the average within- and between- network z-transformed connectivity (zw and zb, respectively) were used to compute the segregation index: SI=(zw– zb)/zw. A linear-mixed effects model (LME) was used to investigate the relationship between SI and age, age², sex, and age×sex, with subject as a random effect to account for longitudinal interindividual differences. Post-hoc LME tests were used to investigate which specific pairs of networks were associated with the observed network effects. Network and pairwise LME results were adjusted using Holm-Bonferroni multiple comparison correction.

Results: Significant age effects were observed on SI for VIS (p < 0.001), SMN (p < 0.001), FPN (p = 0.049), VAN (p < 0.001), and DMN (p < 0.001), such that SI linearly decreased with increasing age for these networks. Significant sex effects were observed on SI for VAN (p < 0.001) and DMN (p < 0.001); females exhibited greater SI values regardless of age (Figure 1). Post-hoc pairwise analyses revealed significant age-associated increases in connectivity between FPN–VIS (p = 0.005), FPN–SMN (p = 0.039), and FPN–DAN (p = 0.006) network pairs. Post-hoc pairwise analyses also revealed significant sex differences in between-network connectivity for the SMN–DMN (p = 0.038), DAN–VAN (p < 0.001), DAN–FPN (p = 0.003), DAN–DMN (p = 0.026), and SVAN–FPN (p < 0.001) network pairs; females exhibited lower between-network connectivity for all network pairs regardless of age. No significant age2 and age×sex effects were observed.
Conclusions: VIS, SMN, FPN, VAN, and DMN were all found to become less segregated across the healthy adult lifespan. Specifically, age-associated increases in between-network connectivity were restricted to pairs of sensory-associative and associative-associative networks. Females were observed to preserve VAN and DMN segregation relative to males, independent of age, and specifically, between associative networks. This suggests that female brains retain brain network segregation, which has been linked to healthy younger brains\(^1\). How sex differential brain aging patterns relate to cognitive function and how they are altered during pathological aging warrants further investigation.

References

Poster No 1208

The Neural Substrates Underlying different subgroups across Apathy Depression Anhedonia and Fatigue

Jing Tian\(^1\), Maiya Geddes\(^1\)

\(^1\)Montreal Neurological Institute, McGill University, Montreal, Canada

Introduction: Depression, apathy, anhedonia, and fatigue are common neuropsychiatric symptoms in Alzheimer’s disease and have a profound impact on health-related quality of life\(^1\). However, because of the high correlation of these symptoms, analyzing them independently is limited\(^2\). Therefore, this study aims to conduct a comprehensive cross-sectional analysis of the performance differences and associated brain structural variances of these neuropsychiatric symptoms in older adults at a high risk of AD dementia.
Methods: We collected 119 at high-risk of developing AD dementia subjects from the PRe-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer’s Disease (PREVENT-AD) cohort with the same year of available clinical data and structural MRI data. We implemented a hierarchical clustering model on the clinical scores from four scales, identified two distinct groups. Lower scores across all items characterized subtype 1, while higher scores across all items characterized subtype 2. Specifically, the four scales include the Geriatric Depression Scale (GDS), a 15-item questionnaire assessing depressive symptoms in older adults; the Apathy Evaluation Scale (AES), an 18-item questionnaire evaluating the presence and severity of apathy; the Snaith-Hamilton Pleasure Scale (SHAPS), a 14-item questionnaire designed to assess an individual's ability to experience pleasure or enjoyment; and the Modified Fatigue Impact Scale (MFIS), a 21-item questionnaire designed to assess the impact of fatigue on various aspects of daily functioning. Subsequently, we combined cortical and subcortical gray matter volume (GMV) based on the structural MRI data of the same 119 subjects. Applied Logistic regression to match brain features with subtypes. We then applied the bootstrap technique to identify significant brain regions with a 90% confidence interval (Fig 2). Prior to classification, we controlled for age, sex, education year, APOE4 states, and eTIV (Estimated Total Intracranial Volume) through regression.

Results: In our clustering analysis, we find two groups (subtype 1 refers to the lower scores across the items; subtype 2 refers to the higher scores across the items.) shown in Fig 1A. Here, lower scores indicate higher levels of apathy, anhedonia, depression, and fatigue. Group 1 exhibits lower motivation, less pleasure, increased depression, and greater fatigue compare to group 2. Figure 1B presents the mean scores for each item in these two subtypes. Left nucleus accumbens, right pericalarine, right hippocampal, and left frontal are associated with the amotivational performances, which were shown on Figure 2. Specifically, compared to subtype 2, left accumbens, right pericalarine, and left frontal shows larger GMV in subtype 1, while right hippocampal shows smaller GMV in subtype 1.
Conclusions: In our study, we identified significant associations between motivational factors, blood pressure levels, depression, and fatigue, and the gray matter volumes in specific brain regions. Notably, larger gray matter volumes were observed in the nucleus accumbens, a crucial component of the reward system, suggesting a potential link between reduced motivation, lower pressure, elevated depression, and fatigue. This finding aligns with research indicating that frequent Facebook use on smartphones is associated with smaller gray matter volumes in the nucleus accumbens, indicative of a heightened motivation for self-reward. Additionally, individuals in this group exhibited reduced volumes in the hippocampal region, a key network hub involved in various cognitive functions, including memory, executive functions, and emotional regulation. Above all, by identifying the subtype of motivational states, our study shed light on the neurobiology of different motivational states of aging people.

References

ABSTRACTS

Fig 2. Distinct brain features of the two subtypes.

Poster No 1209
Factors Influencing Neuroimaging-Based Advanced Brain Aging in Drug-Resistant Epilepsy
Ezequiel Gleichgerrcht1, Kathryn Davis2, Rebecca Roth1, Sarah Newman-Norlund3, Alexandra Parashos4, Jennifer Cashwell4, Neha Gandhi5, Samaneh Nemati5, Erik Kaestner6, Carrie McDonald7, Sigfus Kristinsson3, Anto Bagić8, Patricia Dugan9, Daniel Deane1, Julius Fridriksen1, Ruben Kuzniecky8, Leonardo Bonilha8

1Emory University, Atlanta, GA, 2Perelman School of Medicine, University of Pennsylvania, PA, USA, Philadelphia, PA, 3University of South Carolina, Columbia, SC, 4Medical University of South Carolina, Charleston, SC, 5Texas Institute of Neurology, Dallas, TX, 6University of California San Diego, San Diego, CA, 7University of California, San Diego, San Diego, CA, 8University of Pittsburgh, Pittsburgh, PA, 9New York University School of Medicine, New York, NY, 10Northwell/Hofstra, Hampstead, NY

Introduction: Temporal lobe epilepsy demonstrates patterns of atrophy comparable to those seen in neurodegenerative disorders. However, the factors influencing these patterns of atrophy remain poorly understood. Here, we sought to evaluate the independent contribution of epilepsy-related variables and modifiable risk factors, as well as their interaction, on premature brain aging in epilepsy.

Methods: Brain age was estimated using a machine learning model from MRI in 515 patients with TLE and 615 neurologically healthy controls (HC). The difference between the MRI-estimated brain age and chronological age, i.e., the brain age gap (BAG) was computed for each participant. Complete risk factor data were available for 301 HC and 167 patients with TLE. Group-wise differences in BAG were determined, including voxel-wise comparisons of regional contributors to BAG specific to
Propensity score matching was used to balance the datasets based on demographic and risk factor profiles, and multiple linear regression with interaction terms was used to evaluate the contributions of epilepsy and comorbidities on BAG.

Results: Compared with HC, TLE was associated with double the risk of advanced brain aging. Epilepsy was independently associated with 3.35 additional brain years. Brain regions disproportionately affected in TLE contributing to advanced BAG were medial temporal, perisylvian, and subcortical areas. An average increase of 0.97 years in BAG was observed per comorbidity, with an additional 0.83 BAG increase per comorbidity due to an interaction with epilepsy.

Conclusions: Advanced brain aging is pervasive in TLE and is related to epilepsy-specific and modifiable risk factors. This observation has direct public health relevance since attention to modifiable risk factors is not typically at the forefront of epilepsy care, but targeted interventions could directly affect brain health in epilepsy.

References
Poster No 1210

Neurochemical Correlates of White Matter Hyperintensities in Cognitively Normal Older Adults

Shaolin Yang1, Minjie Wu1, Olusola Ajilore2, Howard Aizenstein1, Anand Kumar2

1University of Pittsburgh, Pittsburgh, PA, 2University of Illinois at Chicago, Chicago, IL

Introduction: White matter hyperintensities (WMH) on T2-FLAIR MR brain images is the traditional radiologic marker of cerebral small vessel disease (SVD). Pathological changes associated with WMH are heterogeneous including components of edema, gliosis, ischemia, and inflammation. However, conventional T2-FLAIR imaging is non-specific and does not differentiate these types of lesions. In this study, we evaluated the association between neurochemical measures and WMH in cognitively normal older adults. Findings from this study will provide insight into the heterogeneity of WMH.

Methods: Our study consisted of 42 cognitively normal older adults (mean age=68.8 years, age range: 60-84 years, 26 female). Brain MRI and MRS were acquired on a Philips Achieva 3T scanner, including T1w MPRAGE, T2-FLAIR, single-voxel 1H-MRS with voxels placed at bilateral frontal white matter. Specifically, the 1H-MRS spectra were acquired from the frontal white matter left (FWM-L) and right (FWM-R) (2x1x2 cm3). Spectral quantification was carried out in LCModel (Provencher et al., 1993) using unsuppressed water signal for scaling. Only the metabolite concentrations with a Cramer-Rao Lower Bound (CRLB) less than 20% were included in the data analysis. WMH volume was quantified on T2-FLAIR images using a 2D U-Net machine learning method implemented and validated by our lab (Li et al., 2023). WMH was parcellated into deep WMH, periventricular WMH, and frontal WMH. These global and regional WMH volumes were normalized by intracranial volume and log-transformed for second level analyses. Regression analyses were performed to evaluate the association between neurochemical measures in frontal white matter and normalized white matter hyperintensities, controlling for age.

Results: N-acetylaspartate (NAA) plus N-acetylaspartyl-glutamate (NAAG) in frontal WM was negatively associated with whole-brain normalized WMH ($r = -0.403, p = 0.009$), controlling for age (Fig. 1 top left). Myo-inositol (Ins) in the frontal WM is marginally positively associated with deep WMH ($r = 0.282, p = 0.074$) (Fig.1 top right) and frontal WMH ($r = 0.294, p = 0.062$) (data not shown). In addition, glutamate level in frontal WM is negatively associated with whole-brain WMH ($r = -0.415, p = 0.016$) (Fig. 1 bottom left) and periventricular WMH ($r = -0.452, p = 0.008$) (data not shown), controlling for age.

Conclusions: Our data reveal greater burden of WMH is associated with lower NAA level and greater Ins level. NAA is found almost exclusively in neurons. Reduced NAA + NAAG level in white matter reflects deficits in maintaining axonal-glial system (Moffett et al., 2007) and myelin synthesis (Chakraborty et al., 2001). Ins is primarily located in glial cells. Elevated Ins is believed to be a marker for gliosis and ongoing neuroinflammation (Heckova et al., 2022). Our findings provide insight into heterogeneity of WMH, suggesting SVD-related astrogliosis and axonal impairment (Llufriu et al., 2014).
References

Poster No 1211

G-Ratio and Conduction Velocity are Associated with Aging but Differentially with Cognitive Decline

Benjamin Newman¹, Jason Druzgal¹, John Van Horn¹

¹University of Virginia, Charlottesville, VA

Introduction: Recent efforts to quantify brain cellular microstructure have developed metrics of brain structure with implications for neuronal function. Termed aggregate g-ratio and aggregate conduction velocity, these metrics incorporate measures of myelin and intra-axonal volume. However, it is not currently known how these metrics compare to age in an aging cohort nor how they predict cognition within this group. White matter hyperintensities (WMH) are a marked appearance of the aging brain, and should provide an ideal validation for the loss of myelin and subsequent functional disruption, estimated by these metrics.

Methods: Participants: 86 subjects were recruited for baseline neuroimaging with an age range between 58-81 (mean = 68.2 ± 5.84 S.D.) years old. There were 27 male and 58 female participants with average ages of 66.70 ± 4.97 S.D. and 68.87 ± 6.04 S.D., respectively. Image Acquisition: T1-weighted images were acquired using the ADNI3 designed MP-RAGE sequence with an isotropic voxel size 1.0×1.0×1.0mm3, TE=2980ms and TR=2300ms. Diffusion-weighted images were acquired with an isotropic voxel size of 1.7×1.7×1.7mm3, TE=70ms and TR=2900ms; 10 b=0 images and 64 gradient directions were collected at both b=1500s/mm2 and b=3000s/mm2. Behavioral and Cognitive Metrics: All subjects participated in the Trail Marking Task A & B, a measure of executive function where subjects are timed to completion of the task. B is considered more cognitively demanding as subjects must switch between letters and numbers in sequence. Image Processing: As described in more detail in previous work3 images were preprocessed with MRtrix3, FSL5, and Freesurfer6 to calculate voxel-wise aggregate g-ratio and aggregate conduction velocity with the mean b=0 images being used in lieu of T2-weighted images. WMH were automatically segmented from the T1w images using Freesurfer. The mean value of these metrics was measured within each of the 48 regions of the JHU WM Atlas as a singular whole white matter ROI. Within subjects T-tests were used to evaluate the differences between differences within WMH and WM. Linear models tested the association between the trails tasks and cellular microstructure with controls for subject age and sex.

Results: Aggregate g-ratio was significantly reduced in WMH compared to the whole WM skeleton (T84=-13.898, p<0.001; Fig. 1). Aggregate conduction velocity was also significantly reduced in WMH compared to the whole WM skeleton (T84=-26.633, p<0.001; Fig. 1). However, the microstructure of the WMH was not significantly associated with age (g-ratio F2,84=0.00086, p=0.59 n.s.; conduction velocity F2,84=0.0023, p=0.277 n.s.) nor performance on either Trail Marking Tasks (Trail A, g-ratio: F2,84=0.304, p=0.983 n.s.; Trail A, conduction velocity: F2,84=6.439, p=0.54 n.s.; Trail B, g-ratio: F2,84=26.35, p=0.551 n.s.; Trail B, conduction velocity: F2,84=2.513, p=0.938 n.s. Fig. 2). In the whole WM skeleton though Trail A & B was significantly associated with aggregate conduction velocity (Trail A: F2,84=-41.03, p<0.05; Trail B: F2,84=-176.080, p<0.01) but not aggregate g-ratio (Trail A: F2,84=-34.45, p=0.379; Trail B: F2,84=-30.66, p=0.797 n.s.). Both aggregate conduction velocity and aggregate g-ratio were observed to have a negative relationship with age in the WM skeleton (F2,84=-0.0023, p<0.05; F2,84=-0.0015, p<0.05, respectively).
Figure 1: Visual comparison of a single subject’s aggregate g-ratio and aggregate conduction velocity maps, MWH are far more visible in posterior regions as measured by aggregate conduction velocity.

Figure 2: Chart showing variation between microstructural metrics and Trails performance in WMH and whole WM skeleton.

Conclusions: These results demonstrate that reductions in aggregate conduction velocity within the normal appearing WM skeleton, are associated with poorer cognitive performance. Aggregate g-ratio showed similar patterns of WMH damage and age-related decline, but did not have a similar relationship with cognitive performance. These results suggest that not only are aggregate conduction velocity and g-ratio measuring different microstructural features, but that the loss of larger diameter axons may drive cognitive decline in aging.

References
Early Life Adversity and Mental Health links clarified by Interhemispheric Functional Connectivity

Corentin Vallée1, Xuemei Ma1, Rebecca Pollard1, Andrew Lawrence1, Svenja Kretzer1, Pei-Jung Cheng1,2, Craig Morgan1,3, Seeromanie Harding1, Giovanni Montana4, Ana Rodriguez-Mateos5, Gunther Schumann1, Carmine Pariante1,6, Chiara Nosarti1,7, Mitul Mehta8,6, Paola Dazzan1,6

1Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom, 2Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan, 3SRC Centre for Society and Mental Health, King’s College London, London, United Kingdom, 4Department of Statistics, University of Warwick, Coventry, United Kingdom, 5Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom, 6National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London, United Kingdom, 7School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom, 8Centre of Neuroimaging Sciences, King’s College London, London, United Kingdom

Introduction: Early life adversity (ELA) refers to childhood and adolescence adverse circumstances such as physical or emotional abuse, bullying or family dysfunction. ELA exposure increases the risk of poor mental health (MH), including anxiety, depression, psychosis, and behavioral problems [Juwariah2022]. Recent resting-state fMRI studies suggest brain function may play a role in explaining the link between ELA and poor mental health [Rakesh2021,Banishashemi2022]. We have investigated here the relationship between ELA, mental health problems and resting-state interhemispheric functional connectivity (IHFC).

Methods: We recruited 230 young adolescents (11.2-14.9 years) from Southeast London schools. The presence of ELA was assessed with the Difficult and Harmful Life Event questionnaire and the England Index of Multiple Deprivation for Area-level adversity. Mental health was assessed using the Generalized Anxiety Disorder 7, the Short Mood and Feelings Questionnaire (depression), the Adolescent Psychotic-like Symptom Screener, the Strengths and Difficulties Questionnaire (well-being/behavioral traits). Participants were considered negative for ELA if they 1) endured no more than two events of the Difficult and Harmful Life Event questionnaire, of lowest level of severity and frequency, no distress, and no injury; and 2) lived in a non-deprived area according to the Index of Multiple Deprivation. Participants were sorted in three groups: 1) ELA-positive and MH problems-negative (Group 1, n=81); 2) ELA-positive and MH problems-positive (Group 2, n=71); 3) ELA-negative and MH problems-negative (Control group, n=29). Numbers are given after questionnaire incompletion exclusion and fMRI quality control. Resting-state BOLD fMRI data were acquired on a 3T GE scanner. Images were processed with fMRIprep and denoised with CONN using fMRIprep calculated confounders. Functional connectivity was modelled by linear correlation (between pairs of contralateral voxels signal for IHFC). Group-level analyses used a general linear model with groups predicting connectivity. Voxel-level hypotheses were tested using multivariate parametric statistics with random-effects across. Inferences were performed at the level of individual clusters, based on non-parametric permutation testing (1000 iterations). Results use a combination of a cluster-forming voxel-level threshold (α_voxel=1%), and a cluster-mass threshold, corrected for false discovery rate (α_cluster=5%).

Results: Figure 1 shows differences of ROI-ROI connectivity between the control group and the other two groups exposed to ELA. We found large-scale, low effect size differences across the brain with noticeably larger effect size for homotopic structures, suggesting IHFC as a feature of interest. Figure 2 shows groups differences in interhemispheric connectivity. Compared to the control group, individuals in Group 1 showed lower IHFC in posterior brain areas (top slices). Individuals in Group 2 also showed lower IHFC in similar posterior areas when compared to the control group, but additionally showed increased IHFC in the cerebellum (middle slices). When comparing Group 1 and Group 2, both exposed to ELA but differing for MH problems, we still found an IHFC increase in cerebellum, while there were no more posterior alterations (bottom slices).

Conclusions: Our finding shows that a history of ELA is associated with distinctive alterations in interhemispheric functional connectivity depending on the co-occurrence of MH problems. Alterations in IHFC connectivity may result from corpus callosum structural changes as diffusion MRI suggests corpus callosum fractional anisotropy is reduced in subjects with ELA, indicative of possible myelin atrophy or local neuroinflammation [McCarthy-Jones2018]. The cerebellum specific involvement in the co-occurrence of ELA and MH problems, may underlie symptom manifestation or be an indicator of low resilience. Its role warrants exploration in larger, longitudinal studies.
Figure 1: ROI-ROI functional connectivity – Control Group vs Group 1 and 2

Differences in ROI ROI functional connectivity distribution between the control group (n=29) and group 1 and 2 (n=152). The ROIs used are the 312 ROIs composing the Harvard Oxford AAL atlas (labelled in the inner circle). The anatomical structures are grouped according to the priori functions labeled in the outer circle.

We found large scale low effect size differences. The effect size of LI AICs was largest for roughly half of the homotopic locations, in particular in posterior areas of the brain. Interhemispheric functional connectivity loss hence a feature of interest to investigate the association of LI AICs and functional connectivity.

Figure 2: Differences of HFC between Control group, Group 1 and Group 2

Differences of HFC are shown on an MNI152 template, and the colors correspond to the t-values scores, where t is the degrees of freedom. T is the axial coordinate in MNI space. The decrease of HFC overlaps strongly around x=-8 and z=-18 between (top: control group vs Group 1) and (middle: control group vs Group 2). This decrease extends to however larger in lower part around z=-12 for the (middle: control group vs Group 2) comparison. The cerebellum HFC decrease overlaps well between (middle: control group vs Group 2) and (bottom: Group 1 vs Group 2).

<table>
<thead>
<tr>
<th>HFC group</th>
<th>Cluster location (MNI)</th>
<th>Size [Voxels]</th>
<th>p-value uncorrected</th>
<th>p-value FDR corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>-12 - 58 - 16</td>
<td>1366</td>
<td>0.000127</td>
<td>0.005793</td>
</tr>
<tr>
<td>Middle [Posterior]</td>
<td>-17 - 70 - 60</td>
<td>2065</td>
<td>0.000283</td>
<td>0.027140</td>
</tr>
<tr>
<td>Middle [Cerebellum]</td>
<td>-10 - 36 - 60</td>
<td>2378</td>
<td>0.000269</td>
<td>0.027140</td>
</tr>
<tr>
<td>Bottom</td>
<td>-16 - 60 - 60</td>
<td>2016</td>
<td>0.000162</td>
<td>0.032742</td>
</tr>
</tbody>
</table>
References

Poster No 1213
Edge Participation Coefficient Unveiling the Development of Functional Connectome during Infancy
Tianyu Fang¹, Yue Wang², Qiuyun Fan³, Yuanyuan Chen⁴
¹Medical School of Tianjin University, Tianjin University, Tianjin, China, ²Tianjin University, Tinajin, China, ³Tianjin University, Tianjin, ⁴Tianjin University, Tianjin, China

Introduction: Previous research has delved into the intricacies of the brain’s community structure in adults by employing methodologies that segment co-fluctuating edges into non-overlapping communities. However, our understanding of the brain’s community structure during infancy, a critical period marked by vital refinements in functional systems, remains relatively limited. In this study, we aim to bridge this gap by investigating how different functional connections within the infant brain interact and evolve as the brain undergoes development based on edge-centric functional analyses.

Methods: All participants in this study were recruited as part of the developing Human Connectome Project, approved by the UK National Research Ethics Authority. we selected 781 structural-functional scans from the third release, including scans acquired at 37–44.5 weeks postmenstrual age (PMA), at and before term-equivalent age (TEA). All scans were collected in the Evelina Newborn Imaging Centre, Evelina London Children’s Hospital, using a 3T Philips Achieva system during natural sleep without sedation. fifteen minutes of high temporal resolution rs-fMRI optimized for neonates was acquired using a multislice gradient-echo echo planar imaging sequence with multiband excitation. The rs-fMRI data were preprocessed by dHCP minimal processing pipeline and then followed with a nuisance regression, bandpass filtering and registration to template space, which was the UNC-neonate brain template and AAL atlas. Edge-centric functional connectivity (eFC) matrix was calculated between co-fluctuations of paired regional signals. Then, edge time series were clustered into 10 communities utilizing a standard k-means algorithm with Euclidean distance. The representative edge community assignments were used as the initial centroids to cluster the edge time series of each single subject. We subsequently calculated edge participation coefficient (edge PC) of a given node within the modular eFC networks.

Results: Fig. 1 illustrated representative communities of brain connections obtained in term-born infants. Regions within sensorimotor system exhibited the greatest levels of within-system similarity. The overlapping community structure of infant cerebral cortex was displayed in Fig. 1e and f. In line with previous study on adults, regions within sensorimotor system were simultaneously involved in many communities, thereby connecting regions from multiple other systems. Fg. 2 illustrated changes in edge participant coefficient during infant brain maturation. Notably, edge PC values were significantly higher in preterm born infants compared to term born infants. When visualizing the association between edge PC and PMA at scan by node, significant negative correlation was observed with 89 regions surviving FWE correction. Further investigation at both interconnected network and connection level revealed that PC values of edges connecting the visual system with other networks and within “higher-order” networks displayed robust associations with the early brain maturation of normal neonates.
Conclusions: The overlapping community structure of human cerebral cortex becomes established in the early stage of development. Edge-centric approach demonstrates a high level of participant specificity, capturing unique features of individuals. Decrease in functional diversity suggests the specialization of functional systems as the infant brain matures.

References
Deciphering the Dynamic Spatiotemporal Maturation from Childhood to Adolescence

Kyoungseob Byeon1, Shinwon Park1, Jon Clucas2, Matthew Cieslak2, Seok-Jun Hong3, Hyunjin Park3, Jonathan Smallwood4, Theodore Satterthwaite2, Michael Milham1, Ting Xu1

1Child Mind Institute, New York, NY, 2University of Pennsylvania, Philadelphia, PA, 3Sungkyunkwan University, Suwon, South Korea, 4Queen’s University, Ontario, Canada

Introduction: Cortical maturation from childhood to adolescence plays a crucial role in neurodevelopment, shaping cognition, emotions, and behaviors. Convergent evidence suggests that neurodevelopment proceeds in a hierarchical manner, with heterogeneous structural and functional maturation patterns. However, the relationship between the established static functional patterns and the brain’s intrinsic spatiotemporal dynamics remains underexplored. To address this gap, we employ Complex Principal Component Analysis (CPCA), a technique capable of reducing the complexity of high-dimensional spatiotemporal data on multiple development datasets. In this study, we aim to understand how spatiotemporal patterns develop with age, both locally and globally, focusing on three distinct propagation pathways from childhood to adolescence.

Methods: We utilized resting-state fMRI data across a developmental continuum, including Human Connectome Project Development (HCP-D, ages 8.1-21.9, n=408) and Aging (HCP-A, ages 36.0-64.9, n=399) datasets, NKI-Rockland Sample (n=839), and CCNP dataset (n=152) cohorts. The preprocessed data were parcellated followed by CPCA to extract components (i.e. spatiotemporal patterns), aligning them based on their spatial similarity with static functional gradients. Utilizing a dual-regression framework, we reconstructed individual dynamic patterns and assessed the reproducibility across cohorts, test-retest reliability across sessions, and age effects by comparing the individual patterns with the adult reference from HCP-A dataset. Additionally, we examined the age effect of amplitude for the temporal fluctuations and decoded using NeuroQuery and gene ontology enrichment analysis.
Results: We identified phase-dependent spatiotemporal components and focused on the first three dynamic states (Fig. 1A). These were reproducible across cohorts and each explained over 10% of the variation in each dataset (Fig 1B). High test-retest reliability was observed for the first three patterns (r > 0.9), revealing individual-specific patterns can be differentiated from other participants (Fig. 1C). Compared to the adult reference, a linear increased similarity with age (r=.36-.56) was observed, indicating maturation towards adult-like dynamic states (Fig. 1D). As shown in Fig 2A, occurrence time ratio (OTR), representing the time spent in each dynamic state, exhibited a positive age effect for pattern 1 (r=.25) but a negative age effect for pattern 2 (r=-.14). A strong correlation (r=.93) was observed between OTR and the EVR, suggesting the significant contribution of time spent in each state to their altered EVR. We also calculated the proportion of bottom-up (sensory-to-association) and top-down (association-to-sensory) contributions to the first dynamic pattern. Interestingly, with increasing age, individuals spent less time in bottom-up but more time in states characterized by top-down propagation (Fig. 2B). Additionally, the amplitude of regional fluctuations for each dynamic state varied across individuals. From childhood to adolescence, amplitude increased in specific brain regions for patterns 1 and 3, while it decreased for pattern 2. (Fig. 2C), which appears to be related to cell proliferation, protein synthesis, and metal ion regulations.

Conclusions: Our study characterized reproducible and reliable spatiotemporal dynamic patterns across cohorts, establishing their developmental trajectory from childhood to adolescence. We observed the progressive maturation of dynamic brain states across development, with both sensory-centered and hierarchical propagations present in childhood. However, from childhood to adolescence, hierarchical top-down propagations become more common suggesting prior work examining cortical development using static measures of functional connectivity may instead reflect a developmental trend towards the emergence of states where brain dynamics are maintained via hierarchical propagation.
Poster No 1215

Early life adversity differently affects cerebellar growth in NICU survivors

Sarah Palmis1,2,3, Camille Heguy4,2,3, Emmanouil Rampakakis5, Pia Wintermark6, Charles Rohlicek7, Christine Saint-Martin8, Guillaume Gilbert9, Marie Brossard-Racine10,3,11,12

1Research Institute of McGill University Health Centre, Montreal, Quebec, 2Advances in Brain and Child Health Development Research Laboratory, Montreal, Canada, 3Department of Neurology & Neurosurgery, Faculty of Medicine, McGill University, Montreal, Canada, 4McGill University, Montreal, Quebec, 5Department of Pediatrics, Montreal Children’s Hospital, McGill, Montreal, Quebec, 6Department of Pediatrics, Division of Neonatology, Montreal Children’s Hospital, McGill University, Montreal, Quebec, 7Montreal Children’s Hospital, McGill University Health Centre, Montreal, Quebec, 8Department of Medical Imaging, Division of Pediatric Radiology, Montreal Children’s Hospital, MCG, Montreal, Quebec, 9MR Clinical Science, Philips Healthcare, Mississauga, Ontario, 10Advances in Brain and Child Health Development Research Laboratory, Montreal, Quebec, 11Department of Medical Imaging, Division of Pediatric Radiology, Montreal Children’s Hospital, Montreal, Canada, 12School of Physical and Occupational Therapy, McGill University, Montreal, Canada

Introduction: The cerebellum undergoes its most intense period of growth during the third trimester of pregnancy and the first year of life, making this brain structure vulnerable to perinatal adversities. Recent evidence supports that cerebellar development is altered in two common clinical groups that populate the neonatal intensive care units, infants born preterm (PT) or born with congenital heart disease (CHD). These infants will experience early life adversities (ELA) that are specific to their conditions. Neonates born PT are exposed to the extra-uterine environment prematurely, while neonates with complex CHD experience delayed intra-uterine development and undergo cardiac surgery during the first months of life. PT and CHD children have comparable developmental challenges and also present with hindered cerebellar development. However, no study to date has directly compared cerebellar growth between these two groups. Studies of growth trajectories have the potential to identify subtle variation patterns not detected by cross-sectional analyses and may provide new diagnostic insight. This study aims to compare the cerebellar growth trajectories during the first year of life, as assessed by quantitative MRI, between infants born PT and those with CHD.

Methods: As part of this ongoing study, 31 PT infants (<37 weeks of gestation) and 19 infants born with complex CHD who underwent open-heart surgery were enrolled. Participants completed a brain MRI under natural sleep, on a 3.0 Tesla MRI system (Achieva X-Series, Philips Healthcare) with a 32-channel head coil, at the targeted time of 3, 6 and/or 12 months. 91 high-resolution anatomical T1-weighted images (55 PT and 36 CHD) were included in our analyses. Images were first preprocessed using N4 BiasFieldCorrection algorithm. Then, using Infant Freesurfer we automatically segmented the total brain volume (TBV), the total cerebellum (TCBL), the bilateral cerebellar hemispheres (Left and Right CBL) and the vermis. Trajectories were characterized for the four cerebellar regions, using mixed-effects models for repeated measured (MMRM), and linear, quadratic, logarithmic and exponential regressions were compared using R-Squared values to determine the best fit. Comparisons of cerebellar volumes between groups at each time-point were conducted using the least squared means derived from the linear MMRM models with and without adjustment for TBV. Volume differences between the two groups were calculated using the following formula: (mean volume PT – mean volume CHD)/(mean volume CHD)x100.
Results: Different growth trajectories functions were identified between the two groups. While all cerebellar regions followed a quadratic trajectory in the PT group, all cerebellar regions in the CHD group followed a logarithmic trajectory. When unadjusted for TBV, cerebellar regions were significantly smaller in CHD when compared to PT at 3 months only (p<0.001, volume differences TCBL:20.27%; Left CBL:20.51%; Right CBL:20.56%; Vermis:17.45%). However, volumetric differences were not significant at 6 and 12 months of age (volume difference <7%). When adjusted for TBV, no differences remained significant.

Conclusions: Our preliminary results suggest that ELA differently affects the cerebellar growth trajectories of PT and CHD infants. Smaller cerebellar volumes observed at 3 months in the CHD may be related to the different underlying mechanism of cerebellar growth disruption. Indeed, cerebellum underdevelopment is already present during the second and third trimester of pregnancy, while disruption of cerebellar growth seems to be most affected postnatally in the PT infants. Yet, the CHD group seems to catch-up at 6 months. Volumetric differences found between the two groups seem to represent a more global reduction of the TBV in CHD as compared to PT. Future studies with comparison to healthy term-born infants and with measures of outcomes are needed to confirm the clinical significance of our findings.

References

Poster No 1216
Covariate Correcting Network for Isolating the Impact of Long-term SES Changes on Brain Development
Hyuna Cho¹, Yubin Han¹, Amal Isaiah², Won Hwa Kim¹
¹Pohang University of Science and Technology (POSTECH), Pohang, Korea, Republic of, ²University of Maryland School of Medicine, Baltimore, MD

Introduction: Socioeconomic status (SES) is associated with brain development in children; however, the impact of changes in SES on longitudinal brain development is under-examined. Previous cross-sectional studies have mainly focused on single-modal macrostructural aspects of the cerebral cortex such as thickness and volume. In contrast, our study analyzed the association between the changes in SES over time and the changes in both microstructural and macrostructural properties across the whole brain. We performed two independent analyses on each brain measure by comparing two groups: one with increased household income and the other with decreased income over time. We used Covariate Correcting Network (CoCoNet)⁴, an artificial neural network for correcting confounders for whole-brain analysis, to isolate the sole effect of the changes in SES on each region of interest (ROI). As a result, CoCoNet found 12 ROIs affected by the changes in SES on the
fractional anisotropy (FA). For the macrostructural analysis with cortical thickness, the model detected the left suborbital sulcus and right superior frontal sulcus, which are subsumed by the 12 ROIs from the previous analysis.

Methods: Dataset. We used the Adolescent Brain and Cognitive Development study data (v4.0) with a total of 2488 children aged 9-10. Two brain measurements were provided: 1) fractional anisotropy (FA) as a microstructural property and 2) cortical thickness (CT) as a macrostructural property. Both were processed on Destrieux atlas comprising 148 ROIs. Along with the imaging measures, individual annual household incomes, age, sex, scanner type, and race were examined at two timepoints with a 2-year interval. We divided the cohort into two groups based on their income changes: the income-increased (Up, N=1802) and income-decreased (Down, N=686) groups. Proposed Method. The region-wise long-term differences of brain measures (e.g., follow-up FA - baseline FA) were calculated to quantify how much the brain changed over a 2-year span, which became a dependent variable. As we aimed to investigate the true effect of longitudinal SES changes, the group information was used as a variable of interest. Age, gender, scanner, and race were chosen as the covariates to be corrected. Conventionally, these confounders are corrected via analysis of variance using the General Linear Model (GLM). Under the normality assumption, CoCoNet shares the same hypothesis space with the GLM. However, unlike GLM, CoCoNet allows a whole-brain analysis with increased sensitivity as it performs multiple F-tests across multiple ROIs simultaneously by maximizing overall F-statistics over the whole brain. Also, the model sparsely selects the key ROIs with an L1-regularizer within its loss function.

Results: The brain measures from the Up and Down groups were compared with GLM, GLM with Neural Network (GLM_NN), GLM with Lasso (GLM_Lasso), and CoCoNet. For the FA analysis (Fig 1), CoCoNet identified 12 ROIs of which p-values survived Bonferroni correction, while all baselines identified only the left lateral orbital sulcus among the 12 ROIs. CoCoNet uniquely identified key ROIs such as the right posterior transverse collateral sulcus and the right superior frontal sulcus. These ROIs are related to texture processing and spatial working memory, which are critical in brain development. In the CT analysis (Fig 2), 2 regions were identified from CoCoNet: 1) left suborbital sulcus and 2) right superior frontal sulcus, which were also found in the FA analysis. These two ROIs are implicated in schizophrenia and attention. Notably, GLM and GLM_NN did not yield any ROIs, while CoCoNet sensitively identified them with small p-values.
Conclusions: We observed the true association between the long-term changes in SES and ROI-wise adolescent brain development by controlling confounders. As a result, CoCoNet sensitively found that the left suborbital sulcus and right superior frontal sulcus were affected by changes in SES. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1A2C2092336).

References
Poster No 1217

Association between fALFF of white matter and postmenstrual age in newborns

Yali Huang\(^1\), Xiaoxu Na\(^1\), Xiawei Ou\(^{1,2}\)

\(^1\)Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR; \(^2\)Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR

Introduction: Blood oxygenation level dependent (BOLD) contrast has been exploited for detecting neural activity in the brain using fMRI. While BOLD signals have been reliably detected in gray matter, such signals have long been ignored in white matter (Ding et al. 2018, Gore et al. 2019). The objective of the study is to investigate the relationships between fractional amplitude of low-frequency fluctuations (fALFF) in both white and gray matter and postmenstrual age in term-born infants using resting-state BOLD functional magnetic resonance imaging (BOLD-fMRI).

Methods: A total of 40 newborns (average postmenstrual age: 289 days) were analyzed. We initially performed independent component analysis (ICA) on the fMRI white and gray matter data of newborns to obtain group-level components. White matter BOLD data were decomposed into functional networks (independent components) using a group-level spatial ICA as implemented in the GIFT toolbox, and Group-ICA was performed to generate a set of group-average parcels (Calhoun et al. 2001). Subject-specific spatial maps and time courses were estimated using the GICA back-reconstruction method (Allen et al. 2014). A similar processing scheme was also applied to the gray matter BOLD signal. Here we calculated the ratio of power spectrum of three frequency bands (Frequency band: 0.001~0.027 Hz; Frequency band: 0.027~0.073 Hz; Frequency band: 0.073~0.198 Hz) to that of the frequency range (0.001~0.198 Hz), which denote the power of BOLD signal fluctuation. For each group spatial component, time course was extracted to compute fALFF at different frequency band (0.001~0.027 Hz, 0.027~0.073 Hz, 0.001~0.198 Hz) for every subject. Specifically, as the ICA decomposition order is set as 12, \(12 \times 3 \times 40\) fALFF values were calculated for all subjects. These \(1440\) features represent spontaneous brain activity energy (the power of low frequency fluctuation) of the subjects, as shown in Fig. 1.

Results: To examine potential relationships between white matter fALFF and postmenstrual age of newborns, the Pearson correlation between fALFF (including 12 components, and each component comprise 3 frequency bands) and postmenstrual age was calculated. A \(12 \times 3\) correlation matrix between the fALFF and postmenstrual age was obtained. To further evaluate the statistical significance of the correlation matrix, a permutation test was performed. The age labels were randomly permuted 10000 times to generate the null organization. Permutation analysis revealed that there is significant relationship between the fALFF of one component and postmenstrual age. Specifically, the fALFF of an independent component from white matter in frequency range 0.027 ~ 0.073 Hz is positively correlated with postmenstrual age \((r=0.35, p = 0.018)\), while the fALFF in frequency range 0.073 ~ 0.198 Hz is negatively correlated with postmenstrual age \((r = -0.43, p = 0.007)\). The spatial map of this white matter component is shown in Fig. 2A, which is located in the parietal lobe. The similar processing were conducted to the gray matter. The non-parametric permutation also demonstrated that there is one significant correlation between the fALFF of one independent component in grey matter and postmenstrual age. Specifically, it was found that there is positively correlation with postmenstrual age \((r=0.40, p = 0.005)\) in frequency range 0.027 ~ 0.073 Hz, while negatively correlation with postmenstrual age \((r = -0.43, p = 0.004)\) in frequency range 0.073 ~ 0.198 Hz . The spatial map of this gray matter component is shown in Fig. 2B, which is located in the parietal lobe, similar to that in Fig. 2A.

Conclusions: Our studies showed that fALFF in the parietal lobe in both white and gray matter is significantly correlated with postmenstrual age in neonates, suggesting that it may serve as an indicator of normal brain development during the perinatal age window. Further study will be needed to understand the implication of this finding.
Figure 1. A) the fALFF of white matter (including 12 independent components) in different frequency bands; B) the fALFF of grey matter (including 12 independent components) in different frequency band.

Figure 2. A) The age-related components in white matter; B) the age-related components in gray matter.
Poster No 1218

The brain’s functional activation dynamics are associated with female hormone levels

Ceren Tozlu1, Louisa Schilling2, Parker Singleton3, Keith Jamison2, Amy Kuceyeski2

1Weill Cornell Medicine, NYC, NY, 2Weill Cornell Medicine, New York City, NY, 3Weill Cornell Medicine, New York, NY

Introduction: Sex hormones play an important role in shaping how the brain’s structural and functional architecture evolve across the lifespan1,2,3. One of the ways to investigate the brain’s structure-function relationship is to analyze how the brain’s structural connectivity architecture constrains its dynamic functional activation via Network Control Theory (NCT)4. NCT uses the brain’s structural connectivity networks to identify the minimum transition energy (TE) required for the transition between the commonly recurring brain activation states. NCT has previously been applied in disease5 and health6,7, for example across developing populations8. However, no study to date has investigated how TE is associated with female hormones, and more specifically how these relationships are impacted by menopause when striking changes in hormone levels are observed.

Methods: Four hundred and four females (age: 60.05 ± 15.74) from the Human Connectome Project-Aging (HCP-A) dataset9 were used in this study. First, k-means was applied to the regional fMRI time series to identify commonly recurring dynamic brain states. The time series were analyzed using regional averages of 86 FreeSurfer-based regions (68 cortical and 18 subcortex/cerebellum), and the structural connectivity matrices were extracted using diffusion MRI and deterministic tractography. Second, NCT was applied to calculate the minimum energy required to transition between each pair of dynamic brain states (or to remain in the same state - i.e. persistence energy). Global TE was calculated as the average of the pairwise TEs between dynamic states and the persistence energy in each state. The regional fMRI time series were also used to calculate their entropy, which quantifies the amount of temporal regularity/unpredictability in brain activity. Global entropy is calculated as the average of regional entropy. Linear models were used to investigate the association of global TE and entropy with hormones such as estradiol, Luteinizing Hormone (LH), and Follicle-Stimulating Hormone (FSH), after controlling for age and framewise displacement (FD). The state-wise TEs were also compared between pre- (n=59), peri- (n=42), and post-menopausal (n=87) females who were between 40-60 years old using ANCOVA where age and FD were used as covariates. Group differences were considered significant when p<0.05 after Benjamini–Hochberg (BH) correction for multiple comparisons.

Results: Increased global TE was associated with higher levels of estradiol (p=0.03) and lower levels of LH (p=0.01), and FSH (p=0.005) (see Figure 1), while there was no significant association between entropy and hormone levels. Recurrent brain states included those defined by high-amplitude activity (+) or low-amplitude activity (-) in various canonical networks, including visual network (VIS+), dorsal attention (DAN-), fronto-parietal (FP+), and somato-motor (SOM+) (see Figure 2). All state-wise TEs were significantly greater in pre-menopause compared to post-menopause, while the TE between SOM+ and VIS+ networks was greater in peri-menopause compared to post-menopause.
Conclusions: Our results revealed that the known hormonal changes that occur during menopause may be accompanied with shifts in the brain’s dynamic activity landscape. Being able to map how hormonal changes like puberty, pregnancy, postpartum, and menopause affect the brain is necessary for improving the healthcare of females.

References
Differential Structural Brain Development in Adolescents with Different Apolipoprotein Eε Genotypes

Linda Chang¹, Mahsa Mayeli¹, Amal Isaiah², Shuo Chen², Thomas Ernst¹

¹University of Maryland School of Medicine, Baltimore, MD; ²University of Maryland, Baltimore, Baltimore, MD

Introduction: Apolipoprotein E epsilon (APOEε) allele has three isoforms, yielding six genotypes (ε2ε2, ε2ε3, ε2ε4, ε3ε3, ε3ε4, ε4ε4). Children with different APOEε genotypes showed differential brain maturation in a cross-sectional study (Chang 2016). Specifically, children with ε2ε4 had smallest hippocampi and young children (<10 years) with ε4ε4 had the lowest hippocampal fractional anisotropy relative to those with other APOEε genotypes. Furthermore, young children with ε2ε4 genotype performed worst on attention tasks while those with ε4ε4 had lowest scores on executive function and working memory. The ε4 allele is associated with greater risks for Alzheimer’s disease (Fernández-Calle, 2022), or poorer outcomes from brain injuries (Chang, 2011; Kassam, 2016). Understanding the effects of ε4 allele on brain development may provide useful early biomarkers. The current study aims to validate prior findings using the large longitudinal dataset of typically developing adolescents from the Adolescents Brain Cognitive Development (ABCD) study.

Methods: Data release 4.0 included data from 11,875 healthy children (www.abcdstudy.org). We extracted the genomics data and identified six APOEε genotypes for the associated single nucleotide polymorphisms (rs429358 and rs7412) using Plink 2.0. We included 2,476 participants with complete datasets from baseline (ages 9-10 years), 2-year and 4-year follow-up visits. We analyzed structural MRI [processed with Freesurfer v5.3] using regions of interests (ROIs) from the Desikan-Killiany atlas (Halger, 2019)] and cognitive scores from the NIH Toolbox-Cognitive Battery (NIHTB-CB). APOE2/ε2 were excluded due to the small sample size. We investigated APOEε genotype differences and APOEε genotype-by-Age interactions in thickness, surface area, and volume for cortical ROIs, and in subcortical ROI volumes. Longitudinal changes in these measures were assessed using a linear mixed-effects model, incorporating APOEε group, age, sex at birth, family income, study site, scanner ID, and intracranial volume (for volume measurements only) as fixed effects, and participant as random effect. The false discovery rate (FDR) was used to correct for multiple comparisons. All analyses were conducted in R 4.3.1.

Results: Participant characteristics are summarized (Figure 1). APOEε genotype effects or APOEε*Age interactions were significant in multiple ROIs for cortical thickness, surface area or volumes, and for subcortical volumes. Only six cortical measures remained significant after FDR-correction: cortical thickness of bilateral Cuneus, bilateral Pericalcarine cortices, left Lingual gyrus and left postcentral gyrus (Figure 1). However, all subcortical gray matter volumes remained significant after FDR-correction for APOEε-main effects (p<0.001) or APOEε*Age interactions (p<0.0001), marginal effect size R2=0.19-0.45 (Figure 2). Specifically, relative to the other genotypes, the ε2ε4 group (red lines) had the smallest hippocampi and amygdalae, but largest pallidum, caudate and putamen bilaterally. Conversely, the ε4ε4 group (green lines) had the smallest putamen and largest amygdalae. In addition, the volumes of the corpus callosum showed group differences (Posterior: Age*APOEε-corrected-p=0.005, APOEε-corrected-p<0.001, Middle and Central: APOEε-corrected-p<0.001). Furthermore, global volumes of cerebral white matter, cerebellar cortex and white matter all showed APOEε and APOEε*Age effects (corrected-p<0.001). However, no significant effects for APOEε or APOEε*Age were found for any of the NIH-TB-CB test scores.
Conclusions: Adolescents with different APOEε genotypes show significant variations in the growth trajectories of their cortical thickness and subcortical gray matter volumes, especially those with ε2ε4 and ε4ε4, validating prior observations (Chang, 2016). Whether these early morphometric differences persist into adulthood, leading to greater vulnerability for brain injury or lower repair capacity at later life, requires further follow-up studies.

References
ABSTRACTS

Poster No 1220
Development of brain state dynamics involved in working memory
Ying He1

1McGill University, Montreal, Quebec

Introduction: The human brain is an open complex system that is dynamically organized to support cognitive and behavioral flexibility, as well as rapid adaptation to ever-changing environmental or task demands. A wealth of recent neuroimaging studies in adults has demonstrated that the dynamical organization of functional brain networks is essential to support the performance of various cognitive and affective functions. Alterations in the dynamical organization of large-scale functional brain networks are linked to cognitive impairments in a variety of psychiatric and neurodevelopmental disorders. As childhood is a critical period during which the human brain function and structure undergo protracted development with prominent changes in higher-order cognitive functions such as working memory, it is thus pivotal to understand how the dynamical organization of functional brain networks contributes to children's cognitive development and the architecture of structural connectivity underlying brain dynamics.

Methods: To address above open questions, we set up a developmental functional Magnetic Resonance Imaging (fMRI) study with advanced analytic approaches and Diffusion Tensor Imaging (DTI) study in 69 children (aged 7–12-year-old) and 51 adults (aged 19–24-year-old) to investigate developmental differences in dynamical brain states of the frontal-parietal network (FPN) and default mode network (DMN) during working memory task and white matter structural connectivity. Observed fMRI data are modeled by a novel Bayesian switching dynamical systems (BSDS) approach. The BSDS model was applied to the time courses which could provide the temporal evolution of the states, the occupancy rate and mean lifetime of states, the transition probability matrix and mean and covariance of states. For each subject, we also calculated the mean fractional anisotropy (FA) values across all voxels in the tract between each two ROIs to weighted the white matter connectivity matrix. And then, the structure-function coupling was measured as Spearman rank correlation between nonzero element of structural and functional connectivity profiles.

Results: We identified five brain states with rapid transitions, characterized by dynamic configurations among FPN and DMN nodes with active and inactive engagement in different task demands. Compared with adults, children exhibited less brain states with highest activity in FPN nodes dominant to high demand, and its occupancy rate increased with age. Children preferred to attain inactive brain states with low activity in both FPN and DMN nodes. Moreover, children exhibited lower transition probability from low-to-high demand states and such transition was positively related with working memory performance. Notably, higher transition probability from low-to-high demand states was associated with stronger structural connectivity across FPN and DMN, but weaker structure-function coupling of these two networks.

Conclusions: In conclusion, our study demonstrates immature dynamical organization of the FPN and DMN nodes during WM, characterized by less occupancy rate and more transitions to inactivated state but weaker transitions among brain states dominant to high task demand condition. And effective brain dynamics is related with stronger structural connectivity but weaker structure-function coupling among FPN and DMN. Our findings extend our current understanding of how the FPN and DMN nodes are dynamically organized into a set of nuanced brain sates to support moment-to-moment information updating during WM and its links to structural connectivity.

References

Poster No 1221
The efficiency of dynamic brain state transitions in working memory improves in youth
Xiaoyu Xu1,2, Zaixu Cui3

1State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China, 2Chinese Institute for Brain Research, Beijing, China

Introduction: Dynamic brain state transitions are required for working memory, such as moving from a low cognitive load to a working memory state (Braun et al., 2015). However, it remains unclear how the development of structural network topology supports the process of such dynamic brain state transitions. Network control theory (NCT) provided a powerful framework...
for studying how structural network topology informs and constrains functional dynamics (Gu et al., 2015). NCT can be used to quantify the energetic costs, namely control energy, required to facilitate the transition between different states. Our previous work reports control energy for frontoparietal activation decreased with development (Cui et al., 2020). In the current study, we depict how the development of structural networks facilitates the dynamic transitions in working memory execution in youth under the framework of NCT.

Methods: The present study leveraged magnetic resonance imaging (MRI) data from the Lifespan Human Connectome Project Development (HCP-D) study (Somerville et al., 2018). The final sample included 590 subjects aged 8-22 with complete anatomical and diffusion MRI (dMRI) data. We preprocessed dMRI data and reconstruct the structural networks using the pipeline integrated within qsiprep (Cieslak et al., 2021). The functional activation map for the n-back task was extracted from the Human Connectome Project (Glasser et al., 2016). To depict the transition from 0-back to 2-back, we defined the initial brain states as all zero, and the target state as the contrast map between 2-back and 0-back conditions. Based on NCT, we calculated the control energy required by all brain regions during the transition (Fig.1A). To validate the facilitation of structural network topology on brain state transition, we compared the control energy of the actual networks to the null networks with the same degree and strength distribution. Next, we used general additive models to assess the developmental effects of control energy at the levels of the whole brain, systems, and nodes. Multiple comparisons were accounted for using the False Discovery Rate (Q<0.05). All the developmental effects were compared to the effects observed in the null networks. Furthermore, we described the developmental patterns among different systems leveraging the first derivative. We also correlated the age effect sizes of nodes to the sensorimotor-association axis (S-A axis) (Sydnor et al., 2021) using the Spearman method and spin test (Alexander-Bloch et al., 2018).

Results: The frontoparietal system exhibits the highest energy consumption in facilitating the transition of brain states from 0-back to 2-back (Fig.1B, C). The energetic cost of real structural networks is significantly lower than that of null networks (t=-175.14, P<2.2e-16, Fig.1D). The average energetic cost required for the whole brain declines with development (P=3.53e-09, r=-0.25, Fig.2.A), and the age effect size of real networks is significantly stronger than that of null networks. As to the system level, both the average energetic costs of the frontoparietal and somatomotor systems exhibit strong developmental effects. However, the decreasing of energetic cost is consistent in the frontoparietal system from childhood to adulthood, while the cost of the somatomotor system hits a plateau in the middle of adolescence (Fig.2B, C, D). Furthermore, the age effect size (Z stats) of nodes tends to converge towards the S-A axis (r=0.28, Pspin=0.004, Fig.2.E, F). This tendency reflects a hierarchical pattern of development of structural network topology.

Conclusions: Our results reveal how the development of structural network topology supports the dynamic brain state transitions in working memory. The theoretical energy consumption declined during development, which illustrates that the efficiency of dynamic brain state transitions in working memory improves from childhood to adulthood.
Abstracts

Figure 2. Energetic costs in n-back task change with age. (A) The average energetic cost of the whole brain keeps decreasing from childhood to adulthood. The age effect on cost is greater for real networks than null networks, indicating that the refinement of structural network topology facilitates the cost decline. (B) Age effect sizes and the developmental periods with significant age-related change in average energetic costs vary across 8 systems. The 95% confidence interval of the first derivative of GAM fits is used to define significant age-related changes. (C) The developmental trajectory of the average energetic cost of the somatomotor network hits a plateau at the age of around 14. (D) The average energetic cost of the frontoparietal system continuously declines in youth. (E) The age effect size of the energetic costs of nodes. (F) The age effect size of nodes tends to converge towards the S-A axis.

References

Large Data on the Small Brain: Population-wide Cerebellar Growth Models of Children and Adolescent

Carolin Gaiser¹, Rick van der Vliet¹, Augustijn de Boer², Opher Donchin³, Pierre Berthet⁴, Gabriel Devenyi⁵, Mallar Chakravarty⁶, Jörn Diedrichsen⁷, Andre Marquand⁸, Maarten Frens⁹, Ryan Muetzel¹

¹Erasmus Medical Center, Rotterdam, Zuid Holland, ²Radboud University Nijmegen, Nijmegen, Gelderland, ³Ben-Gurion University of the Negev, Be’er Sheva, Be’er Sheva, ⁴University of Oslo, Oslo, Oslo, ⁵McGill University, Montreal, Quebec, ⁶Brain Imaging Centre, Douglas Research Centre, Montreal, Quebec, ⁷The Brain and Mind Institute, University of Western Ontario, London, Ontario

Introduction: The cerebellum is known to be engaged in a broad spectrum of functions. While its involvement in motor control is best documented, recent efforts have made clear that it is also involved in cognitive function. In the current study, we describe and provide openly available normative models of anatomical and functional subregions of the cerebellum from a large pediatric population that 1) can be used as reference models to obtain accurate normative ranges, also in smaller datasets, by benefitting from informative hyperpriors based on a large sample, and that 2) can be updated with data from new sites and extended age ranges without the necessity of sharing sensitive patient or participant data. We furthermore illustrate the usefulness and practicality of the current approach by mapping the deviations from typical cerebellar development at the level of the individual in a subpopulation of children with autistic traits (Constantino et al., 2003). These models have the potential to facilitate and maximize the use of cerebellar outcomes in neuroimaging research and as a result aid to better understand the role of the cerebellum in typical as well as atypical neurodevelopment.

Methods: Anatomical Parcellation The cerebellum was parcellated in the native space into 35 anatomical subdivisions using the MAGeT pipeline (Chakravarty et al., 2013; Park et al., 2014). Functional Parcellation As lobular boundaries of the cerebellum have shown limited correspondence with functional boundaries, we also employed the functional subregions proposed by King and colleagues (King et al., 2019). Normative Models To generate normative models for anatomical and functional subregions of the cerebellum, we made use of the PCNtoolkit python package version 0.27 (de Boer et al., 2022; Rutherford et al., 2022b) using Python 3.10.6. Using Hierarchical Bayesian Regression, we estimated normative models of the cerebellum using both the volumes from the anatomical parcellation and the morphological indicators (i.e., grey and white matter densities as well as volumes) of the functional parcellation from age, for each region of interest (ROI) separately. Sex and scanner were modeled as batch-effects.

Results: The anatomical and functional regions show similar overall growth trends. As expected in this age range traversing late-childhood into adolescence, we see increasing volumes throughout all ROIs in both parcellations. Consistent with previous findings, we observed an anterior-posterior gradient in cerebellar development likely to reflect and mirror the age-related improvements in underlying functions, with sensorimotor areas predominantly located anteriorly and cognitive areas posteriorly in the cerebellum (King et al., 2019; Klein et al., 2016; Liu et al., 2022). Anterior sensorimotor areas show smaller age-related effects compared to posterior cognitive areas, possibly reflecting protracted growth trajectories for higher-order cognitive compared to sensorimotor regions in the cerebellum.

Conclusions: We present models of cerebellar growth during childhood and adolescence, an important time period for brain development, based on a large, prospective population cohort. We find an anterior-posterior growth gradient mirroring the age-related improvements of underlying behavior and function. The anterior/sensorimotor-posterior/cognitive growth gradient follows a recently proposed functional gradient related to cognitive load as well as cerebral maturation patterns, thus providing evidence for directly related cerebello-cortical developmental trajectories. In recent years, the cerebellum has received increasing attention as a critical node in fundamental cognitive and emotional functions as well as brain development. The current openly accessible growth models will therefore be of great value for uncovering cerebellar deviations and understanding their implications in neuropathology.
References

Poster No 1223
Intrinsic timescale evolves along a sensorimotor-association cortical axis in neurodevelopment
Golia Shafiei1, Valerie Sydnor2, Matthew Cieslak3, Arielle Keller1, Audrey Luo1, Kahini Mehta1, Taylor Salo1, Dani Bassett3, Russell Shinohara1, Theodore Satterthwaite3
1University of Pennsylvania, Philadelphia, PA, 2University of Pittsburgh, Pittsburgh, PA, 3UPenn, Philadelphia, PA

Introduction: Intrinsic timescale is a commonly used measure of spontaneous neural dynamics that quantifies the time window of information processing of neuronal populations and is associated with cognition and complex behavior1. Intrinsic timescale displays a hierarchical cortical organization across multiple species and modalities, such that neural activity
ABSTRACTS

at the sensory cortex demonstrates a shorter timescale—adapting to rapid changes in the environment—and association cortex exhibits longer timescales—sustaining neural activity for a longer time to process higher order functions. A similar organizational pattern is observed across a range of neurobiological properties that largely align to an archetypical axis spanning from sensorimotor to association cortices (S-A axis). Recent work in human neurodevelopment has demonstrated that the S-A axis also constrains developmental patterns of functional brain organization in youth. However, less is known about age-related changes in intrinsic timescale during development and whether its cortical maturation patterns follow the same large-scale organizational principles. Here we estimate intrinsic timescale in youth and investigate its neurodevelopmental trajectories with respect to the S-A axis of brain organization.

Methods: We used functional Magnetic Resonance Imaging (fMRI) data from the Human Connectome Project: Development (HCP-D); N = 610, age range 8-21 years, 327 female). Functional MRI data were preprocessed using fMRIPrep and XCP-D. The autocorrelation function (ACF) of the preprocessed time-series was used to estimate an intrinsic timescale for each region as the sum of its positive autocorrelation values, indicating the timescale at which the ACF of a given region decays. A Generalized Additive Model (GAM) was first applied to assess neurodevelopmental variations in the whole-cortex average timescale across individuals, including age as the smooth variable and in-scanner motion and sex as covariates. Region-wise GAMs were then used to estimate neurodevelopmental trajectories of intrinsic timescale at each cortical region. Age effects on regional timescales were estimated as partial R2, calculated as differences in the model fit with and without including the smooth term (i.e., age). Regional neurodevelopmental trajectories were compared with an archetypical organizational map of the cortex that spans the S-A axis, obtained from the neuromaps toolbox.

Results: Applying GAM on whole-cortex data, we found that the average timescale increases during development in youth (Fig 1a). Region-wise GAM analysis demonstrated that regional neurodevelopmental trajectories of intrinsic timescale were heterogeneous across the cortex, with smaller age effects in sensorimotor cortex and larger positive age effects in association cortex (Fig. 1b). Comparing regional age effects with S-A axis rankings, we found that intrinsic timescales mature along the cortical hierarchy captured by the S-A axis (Fig. 1c; r_s = 0.38, p_spin = 0.0024). Further inspection of regional GAM fits confirmed that intrinsic timescale remains relatively stable in sensorimotor regions during child and adolescent development whereas timescale increases in association regions (Fig. 1d). Finally, we compared intrinsic timescale derived from task fMRI (Go/NoGo Task) with resting-state data to assess the extent to which cognitive demand influences intrinsic timescale in a neurodevelopmental cohort. Consistent with previous reports in adults, we found that the average whole-cortex intrinsic timescale significantly increases with higher task demand (Fig. 1e; paired t-test: t = 30.95, p < 0.05).

Conclusions: Intrinsic timescale increases during development, in particular in the association cortex at the top of the cortical hierarchy. Developmental effects follow a hierarchical pattern and recapitulate the S-A axis of cortical organization, revealing convergence between major axes of cortical organization and development.
ABSTRACTS

References

Poster No 1224

Multi-scale cortical morphometry reveals regional and scale-dependent variations across the lifespan
Karoline Leiberg¹, Bethany Little¹, Yujiang Wang¹
¹Newcastle University, Newcastle, United Kingdom

Introduction: Characterising the changes in cortical morphology across the lifespan is fundamental for a range of research and clinical applications. Most studies to date have found a monotonic decrease in commonly used morphometrics, such as cortical thickness and volume, across the entire brain with increasing age. Any regional variations reported are subtle changes in the rate of decrease. However, these descriptions of morphological changes have been limited to a single length scale. Here, we delineate the morphological changes associated with the healthy lifespan in multi-scale morphometrics.
Methods: Using MRI from subjects aged 6-88 years from NKI (n=833) and CamCAN (n=641), we computed several morphometrics at spatial scales ranging from 0.32 mm to 3 mm. These were obtained at both the cortical hemisphere and lobe level. We used generalised additive mixed models (GAMMs) to account for site differences before extracting age trajectories. In a proof-of-principle application, we compared brain age estimations based on a single metric (pial surface area) computed at a single scale vs. multiple scales.

Results: On the level of whole cortical hemispheres, lifespan trajectories show diverging and even opposing trends at different spatial scales, in contrast to the monotonic decreases of volume and thickness described so far. Pronounced regional differences between lobes also became apparent in scales over 0.7 mm. Using two complementary scales improved brain age estimates in RMSE by about 5 years.

Conclusions: Our study provides a comprehensive multi-scale description of lifespan effects on cortical morphology in an age range from 6-88 years. In future, this can be used as a normative model to compare individuals or cohorts, hence identifying morphological abnormalities. Our results reveal the complementary information contained in different spatial scales, demanding that morphometrics should not be considered as mere numbers, but as functions of length scale.

![Fig. Computation of lifespan trajectories in scale-dependent morphometrics in cortical regions.](image1)

![Fig. Lifespan effects on cortical hemispheres measured in scale-dependent morphometrics.](image2)

References

7. Frangou, S. (2021), Human Brain Mapping, pp. 1–21
The development of object recognition in infancy: findings from neuroimaging and deep learning

Cliona O'Doherty¹, Áine Dineen¹, Anna Truzzi¹, Graham King¹, Keelin Harrison¹, Lorijn Zaadnoordijk¹, Enna-Louise D'Arcy¹, Jessica White¹, Tamrin Holloway¹, Chiara Caldinelli¹, Anna Kravchenko¹, Sojo Joseph², Eleanor Molloy², Adrienne Foran², Ailbhe Tarrant³, Angela Byrne², Rhodri Cusack¹

¹Trinity College Dublin, Dublin, Ireland, ²The Coombe Hospital, Dublin, Ireland, ³The Rotunda Hospital, Dublin, Ireland

Introduction: Object recognition and categorisation are foundational skills required to build conceptual knowledge. Although categorisation is well-studied in young cohorts there is still debate surrounding its origin in the ventral visual cortex (VVC). Initial infant neuroimaging shows that category representations appear early [Kosakowski et al., 2022] but the success of deep neural networks (DNNs) as models for the ventral stream suggests that categories are formed according to a hierarchy of feature complexity. In agreement with this, behavioural studies show very young infants can form mental groups according to perceptual features [Quinn et al., 1993] with grouping by conceptual features emerging later [Younger & Cohen 1993]. However, behavioural studies are limited as they test if an infant is acting upon knowledge and cannot provide evidence for the absence of a capacity for such knowledge. Neuroscience and computational modelling can provide unique insights richly complementing behavioral measures. To date, it has not been possible to probe infant brain representations underlying categorisation at scale. With pioneering advances in awake infant fMRI [Ellis et al., 2020] we have begun to tackle these questions by collecting the largest cohort of awake, behaving infants in an fMRI study to-date and quantifying their visual representations to a broad variety of categories.

Methods: Infants (n=134) attended two scanning sessions at 2- and 9-months and were scanned in a Siemens 3T MAGNETOM Prisma. We measured brain responses to looming images: 12 categories of objects with 3 exemplars across viewpoints. The chosen categories had varying degrees of familiarity to young infants and spanned cortical organisation principles such as animacy and real-world size [Konkle & Caramazza, 2013]. Using multivariate pattern analysis, we quantified the distributed patterns of visual responses within the VVC and compared infant category organisation to adults. Representational similarity analysis with perceptual and categorical models was used to test the feature complexity in infant cortex and quantify the level of abstraction encoded across development. Infant brain activity was also compared to DNNs that were either untrained or trained to recognise 1000 categories of natural images. We measured the similarity to each layer of the DNN assuming that lower layers encode simpler features than later layers.

Results: At 2-months we observed an impressive organisation by category in ventral visual stream with significant distinctions for within versus between category representations as well as organisation by animacy and real-world size. This initial representation becomes more adult-like by 9-months and interestingly, anterior ventral regions were found to become more similar to adults earlier than posterior visual regions. Analogously, comparison to a DNN trained on an object recognition task...
showed that anterior regions become closer to adults in their correlations to later layers of a DNN encoding complex features. In contrast, infants' early visual regions are more similar to an untrained network than adults as well as to earlier layers in the DNN.

Conclusions: We have demonstrated that the neural basis of categorisation is present from as early as 2-months and that anterior ventral regions become more adult-like before posterior regions. The presence of this organisation is prior to its documented functional emergence from behavioural literature and contrary to the idea that simpler features in early visual cortex develop before complex category representations. For the first time we apply multivariate analysis methods to a large, innovative infant neuroimaging dataset and successfully define similarities between the infant brain and AI models. This provides novel insight into the workings of the youngest of humans and demonstrates the promise of awake infant fMRI for the future of understanding the brain and mind in early life.

References

Poster No 1226

Exploring Longitudinal Brain Connectivity Dynamics In Adolescent: A Multimodal MRI Analysis

Rekha Saha¹, Debrata Kumar Saha², Zening Fu³, Rogers Silva⁴, Vince Calhoun⁵

¹Georgia State University, Atlanta, GA, ²Georgia Institute of Technology, Atlanta, GA, ³Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia, Atlanta, GA, ⁴TReNDS Center, Atlanta, GA, ⁵GSU/GATech/Emory, Decatur, GA

Introduction: Functional and structural MRI play vital roles in brain development analysis. Our study explores brain development using fMRI/sMRI, merging modalities to capture nuanced brain changes during adolescence. Employing a novel symmetric multimodal fusion approach, we analyze FNC and GM data from the Adolescent Brain and Cognitive Development (ABCD) dataset, unveiling significant longitudinal change patterns. This approach reveals structured alterations in visual-sensorimotor connectivity and bilateral sensorimotor cortex. Through this analysis, we emphasize age-related multivariate brain changes, showcasing the dynamic nature of brain structure and connectivity during adolescence. This study emphasizes the dynamic nature of brain structure and connectivity during adolescence, showcasing the efficacy of our method in unraveling these changes across modalities.

Methods: In our study, we utilized subject-specific fMRI and sMRI data collected at baseline and two-years later. To capture alterations in functional network connectivity (FNC) and gray matter (GM), we computed differences between the baseline and two-year datasets, creating ΔFNC and ΔGM matrices to represent their respective changes over time. Employing the mCCA+jICA (define) method, we deconstructed these matrices, extracting co-varying change patterns: functional change patterns (FCPs) and structural change patterns (SCPs). Utilizing an elbow criterion, we estimated five components for both GM and FNC data. Following the mCCA+jICA estimation, we analyzed loading parameters and the source matrix. To identify significant longitudinal changes, we conducted one-sample t-tests on the loading parameters aF and aG for both modalities, assessing their statistical significance at a 95% confidence level with corrections for multiple comparisons.

Results: The study leverages the Neuromark template featuring 53 replicable networks grouped into 7 domains¹. Figure 1 portrays the experimental findings, showcasing spatial maps illustrating the connections between multivariate FCPs and SCPs. These visualizations exhibit 2 FCP components (component 3 and 2) and their corresponding spatial maps of SCPs, represented with associated T-values indicating increased or decreased expression with age². Notably, the upper aspects demonstrate associations of FCPs and SCPs components with increased age. Specifically, components 2 and 3 of FCPs reveal significant changes in brain functional connectivity with age, showing an increasing trend. Component 3 exhibits heightened connectivity between visual and sensorimotor domains in FNC data, complemented by decreasing changes in the bilateral sensorimotor cortex in sMRI data over two years. Additionally, FCP component 3 displays a decreasing trend
with age in functional connectivity between visual and cerebellar domains, as well as between sensorimotor and cognitive control domains.

Conclusions: This study introduces an innovative method to explore links between brain functional and structural changes using FNC matrices and GM data. It investigates whole-brain structural and functional alterations over two years, revealing age-related trends and associations between these changes. Analyzing ABCD dataset data, the research identifies significant alterations in functional and structural change patterns within this period. These outcomes underscore the potential of our proposed methodology as a valuable approach for assessing holistic brain functional and structural alterations and their interplay in longitudinal investigations.

References

Conclusions: This study introduces an innovative method to explore links between brain functional and structural changes using FNC matrices and GM data. It investigates whole-brain structural and functional alterations over two years, revealing age-related trends and associations between these changes. Analyzing ABCD dataset data, the research identifies significant alterations in functional and structural change patterns within this period. These outcomes underscore the potential of our proposed methodology as a valuable approach for assessing holistic brain functional and structural alterations and their interplay in longitudinal investigations.

References

Poster No 1227
The rise of synergistic structure in the newborn brain
Anton Tokariev¹, Thomas Varley², Michael Myers³, Martha Welch³, Sampsa Vanhatalo¹, Olaf Sporns²
¹University of Helsinki, Helsinki, Finland, ²Indiana University, Bloomington, IN, ³Columbia University Medical Center, New York, NY

Introduction: During the third trimester infant human brain actively self-organises into a unified complex system. Discrete local neurons wire together, their populations connect into large-scale networks, which, in turn, cooperate on a global scale. This happens at both structural and functional levels. Neural dynamics of the whole brain goes far beyond just the sum of its individual elements and this property is known as “synergy”. Previously it was shown that synergy is crucial for many complex
brain functions and cognition. But the timing of emergence and early formation principles of synergistic system in the human brain is currently unknown. We hypothesized that changing patterns of synergy would be seen during early development of the infant brain, and that the emergence of a consolidated “synergistic scaffold” would be associated with the later neurocognitive performance at individual level.

Methods: In this study, we analysed high-density (124-channels) longitudinal EEG data collected from preterm infants (N = 135; born at 31 ± 2.4 weeks) and spanning over period from the third trimester to postnatal age (33–45 weeks). Each subject had 1–3 recordings done during daytime sleep (in total N = 289 recordings). The general cohort included standard care infants (SC; N = 61) and those participated in Family Nurture Intervention (FNI; N = 74) program, which was aimed to enhance mother-infant emotional connection. Artifact-free 5-min-long epochs of quiet sleep EEG were filtered into delta (1.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–22 Hz) frequency bands. The filtered signals were source reconstructed into 58 cortical parcel activity using a realistic infant head model and dynamic statistical parametric mapping approach. Next, we estimated O-information (measure of higher-order structure showing the balance between redundancy and synergy) from cortical activity of each infant and correlated to their age (Spearman). Further, we computed nodal frequencies of being a part of the “synergistic scaffold” across different age groups. The developmental trajectories of O-information for each group were computed as mean values in a two-weeks-wide sliding windows and compared within each age bin using two-sample t-test. Finally, we correlated O-information levels at term equivalent age to cognitive outcomes (Bayley) at 18 months.

Results: We found that at ages corresponding to the third trimester, infant brain organization dynamically changes from redundant to synergy-dominated with O-information negatively correlating to age at all frequencies (rho < −0.42, p < 0.001; see Fig.1A for theta band). The size of the “synergistic scaffold” was also increasing with maturation (Fig.1A left). Spatially (Fig.1B), the scaffold mostly consisted of frontal nodes at preterm age (33–36 weeks), but then it expanded over visual areas before term (37–40 weeks) and further incorporated central and temporal cortices during early postnatal period (40–43 weeks). Strikingly, our analysis revealed different developmental trajectories (Fig.1C) between clinical cohorts (SC vs. FNI) with significant group differences at 35 and 38 weeks (p < 0.01). FNI infants showed a steadily decreasing trend, while SC showed bi-phasic trajectory: redundancy was slightly increasing until 38th week (“plateau” phase) followed by abrupt changes towards synergetic structure (“steep” phase). Finally, O-information values around term age were negatively correlated to later cognitive assessments (Fig.1C; rho = −0.45, p = 0.004) suggesting that brain synergy may be a biomarker of future neurodevelopment.

![Figure 1. Emergence of synergistic structure in the infant brain at early maturation (theta band). A, O-information negatively correlates to gestational age (left), at the same time the size of the optimal synergistic subsystem (scaffold) increases (right). B, Early spatial development of the synergistic scaffold. The ball size shows consistency, or participation frequency, of each cortical region in the "synergistic scaffold" at different ages. C, Standard care (SC) and Family Nurture Intervention (FNI) groups show distinct developmental trajectories with significant differences at 35 and 38 weeks. D, O-information levels estimated around term age correlates to cognitive scores at 18 months of age.](image-url)
Conclusions: Our results suggest that starting from the third trimester infant human brain rapidly develops synergetic structure and that this predicts later clinical outcomes. Moreover, support of natural mother-infant connection (environmental enrichment) modulates the developmental trajectory of these changes and associates with more gradual reorganization processes in the maturing brain.

References

Poster No 1228
Triple Interactions Between the Environment, Brain, and Behavior in Children: An ABCD Study
Dongmei Zhi1, Rongtao Jiang2, Godfrey Pearlson2, Zening Fu3, Shile Qi4, Weizheng Yan5, Aichen Feng6, Ming Xu6, Vince Calhoun7, Jing Sui8

1Beijing Normal University, Beijing, 2Yale School of Medicine, New Haven, CT, 3Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgi, Atlanta, GA, 4Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 5Emory University, Atlanta, GA, 6Institute of Automation, Chinese Academy of Sciences, Beijing, 7GSU/GATech/Emory, Decatur, GA, 8Beijing Normal University, Beijing, China

Introduction: Despite the well-known fact that environmental exposures play a critical role in influencing behaviors1, we have limited understanding of how these exposures interact with the brain and in turn shape our behaviors, especially during adolescence with rapid development of brain and behaviors2.

Methods: In this work, we investigated the comprehensive environment-brain-behavior triple interactions among whole-brain functional network connectivity (FNC) derived from a spatially constrained single-subject ICA method3, 41 environmental exposures (spanning perinatal, family, school, neighborhood and individual lifestyle), and 23 behaviors related to cognitive ability and mental health in 7655 children selected from the ABCD study at both baseline and longitudinally (Fig. 1)4,5. Linear mixed-effect models were adopted to examine the associations between 41 environmental exposures and 1378 whole-brain FNC pairs, 10 cognitive abilities, and 13 mental health measures at both baseline and longitudinally, while adjusting for multiple confounders. Furthermore, we used partial least squares regression to identify key predictive FNC signatures and environmental exposures that support individual-level prediction of behaviors at both baseline and longitudinally. Most importantly, mediation analysis was used to examine whether and to what extent the ‘predictome’ FNC signatures mediated the significant environment-behavior associations.
Results: We found family and neighborhood exposures such as family income and area deprivation index were common critical environmental influencers on cognitive ability and mental health at both baseline and longitudinally (Fig. 2A). Healthy perinatal development was unique protective factor for evolving better cognitive ability, whereas sleep problems, family conflicts and adverse school environments specifically increase risk of mental health. As illustrated in Fig. 2B, family income and caregiver education are the top 2 ranked exposures influencing most FNCs, which manifest as similar network architectures, especially the cross-module connections. Subcortical network stands out with the highest vulnerability to environment, mainly in domains of family, perinatal and neighborhood exposures, where the thalamus was the most susceptible to environmental influences (Fig. 2C, D, E). Moreover, FNC demonstrated more predictive power for cognitive abilities than mental health, where thalamus and hippocampus play important roles in longitudinal prediction, while environmental exposures demonstrated more predictive power than FNC in both baseline and longitudinal prediction of all behaviors, especially for mental health ($r = 0.31^{*}-0.63$) (Fig. 2F). Results highlighted FNCs within subcortical (SCN) and cognitive control (CCN) networks, and between SCN-SMN as the most contributing networks to predict mental problems, and within CCN, default mode networks (DMN), and between DMN-CCN for predicting cognitive abilities (Fig. 2G). Notably, these predictions remained significant even controlling for multiple covariates, and site harmonization via ComBat (Fig. 2H). Most importantly, we successfully validated the FNC-based prediction of fluid intelligence using independent UK Biobank data ($N = 20,852$, Fig. 2I). Finally, the identified predictive FNCs can also mediate the environment-behavior associations significantly, implicating the plastic and flexible environment-brain-behavior interactive loops.
Fig 2. (A) Environment-behavior association. The summarized correlation mapping between 5 domains of environmental exposures and 23 behaviors, at both baseline and longitudinally where the triangle, square and round black dots denote the mental health-specific, cognition-specific and shared environmental exposures respectively. The bar above denotes the number of environmental exposures significantly correlated with each of the 23 behavioral items (Bonferroni corrected, \(p < 0.05 \)). (B) Summary of associations between whole-brain FNC with 41 environmental exposures (FDR corrected, \(p < 0.05 \)), and ranking of environmental factors influencing more FNC pairs, and the top two FNC patterns. (C) Ranking of FNC nodes associated with more exposures, and the top 5 nodes independent component (ICs), (D) Number of exposure nodes correlated with each FNC, and within each network module, where the top FNC nodes are illustrated. (E) Distribution of environmental exposure correlated with each FNC module. (F) The prediction results for behaviors. Comparison of prediction accuracy using only FNC, only environment, or their combination for 10 types of cognitive abilities and 13 types of mental measures. (G) The summarized top contributing FNC modules and environmental exposures for predicting cognitive or mental health. (H) Prediction of Cognition Total Composite based on FNC only and after adjusting for covariates including site, harmonization by Combat, mean frame displacement, puberty, age, sex, BMI, and handedness, across 200 repetitions of 10-fold cross-validation. (I) Cross-validation between the ABCD and UK Biobank datasets for prediction of fluid intelligence using FNC. Abbreviation: SCN, subspecialty network; SMN, somatomotor network; CCN, cognitive control network; DMN, default mode network; CBN, cerebellum network.
Conclusions: Collectively, this work investigated the environment-brain-behavior triple interactions in children comprehensively based on ABCD data at both baseline and longitudinally, identified CCN, DMN, and SCN as the most predictive functional networks for a wide repertoire of behaviors, and underscored the long-lasting impact of critical environmental exposures on childhood development, especially the attainable targets with family conflict, sleep quality, school and neighborhood environments to promote the healthy development of adolescents.

References

Poster No 1229

Longitudinal Changes in Regional Fiber Length Map in Early School-age Children

Yanlin Yu¹, Qing Cai¹, Chu-Chung Huang¹
¹East China Normal University, Shanghai, China

Introduction: The understanding of brain networks is of great significance for human cognition and behavior, especially in the development stage. The non-invasive neuroimaging techniques that estimate the structural connectivity in brain white matter (WM) using diffusion MRI tractography were proposed to identify the human brain’s fundamental organization. However, mapping structural connectome using diffusion MRI has been challenging due to streamline quantification bias and may impede the sensitivity of change in network metrics (Yeh et al., 2021). Recent study suggested that the fiber length distribution could be a novel way to differentiate a brain region served as the functional integrator or local modules (Bajada et al., 2019). Here, we aim to generate a regional index characterized by length distribution of specific regions to investigate the developmental change during early school age. We hypothesized that longitudinal changes in regional fiber length distribution provide insight into how brain regions modulate their communication cost and may mirror the network hierarchy’s developmental process.

Methods: A total of 30 typically developing children were included in this study (7.5 ± 0.3 yr, 18 females and 12 males) at the first year in primary school and received the follow-up scanning in 1 year (8.6 ± 0.3 yr). To control the effect of brain size on fiber length, the longitudinal group FOD (fiber orientation distribution) template was generated and each individual’s FOD was transformed into this template for whole-brain tractography (Genc et al., 2018). The individual length connectome was reconstructed for the whole-brain tractogram based on the HCPex atlas (426 brain regions) (Huang et al., 2022). The length distribution was defined as the connected length distribution of a specific node, the median length of which was then calculated to represent the distribution characteristic. We compared the length median of brain regions in two time points using paired two-sample permutation test to identify the significant developmental changes in regional length distribution (1000 permutations, p < 0.01) (Figure 1). To explain the mechanism underlying developmental changes in median length, we compared the count of edges constituting the distribution across various length range at two time points. To further investigate the topological meaning of regional length map, we examined the correlation between length median and graph metrics based on the binary structural connectome (FDR corrected, p < 0.05).
Results: Most brain regions’ length median decreased during development, the brain regions with significantly decreased in length median (termed length-decreased ROIs) includes L_TF, L_PHA1, L_TE1m, L_7Am, L_7PL, L_VIP, L_25, L_a24, R_PBelt and R_10d. Whereas, only R_FOP1 show a significant increase in length median (termed length-increased ROI). We observed a general pattern that there was an increase in short-range connections, accompanied by a decrease in long-range connections in length-decreased ROIs, and conversely, an increase in long-range connections in length-increased ROI. Additionally, the regional length map was positively correlated with degree and centrality but negatively correlated with the clustering coefficient and local efficiency (Figure 2).

Conclusions: This study first proposed the regional length map to investigate the developmental changes in WM during early school age. For most brain areas, the length distributions decreased with age, which could be explained by the pruning of long-range WM and the growth of short-range WM connections. Moreover, the length map positively correlated with integration and negatively correlated with segregation of structural network. Our findings suggest that, compared to streamline-based structural network metrics, the length map of brain regions may serve as a potential biomarker for assessing the development of brain topological organization at a structural level.
IL-6 was associated with higher cingulum FA (Figure 1). IL-6 predicting cingulum FA ($\beta=0.16$, $p=0.028$). Specifically, in children exposed to higher levels of prenatal adversity, elevated IL-6 was associated with higher cingulum FA (Figure 1).

Results: There was a significant positive main effect of prenatal adversity ($\beta=0.16$, $p=0.031$), but not of cord blood IL-6 ($\beta=0.06$, $p=0.379$), predicting year 7 cingulum FA. There was also a significant interaction between prenatal adversity and cord blood IL-6 predicting cingulum FA ($\beta=0.16$, $p=0.028$). Specifically, in children exposed to higher levels of prenatal adversity, elevated IL-6 was associated with higher cingulum FA (Figure 1).

Methods: We analyzed data from 201 mother-child dyads participating in the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) study. Participants provided data relevant to three constructs: prenatal adversity, inflammatory cytokine concentration at birth, and limbic white matter maturation at age 7. Prenatal adversity was assessed by creating a composite score derived from multiple adversity factors, including maternal physical and mental health, socioeconomic status, family function, and the child's birthweight and preterm status. Inflammatory levels were assessed by measuring the concentration of the proinflammatory cytokine interleukin 6 (IL-6) from a sample of cord blood obtained at birth. Concentration values were measured using a Quanterix SIMOA HD-1 3-plex immunoassay and log-transformed. White matter maturation was assessed using data from an MRI scan conducted when the child was age 7 years ($M[SD]=7.0[0.1]$; 6.9-7.3 years). We assessed fractional anisotropy (FA) of the cingulum tract (cingulate gyrus portion), yielding an index of maturation of a brain structure underlying limbic system function. FA values were obtained from a 3T multi-shell diffusion weighted sequence, processed using FSL's probabilistic tractography pipeline (BEDPOSTX and PROBTRACKX). To analyze the data, we conducted stepwise regression, first testing for the main effects of prenatal adversity and IL-6, separately, predicting cingulum FA. To test whether adversity moderated this association, we modeled the interaction of prenatal adversity and IL-6 predicting cingulum FA at age 7 years. The interaction was probed using simple slopes analysis and the Johnson-Neyman technique. Child sex, race, and exact age at scan were included as covariates in the model.

Results: There was a significant positive main effect of prenatal adversity ($\beta=0.16$, $p=0.031$), but not of cord blood IL-6 ($\beta=0.06$, $p=0.379$), predicting year 7 cingulum FA. There was also a significant interaction between prenatal adversity and cord blood IL-6 predicting cingulum FA ($\beta=0.16$, $p=0.028$). Specifically, in children exposed to higher levels of prenatal adversity, elevated IL-6 was associated with higher cingulum FA (Figure 1).
Conclusions: We found in this study that exposure to prenatal adversity significantly moderated the association between inflammatory status at birth and maturation of the cingulum. These findings are consistent with past neuroimmune research, suggesting that the immune system influences neurodevelopment at a younger age than has previously been documented. Further, our results are consistent with theoretical frameworks suggesting that adversity exposure is associated with accelerated development across various indices of biological aging. Overall, these findings underscore the long-term effects of experiencing prenatal adversity and highlight how the immune system may shape early neurodevelopment.

References
Known and unknown probability information separably modulate insula activity in adolescents

Natalie Melville1,2, Flora Li3, Sheryl Ball1,4,5, Jungmeen Kim-Spoon5, Pearl Chiu1,5, Brooks Casas1,5,4

1Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 2Translational Biology Medicine & Health, Virginia Tech, Roanoke, VA, 3Economics Experimental Lab, Nanjing Audit University, Nanjing, Jiangsu, 4Department of Economics, Virginia Tech, Blacksburg, VA, 5Department of Psychology, Virginia Tech, Blacksburg, VA

Introduction: Adolescence is a developmental period marked by increasing independence and exploration of novel situations with uncertain outcomes. Previous research suggests that adolescents’ willingness to engage in health risk behaviors (HRBs) is related to tolerance of ambiguity (Blankenstein, et al. 2016; Tymula, et al. 2012; Van Den Bos, et al. 2017), in which the probability of an outcome is unknown, while other research finds HRBs correlated to tolerance for risk (Rao, et al. 2011; Steinberg 2008), in which the probability of an outcome is known. This study aims to identify individual biases in using known and unknown probability information during decision-making in ambiguous contexts and examines their impact on neural activity.

Methods: One hundred and fifty-one adolescents, with an initial mean age of 13.5 (s.d. = 0.54), participated in yearly assessments across five waves. Participants underwent functional magnetic resonance imaging while making choices between two options with varying levels of risk and ambiguity. A behavioral model estimated two behavioral parameters associated with ambiguity: the first capturing optimism or pessimism linked to unknown likelihoods, and the second quantifying the influence of the known probability information on unknown likelihoods. Individual levels of neural activity in the mid-posterior insula (PI) and the dorsal anterior insula (dAI) were extracted during decision-making as well as the neural activity modulated by the known likelihood information. The resulting neural activity was related to ambiguity parameters using mixed effect regressions. Similarly, neural activity was predicted by visit to identify the relationship between visit and insula activation by region.

Results: Adolescents initially exhibited optimism toward the ambiguous portion of the gamble (β = 0.7, p < 0.001) and became more neutral as they aged (β = -0.03, p < 0.001). Neuroimaging revealed that more optimistic individuals exhibited diminished activity in the PI during decisions under ambiguity (β = -0.24, p = 0.02). Additionally, PI activity increased with age when viewing ambiguous gambles (β = 0.047, p = 0.01). Known outcome probabilities were found to influence preference for ambiguity (β = -0.48, p < 0.001). More specifically, adolescents exhibited an aversion to ambiguity when the known information indicated a high probability of receiving a large outcome. In contrast, when the probability of receiving a large outcome was low, adolescents exhibited a preference for ambiguity. This relationship between known probability information and ambiguity diminished across time (β = 0.04, p < 0.001). Neurometrically, the known probability of a high outcome was positively related to dAI during choice. This relationship was (i) diminished among adolescents showing the strongest probability-related ambiguity bias (β = 0.475, p = 0.01) and (ii) increased across development (β = 0.076, p < 0.001).

Conclusions: While prior work has focused on ambiguity tolerance independent of known probability information, this study highlights that known probability information also significantly influences choice behavior under ambiguity. Specifically, early in adolescence, known probability information strongly biases preferences for ambiguity, and this bias diminishes into late adolescence. The separable ambiguity parameters, dependent and independent of known probability information, were associated with spatially distinct activity across anterior to posterior insula, and these neural correlates changed across time consistent with the observed behavioral patterns.

References
Dimensions of early life adversity links to trimodal brain age in youth

Dani Beck1, Lucy Whitmore2, Niamh MacSweeney1, Alexis Brieant3, Ann-Marie de Lange4, Lars Westlye5, Kathryn Mills2, Christian Tamnes1

1University of Oslo, Oslo, Norway, 2University of Oregon, Eugene, OR, 3University of Vermont, Vermont, VT, 4University of Lausanne, Oslo, Norway, 5Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway

Introduction: Exposure to early-life adversity (ELA) impacts brain development1,2. Research suggests a discordant relationship between ELA factors related to threat and deprivation on brain maturation. Threat factors such as physical abuse are linked with smaller brain volumes and increased functional activity, while this is not observed with deprivation1. With increasing evidence of different features of ELA associated with unique brain outcomes, data-driven efforts that characterise the dimensionality of ELA have been developed3. The ABCD Study (N=11,900, age mean=10.75) overcomes existing limitations of small samples and cross-sectional designs. Brain age prediction offers an individualised marker for assessing brain maturity. Looking at the deviation from age-expected patterns (i.e., brain age gap (BAG)) and how deviation changes over time provides an indication of whether ELA factors are associated with accelerated or delayed brain maturation. We aimed to investigate cross-sectional and longitudinal associations between ten dimensions of ELA and BAGs derived from three brain age models trained on T1, DTI, and rsfMRI data. We expected threat-related dimensions of ELA to be linked with higher BAGs, and deprivation-related dimensions to be linked with lower BAGs. We also expected links to exacerbate over time.

Methods: Age prediction was carried out using XGBoost regression4. Here, 50% of the ABCD Study sample (baseline and two-year follow-up; N=~9000) was used as the test set and 50% was used for model training (N=~7200) and ten-fold cross-validation (N=~1800). R2, RMSE, and MAE assessed prediction accuracy; age bias was statistically corrected. Bayesian multilevel modelling tested the associations between dimensions of ELA and T1, DTI, and rsfMRI BAG. BAG was entered as the dependent variable with each ELA dimension separately entered as the independent fixed effect along with sex, with subject ID as the random effect. Longitudinal ELA effects were assessed with interaction effects of time-point.

Results: The DTI brain age model was the most accurate (r=.66, p<.01, MAE=.71), followed by T1 (r=.59, p<.01, MAE=.79) and rs-fMRI (r=.41, p<.01, MAE=.89). We found a positive association between ELA dimension F2, representing factor loadings from measures of socioeconomic disadvantage and neighbourhood safety, and T1 BAG, indicating that this dimension was associated with older-looking brains. Further, we found a negative association between ELA dimensions F3 (secondary caregiver lack of support) and F4 (primary caregiver lack of support) and T1 BAG, indicating that dimensions related to neglect are associated with younger-looking brains. In terms of interaction effects, we found negative associations between F10 (lack of supervision) and T1 BAG, indicating that unsupervised youth diverge more from normative age patterns over time. In line with the T1 BAG findings, we found a positive association between F2 and DTI BAG. In terms of interaction effects, we found a positive association between ELA dimension F1 (caregiver psychopathology) and DTI BAG. For fMRI, we found a positive association between F2 and fMRI BAG, aligning with findings with T1 and DTI BAG. Positive associations were also found for F1 and fMRI BAG, aligning with DTI findings, and F6 (caregiver substance abuse and separation from biological parents), F8 (family aggression), and F9 (trauma exposure) and fMRI BAG. These positive associations indicate that dimensions related to threat are related to older-looking brains. A negative association was found between F4 and fMRI BAG, in line with findings from T1 BAG. In terms of interaction effects, we found a negative association between F3 and F5 (family conflict) and fMRI BAG, and a positive association between F6 and fMRI BAG.

Figure 1. Trimodal brain age prediction. Performance of T1, DTI, and rsfMRI brain age models.
Figure 2. ELA Dimensions. Factor loadings from the ten early-life adversity dimensions. * indicates that the variable was reverse-scored. Y = Youth Report; CG = Caregiver Report.

Conclusions:
Different ELA features uniquely impact brain outcomes in youth. Deprivation-related features suggest delayed maturation, while threat-related features indicate accelerated maturation.

References
Poster No 1233

Structural measures differences between early pubertal gender-diverse and cisgender youth

Melanie Camejo Coffigny1, Charlotte Rosario2, Cat Bui1, Taiga Nishida2, Javad Ansarifar1, Manu Kaur1, David Hong1

1Stanford University, Stanford, CA, 2Nueva High School, Palo Alto, CA

Introduction: Transgender youth are a vulnerable population often underrepresented in research (Gower et al., 2018). While previous studies have indicated that the hormonal fluctuations accompanying puberty contribute to neural reorganization and maturational progression in adolescents (Goddings et al., 2019), these insights are derived from findings on cisgender youth, leaving a notable gap in our understanding of the neural implications for transgender adolescents. To address this gap, our study assessed global and regional differences in brain volume, cortical thickness and surface area among early pubertal transgender youth compared to cisgender youth.

Methods: As part of an ongoing longitudinal study at Stanford University, structural measures were examined in a cohort of 23 transgender (60.8% female) and 24 cisgender (58.3% female) participants recruited during the early stages of puberty, e.g. Tanner Stages I-III, ranging in age from 10 to 15 years at the time of enrollment. Participants were categorized into four gender groups: cisgender male (MC), cisgender female (FC), transgender female (FtM), and transgender male (MtF). The MRI sequence used was T1-weighted image: TR: 8.5 ms, TE: 3.4 ms, flip: 15 degrees, TI: 400 ms, FOV: 22 cm, slice thickness: 1.5 mm, 128 slices, 256x256 matrix, NEX 1, scan time: 4 min 34 sec. Cortical reconstruction and volumetric segmentation were performed using FreeSurfer v.7.3.2., with 10mm FWHM smoothing. Global differences of total cortical volume (TCV) amongst groups were estimated using a one-way ANOVA, while differences in total surface area (TSA) and total cortical thickness (TCT) were estimated using a one-way ANCOVA whilst controlling for eTIV. Assumptions for Levene’s test and normality checks were met. Regional statistical analyses were conducted using a Generalized Linear Model, cluster-corrected for multiple comparisons. Right and left hemispheres were analyzed separately.

Results: There was a significant difference in global intracranial volume (F(3,21.4)=5.35, p=0.007) between groups. Post-hoc tests found a significant difference between cisgender females and males (p=0.015), and cisgender females and transgender males (p=0.014). There were no significant differences in TSA and TCT between groups. Regional analyses of CV, SA and CT showed significant differences between groups in the superior frontal (SFG), rostral middle frontal (RMFG), and inferior temporal gyri (ITG), with most clusters found on the left hemisphere (see Table 1 for details).

Table 1.Significant clusters for differences in surface area, volume and cortical thickness between transgender and cisgender youth.

<table>
<thead>
<tr>
<th>Hemisphere and Measure</th>
<th>Groups</th>
<th>Cluster</th>
<th>Size(mm³)</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>CWP</th>
<th>Annot</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Area</td>
<td>MC vs. FC</td>
<td>1</td>
<td>928.05</td>
<td>-16.5</td>
<td>41.7</td>
<td>37.6</td>
<td>0.0002</td>
<td>superior frontal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>380.83</td>
<td>-54.6</td>
<td>-34.9</td>
<td>-16.6</td>
<td>0.02484</td>
<td>inferiortemporal</td>
</tr>
<tr>
<td></td>
<td>MC vs. FtM</td>
<td>1</td>
<td>562.77</td>
<td>-27.1</td>
<td>33.1</td>
<td>24.2</td>
<td>0.0034</td>
<td>rostralmiddlefrontal</td>
</tr>
<tr>
<td>L-Volume</td>
<td>MC vs. FC</td>
<td>1</td>
<td>422.86</td>
<td>-7.2</td>
<td>52.5</td>
<td>32.4</td>
<td>0.0004</td>
<td>superior frontal</td>
</tr>
<tr>
<td></td>
<td>MC vs. FtM</td>
<td>1</td>
<td>317.74</td>
<td>-7.1</td>
<td>53.4</td>
<td>32.9</td>
<td>0.003</td>
<td>superior frontal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>176.06</td>
<td>-22.6</td>
<td>51.6</td>
<td>-12.2</td>
<td>0.04918</td>
<td>rostralmiddlefrontal</td>
</tr>
<tr>
<td></td>
<td>MC vs. MtF</td>
<td>1</td>
<td>211.71</td>
<td>-7.2</td>
<td>52.5</td>
<td>32.4</td>
<td>0.02544</td>
<td>superior frontal</td>
</tr>
<tr>
<td>L-Thickness</td>
<td>FC vs. MtF</td>
<td>1</td>
<td>255.91</td>
<td>-40.5</td>
<td>27.1</td>
<td>13.6</td>
<td>0.00858</td>
<td>rostralmiddlefrontal</td>
</tr>
<tr>
<td></td>
<td>MC vs. MtF</td>
<td>1</td>
<td>199.87</td>
<td>-7.4</td>
<td>49</td>
<td>33.2</td>
<td>0.03092</td>
<td>superior frontal</td>
</tr>
<tr>
<td>R-Thickness</td>
<td>FC vs. FtM</td>
<td>1</td>
<td>295.72</td>
<td>11.3</td>
<td>50.6</td>
<td>11.3</td>
<td>0.003</td>
<td>superior frontal</td>
</tr>
<tr>
<td></td>
<td>FC vs. MtF</td>
<td>1</td>
<td>1197.41</td>
<td>7.0</td>
<td>51.3</td>
<td>17.7</td>
<td>0.0002</td>
<td>superior frontal</td>
</tr>
<tr>
<td></td>
<td>MC vs. MtF</td>
<td>1</td>
<td>430.46</td>
<td>13.7</td>
<td>60.5</td>
<td>15.3</td>
<td>0.0002</td>
<td>superior frontal</td>
</tr>
</tbody>
</table>

Conclusions: The global differences in total cranial volume between cisgender and transgender groups found in this study align with previous findings based on assigned sex at birth. Given that this group of transgender youth had not undergone gender-affirming hormone therapy, it is not surprising these findings are in alignment. However, the regional differences we found in CV, SA and CT, have not been previously reported in prior literature due to the lack of research on early pubertal transgender youth. In the future, we hope to further expand these novel contributions to the field of human brain mapping by assessing the neural development of transgender youth undergoing gender-affirming hormone therapy.
References

Poster No 1234

Segregation of the Regional Radiomics Similarity Network Exhibited an Increase in Children

Lei Chu¹, Debin Zeng¹, Yirong He², Xiaoxi Dong², Qiongling Li², Shuyu Li²

¹Beihang University, Beijing, China, ²Beijing Normal University, Beijing, China

Introduction: Gaining a comprehensive understanding of the typical developmental trajectory of the human brain during late childhood to early adolescence is crucial for profound insights into its structure, function, and underlying mechanisms of developmental psychiatric and behavioral disorders (Blakemore, 2012; Vijayakumar et al., 2018). Using texture features of each brain region and calculating their similarities between nodes as edges to construct a network for each subject, R2SN has been well characterized with high reproducibility and significantly correlated with both genetic similarity networks and cognition in adults and been well applied to the diagnosis and staging of Alzheimer’s disease (Zhao et al., 2022). Brain development exhibits increasing functional segregation to support cognition procession specialization within the framework of network neuroscience. Although coordinated variations in brain morphology have been extensively utilized to infer the macroscopic structural bases for developmental evolution of brain function, little is known about how microscopic features contribute to this process and their relationship with cognition. We hypothesized that alterations in the segregation of R2SN during development may be also associated with refinements in executive function (EF), a broad cognitive domain that encompasses multiple subdomains, including working memory, response inhibition, and set shifting, paralleling the human brain’s protracted maturational time course.

Methods: Participants. The longitudinal dataset of cognitively normal children was derived from the Children School Functions and Brain Development Project in China (CBD, Beijing Cohort) with a sample comprising 494 MR scans from 309 typically developing children ages 6.2-13 years at baseline (142 females and 167 males). 44 children were scanned at three separate times, 97 children managed to visit 2 with a scan interval of approximately one year. We used high-resolution anatomical images acquired with three dimensional 1mm3 isotropic T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) sequence. R2SN construction and statistical analysis. The anatomical MR images underwent Human Connectome Project (HCP) minimum preprocessing pipeline (Glasser et al., 2013) with several modifications for child’s brain. we constructed individual regional radiomics similarity networks (R2SNs) based on similarities of radiomics features across 246 brain regions using CBD dataset. To characterize R2SNs’ segregation, we measured segregation indexes at both system and local levels. We corrected for multiple comparisons across all pairs of network metrics with false discovery rate (pFDR) < 0.05. To dimensionally delineate the longitudinal changes of the topology of similarity networks, we conducted several mixed-effect models to explore the developmental trajectories of each graph theoretical measures.
Results: Regarding fundamental properties of graph theory, we exclusively observed progressive linear increments in both the global clustering coefficient and local efficiency during the late childhood and early adolescence stages, indicating a heightened level of network segregation (Fig2A). Mixed-effect models revealed longitudinal increases in R2SNs’ segregation, particularly evident in system-level segregation within subcortical regions, as well as decreasing segregation within the ventral attention network. (Fig2B-G) Furthermore, superior working memory and inhibitory control performance were associated with higher system-level segregation indexes in default and subcortical systems, along with lower local-level segregation indexes in several brain regions belonging to the visual network regardless of age(Fig2H-M).

Conclusions: Our findings offer novel insights into typical brain developmental changes as indicated by the segregation index computed using R2SN approaches, which can be a valuable tool for comprehending human brain structural and cognition maturation.

References
The differentiation of multiscale structural gradients from children to adolescents

Yirong He¹, Qiongling Li¹, Debin Zeng², Lei Chu³, Xiaoxi Dong¹, Shuyu Li⁴

¹Beijing Normal University, Beijing, Beijing, ²Beihang University, Beijing, Beijing, ³Beihang University, Beijing, Beijing, ⁴Beijing Normal University, Beijing, China

Introduction: The brain development of children and adolescents is accompanied by maturation of cortical myelination and white matter network. Many studies have revealed that cortical maturation follows a pattern of spatiotemporal hierarchy(Sydnor, Larsen et al. 2021). Connectome gradient techniques representing brain topological organization in a low-dimensional space can smoothly capture the cortical macroscale hierarchy(Margulies, Ghosh et al. 2016). A recently introduced in vivo model integrated three features of structural connectivity, including diffusion MRI tractography, geodesic distance, and microstructural similarity(Paquola, Seidlitz et al. 2020). Here, we leveraged this approach to investigate structural connectome development from childhood to adolescence and related it with maturation of cortical morphology and function.

Methods: Dataset. We collected a longitudinal cohort of 276 participants (aged 6-14 years, 135 females) with 437 scans from Children School Functions and Brain Development Project in China (Beijing Cohort). We obtained structural MRI and diffusion MRI using a 3T Siemens Prisma scanner at Peking University. Coompute multiscale structural connectome gradients. Base on T1w, T2w, and diffusion MRI, we computed geodesic distances, microstructural profile covariance (MPC), and tact strength between brain regions. After connecting the MPC, geodesic matrix, and structural connectivity network horizontally, we calculated the normalized angle similarity between each of the two rows(Paquola, Seidlitz et al. 2020). To compute connectome gradients, the normalized angle matrix was then fed into the diffusion map embedding algorithm, which mapped the high-dimensional multiscale structural connectome data into a low-dimensional space(Company, Lafon et al. 2005). We calculated several global features to measure the gradient transitions during development, including gradient range, explanation ratio, standard deviation, and dispersion. By leveraging a mixed effect linear model, we identified the developmental trajectories at both the global level and node-wise level. Meanwhile, we calculated eccentricity measure as Euclidean distance between each node and the centroid of template space. Association with development of morphometric features. We utilized 5 cortical morphometric measures to investigate the relationships between multiscale structural gradients and morphometric features. We performed principle component analysis (PCA) to summarize these 5 features and related the PC 1 to the multiscale structural gradient 1. Multiscale structure-function coupling. We conducted an analysis on the coupling between structure and function. Coupling was computed as Spearman rank correlation between connectivity profiles of structure and function.

Results: During development, the first gradient showing differentiation between transmodal and primary regions, and the second gradient separating anterior and posterior regions (Fig 1A). According to the trajectories of global measures, the first gradient increased with development and vice versa for the second gradient. Age-related changes in multiscale structural gradient 1 during development revealed the gradual maturation of the S-A axis (Fig. 1). The first principal component of morphological features was associated with the first gradient, and the age-related patterns of change were also correlated (Fig. 2A-D). The pattern of coupling between multiscale structure and functional connectivity adhered to the S-A axis, and the majority of systems exhibited an increase in coupling with development (Fig. 2E-F).
Conclusions: In conclusion, by applying connectome gradient analysis, we revealed a progressive transition of multiscale structural connectome from childhood to adolescence. Our findings suggested that the organization of structural connectome moves toward a more distributed direction with development, which correlates with maturation of cortical macrostructure and function.
References

Poster No 1236
Adolescent maturation of cortical microcircuits based on individualized biophysical network modeling
Amin Saber1,2,3, Kevin Wischnewski1, Kyesam Jung1, Leon Lotter1, Lina Schaare2, Juergen Dukart1, Oleksandr Popovych1, Simon Eickhoff1, Sofie Valk2
1INM-7, Research Centre Jülich, Jülich, Germany, 2Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, 3Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

Introduction: Adolescence is a critical period of development with substantial macro- and microscale changes in the brain, including maturation of cortical microcircuits and the excitation-inhibition (E-I) balance1,2. However, the in vivo and non-invasive assessment of E-I is a challenge limiting the extent of current available evidence in humans3,4. Biophysical network modeling (BNM) is a promising approach that can bridge the functional imaging data at the macroscale to the hidden features of cortical microcircuits at the microscale5,6. Here, we used individualized BNM on magnetic resonance imaging data to study typical E-I maturation and its association to psychopathology throughout adolescence.

Methods: We studied adolescents from the cross-sectional Philadelphia Neurodevelopmental Cohort (PNC; N = 764, 421 female, age: 15.3±2.6 [10-19]) and the longitudinal IMAGEN dataset (N = 148, 74 female) with follow-ups from age 14 to 19. The imaging data was processed to calculate individual structural connectomes (SC), empirical functional connectomes (FC), and empirical functional connectivity dynamics (FCD) matrices. Next, we performed BNM simulation-optimization at the level of each individual (Fig. 1). We simulated the activity of 100 cortical regions of the Schaefer atlas as network nodes governed by the reduced Wong-Wang model with feedback inhibition control7,8 and the Balloon-Windkessel model for calculation of simulated BOLD signals9. The model was controlled by 15 free parameters, including global coupling (G), in addition to bias and coefficient terms which determine the regional excitatory-to-excitatory (wEE) and excitatory-to-inhibitory (wEI) connection weights as a combination of six biological maps (T1w/T2w, cortical thickness, FC principal gradient, gene expression principal axis, NMDA-R and GABAA PET maps). The goodness-of-fit of the simulations to the empirical functional data of each subject was defined as the correlation of FC matrices subtracted by the absolute difference in their means and Kolmogorov-Smirnov distance of FCD matrices (Fig. 1A). Model optimization was performed using covariance matrix adaptation evolution strategy (Fig. 1B). We subsequently used the optimal simulation of each subject to calculate the mean simulated excitatory firing rates (<rE>) as regional markers of E-I balance (Fig. 1C). Following, we studied the effect of age on <rE> through adolescence. We assessed spatial correlation of age effects derived from different datasets or conditions through using spin-permutated surrogates. Last, we explored potential alterations of E-I maturation associated with psychopathology by evaluating age-by-group interaction effects on <rE> in typical and atypical developing subgroups, as defined by Global Assessment Scale ratings (PNC) or presence of DSM diagnoses (IMAGEN).
Results: In the PNC dataset, \(<rE> \) significantly decreased with age in transmodal areas but increased in unimodal regions (Fig. 2A). This pattern was replicable across random subsamples (Fig. 2A) and was robust to age-related variations of SC, as similar age effects were observed with group-averaged SC \((r = 0.82, p < 0.01) \). Longitudinal changes of \(<rE> \) from age 14 to 19 in IMAGEN showed a pattern largely similar to PNC \((r = 0.67, p < 0.01; \text{Fig. 2B}) \). The age-by-group interaction effects, testing for associations between E-I maturation and psychopathology, were not significant in both datasets in any node after FDR correction (Fig. 2).
Conclusions: We find E-I ratio during adolescence to decrease in association cortices and increase in unimodal regions. This corroborates previous animal and human studies showing a decreased E-I ratio in association areas3,4,10. Individualized modeling holds promise for further interrogation of the interrelationship between microcircuit maturation and cognitive as well as clinical variation.

References
A robust brain network for sustained attention from adolescence to adulthood

Yihe Weng¹, Johann Kruschwitz², Laura Rueda-Delgado¹, Kathy Ruddy¹, Rory Boyle¹, Emin Serin³, Robert Whelan¹

¹Trinity College Dublin, Dublin, Dublin, ²Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, Corporate Mem, Berlin, Germany, ³Charité Universitätsmedizin Berlin, Berlin, Germany

Introduction: Sustained attention, crucial for daily life, refers to the ability to maintain attentional focus on relevant stimuli with repeated presentation over extended periods. This cognitive process significantly impacts academic achievement, safety, social communication, and mental health¹. Sustained attention typically improves from mid-adolescence to adulthood². Previous studies have identified predictive network predicting sustained attention³. However, the stability of underlying brain networks from adolescence to early adulthood remains relatively unexplored. Here, we examine the trajectory of functional brain networks predicting sustained attention from age 14 to 23.

Methods: Subjects: Functional MRI data from adolescents at ages 14 (N=717) 19 (N=1079) and 23 (N=1120) were obtained from the Stop Signal Task of the IMAGEN study⁴. Subjects responded to a Go signal, while withholding their response if the Go signal was followed unpredictably by a Stop signal. Intra-individual coefficient of variation (ICV) indexed sustained attention by quantifying trial-to-trial reaction time (RT) consistency using Go trials. The ICV was the standard deviation of GO RT divided by mean GO RT. Lower ICV reflects better sustained attention. Preprocessing: All images were pre-processed within SPM12: slice timing, head motion correction, normalization, and smoothed. Subjects were excluded if mean framewise displacement>0.5mm. CPM analysis: A generalized psychophysiological interaction analysis⁵ was performed across the whole-brain using the Shen atlas to yield task-related connectivity under Go trials condition. Connectome-based predictive modelling (CPM), a machine learning method⁶ was applied to predict ICV at each timepoint. This involved four key steps: 1) feature selection, 2) feature summarization, 3) model building, and 4) assessment of prediction significance. The CPM analysis was performed across timepoint, applying the model defined at one timepoint to predict ICV at subsequent timepoints (e.g., using the model defined at age 14 to predict ICV at ages 19 and 23). Finally, the generalizability of model defined at age 23 in an external dataset of the same age, STRATIFY.

Results: 2.1 Predicting ICV at each timepoint. Positive, negative, and combined networks significantly predicted ICV: at age 14 (r = 0.25, r = 0.25, and r = 0.28, respectively, all P < 0.001), 19 (r = 0.27, r = 0.25, r = 0.28, respectively, all P < 0.001) and 23 (r = 0.38, r = 0.33, and r = 0.37, respectively, all P < 0.001). 2.2 Predicting ICV across timepoints. Positive, negative, and combined networks defined at age 14 predicted ICV at ages 19 (r = 0.16, r = 0.14, and r = 0.16, all P < 0.001) and 23 (r = 0.20, r = 0.12, and r = 0.17, all P < 0.001) respectively. Likewise, positive, negative, and combined networks defined at age 19 predicted ICV at age 23 (r = 0.30, r = 0.26, and r = 0.31, respectively, all P < 0.001). 2.3 Generalization Positive, negative, and combined networks at age 23 in IMAGEN predicted ICV in STRATIFY (r = 0.34, r = 0.34, and r = 0.35, respectively, all P < 0.001).
Conclusions: Sustained attention networks derived from Go trials predicted behavior at different timepoints, suggesting that individual differences in these networks were preserved throughout development. In neurodiverse youth, attention networks in individuals remain stable across months to years, as shown using connectome-based identification and longitudinal scans. Here, we demonstrate that attention-network stability also holds in a large cohort of healthy participants. In addition, a predictive network defined at one timepoint predicted another timepoint, indicating that sustained attention relies on
global brain activation (i.e., network strength) rather than specific regions or networks (see also). In summary, the identified predictive networks involved in sustained attention are robust from ages 14 to 23.

References

Poster No 1238
Prenatal Famine Exposure and Late-Life Functional Brain Network Connectivity: A Longitudinal Study
Amber Boots1, Jessica Damousoaeux2, Youjin Yung2, Aline Marileen Wiegersma3, Anouk Schrantee3, Daphne Boucherie3, Tessa Roseboom3, Susanne de Rooij3
1Amsterdam UMC, Amsterdam, NA, 2Wayne State University, Detroit, MI, 3Amsterdam UMC, Amsterdam, Netherlands

Introduction: The effects of the prenatal environment on resting-state functional connectivity can be detected up into older adulthood. In the Dutch famine birth cohort study, we previously identified differences in resting-state functional connectivity of the default mode network (DMN), salience network (SN), and central executive network (CEN) at age 68 between men and women who had been exposed or unexposed to famine in early gestation. In the current study, we aimed to investigate longitudinal changes in resting-state functional connectivity of the DMN, SN and CEN in the same cohort between ages 68 and 74. Our hypothesis posited that prenatal famine exposure would be associated with more pronounced aging-related changes in functional connectivity, expressed as network desegregation with reduced within-network functional connectivity.

Methods: We performed a longitudinal follow-up resting-state functional magnetic resonance imaging study in the Dutch famine birth cohort at ages 68 (N = 115) and 74 (N = 80). Within-network functional connectivity of the DMN, SN and CEN was determined using the CONN toolbox ROI-to-ROI connectivity pipeline and was compared between individuals unexposed (born before or conceived after) or exposed to famine in early gestation using a latent change score modeling approach with full information maximum likelihood estimation (Fig. 1).

Fig. 1. Latent change score model path diagram of within-network functional connectivity. Squares represent observed variables, circles are latent variables. Grey dotted lines indicate fixed effects,
Results: No group differences were observed in baseline score (intercept) or rate of change (slope) of the DMN, SN and CEN between individuals exposed or unexposed to famine in early gestation ($\Delta \chi^2 = 1.408, p = 0.704$). Across both groups, there was a significant increase in DMN connectivity over time. Additional exploratory analyses revealed that the increase in DMN connectivity was mainly driven by connectivity within the posterior cingulate cortex and parietal regions of the DMN.

Conclusions: This study did not reveal more pronounced aging-related alterations in network connectivity among individuals exposed to famine in early gestation compared to unexposed individuals. This does not provide support for the hypothesis of accelerated brain aging, but may align with persistent developmental effects of prenatal undernutrition on late-life brain health. Future analyses will examine changes in between-network functional connectivity as well.

Poster No 1239

Allometric constraints on brain tissue configuration

Jakob Seidlitz1, Margaret Gardner1, Lena Dorfsmidt2, Gabriel Devenyi3, Mallar Chakravarty4, Chet Sherwood5, William Hopkins6, Yaniv Assaf7, Yossi Youvel7, Ting Xu8, Samuel Alldritt8, Julian Ramirez8, Gareth Ball9, Jacob Vogel10, Edward Bullmore11, Richard Bethlehem12, Aaron Alexander-Bloch1

1University of Pennsylvania, Philadelphia, PA, 2The Children’s Hospital of Philadelphia, Philadelphia, PA, 3McGill University, Montreal, Quebec, 4Brain Imaging Centre, Douglas Research Centre, Montreal, Quebec, 5The George Washington University, Washington, DC, 6MD Anderson Cancer Center Texas, Houston, TX, 7Tel Aviv University, Tel Aviv, Israel, 8Child Mind Institute, New York, NY, 9Murdoch Children’s Research Institute, Melbourne, VIC, 10Lund University, Lund, n/a, 11University of Cambridge, Cambridge, United Kingdom, 12Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom

Introduction: A critical event in human evolution was the emergence of increased brain size variation relative to other species1,2. Total brain size can vary ~700-fold across primate species3, as much as 2-fold in adult humans4, and dynamically changes across the lifespan5. In humans, scaling of brain regions with total brain size is largely non-linear (allometric)4, with areas of extreme allometric scaling subserving highly specialized functions, greater interindividual variability, and elevated disease vulnerability6. However, the comparative allometric relationships within (static) and between (evolutionary) species of brain tissue compartments remains unknown.

Methods: We assessed brain scaling across multiple structural magnetic resonance imaging datasets comprising 101,457 humans aged 115 days post conception to 100 years6, 210 chimpanzees aged 6 years to 56 years, 87 macaques aged 85 days post conception to 23 years, and 226 mammals across 123 species (MaMi)6. Tissue segmentation for whole-brain gray matter volume (GMV), white matter volume (WMV), and cerebrospinal fluid (CSF) was performed using FreeSurfer (v5.3, v6.1, or infant), CIVET (v1.1.10 or v2.1.0), or custom pipelines in the human datasets (and harmonized across studies6); and custom pipelines for the chimpanzee2 and macaque8 datasets. Brain size was indexed as total cerebrum volume (TCV) for human data or total brain volume (TBV) for the chimpanzee and macaque datasets, after observing high correlations ($r > 0.98$) of TCV and TBV in the largest studies within the human dataset (ABCD, UK Biobank). To evaluate allometric tissue volume relationships with total brain size, log-log regressions were performed in R using linear mixed-effects models (multi-species) and generalized additive models for within-species tests4. As such, a coefficient of one represents linear scaling (isometric) and values less than (hypo-allometric) or greater than (hyper-allometric) one represent non-linear scaling.

Results: Within-species (static) allometric scaling coefficients were similar for humans (GMV=0.89, WMV=1.14, CSF=0.95), chimpanzees (GMV=0.89, WMV=1.15, CSF=0.86), and macaques (GMV=0.88, WMV=1.19, CSF=1.01). Across-species compartmental allometric scaling coefficients were similar to previously reported estimates (MaMi: GMV=0.98, WMV=1.16; Previous6: GMV=0.96, WMV=1.17), with notable static (relative to evolutionary) hypo-allometry of GMV. A sliding-window approach revealed highly dynamic scaling relationships for each tissue class across the human lifespan (Fig. 1A). Interestingly, despite static isometry, CSF volume shifted from being hypo-allometric in the perinatal and childhood periods to hyper-allometric for adolescence and adulthood. GMV showed a similar but opposing pattern, decreasing at a faster rate than TBV (increased hypo-allometry) in adulthood. Cortical regional analyses using age epochs defined by scaling inflection points showed that while higher-order association areas changed from hyper- to hypo-allometric scaling, primary sensory and insular areas remained consistently hypo-allometric relative to TBV (Fig. 1A). Comparing the variance of total brain size (vt) to the summed variances of the constituent tissues (vC), we observed a marked shift from a period of compensation in the first two years of life ($vt < vC$) to a period of increased coordination ($vt > vC$), peaking in mid-adolescence and declining thereafter, demonstrating the dynamics of human brain compartmentalization10 (Fig. 1B).
Conclusions: Despite marked evolutionary changes in brain size and variation, patterns of allometric scaling were similar across species. However, the flexibility of developmental scaling across the human lifespan highlighted strong hyper-allometric scaling of association cortical regions during the greatest period of brain growth in infancy and early childhood.

References
Poster No 1240

Normative Brain Development of Cortical Thickness in Early-School Age Children: A Longitudinal Study

Baitao Li¹, Xiao Wang¹, Qing Cai¹, Chu-Chung Huang¹

¹East China Normal University, Shanghai, China

Introduction: Normative modeling has emerged as an essential analytical tool in neuroimaging, providing a framework to delineate individual difference, especially in brain development (Marquand et al., 2016). However, most previous studies relied solely on cross-sectional data to model the age-related brain changes, potentially leading to an incomplete understanding of the variability present in longitudinal data (Di Biase et al., 2023). To address this limitation of cross-sectional normative modeling, our research shifts focus to the use of longitudinal data for modeling developmental changes. In this study, we integrated the gamlssNP method (Stasinopoulos et al., 2017), specifically tailored for longitudinal data analysis. Considering the considerable environmental change experienced by early-school-age children, we model a longitudinal cohort of children aged 7 to 10 years, with at least two MRI data points. This study aims to establish a less-biased normative model based on longitudinal data to depict cortical thickness development in early-school-age children.

Methods: We selected participants with at least two data time points, which yielded 529 T1-weighted (T1w) MRI images. These T1w images were processed using FreeSurfer (v7.3.2), to extract cortical thickness in various brain regions using DKT atlas of each participant. We fitted normative centile curves were fit to cortical thickness in various brain regions using gamlssNP(gamlss.mx) method in R version 4.3.0 (2023-04-21). For model selection and diagnostic, we employed 5-fold cross-validation to determine the optimal parameter combination of degrees of freedom (df) and the number of components (K) for gamlssNP model. The final model parameters were chosen to achieve a balance between fit (lower AIC) and generalization (lower VGD) across all brain regions.

Results: After a 5-fold cross-validation, the (df = 2, K = 2) parameter combination emerges as notably effective among all tested configurations, with an VGD percentile of 0.1461 ± 0.0255, suggesting the model robustness and consistency. Normative model analysis revealed significant age correlations in several brain regions. Among the regions, precentral, paracentral, and entorhinal, exhibited a positive correlation, whereas 14 regions, including the insula, rostral anterior cingulate, and medial orbitofrontal, showed a negative correlation with age (Fig. 1). Here we showed the most significant six regions for demonstration.

Conclusions: Our study found that the precentral, paracentral, and entorhinal cortices, increase in cortical thickness with age. This increase may imply development in motor and cognitive abilities in children. In contrast, the insula and rostral anterior cingulate show reduced thickness, suggesting neural maturation (Gilmore et al., 2018). Overall, these patterns reveal a complex developmental timeline, wherein some regions mature early, playing roles in emotional and cognitive functions. Future work should investigate the individual differences between actual and predicted cortical thickness in these regions and associate them with cognitive development, especially in early school-age children.

Fig1. Age-related cortical thickness change in left hemisphere. (A) Shows the brain regions significantly associated with age in the model, (B) Top row depicts the growing trend in brain regions significantly correlated with age; Bottom row illustrates the decreasing trend in brain regions significantly correlated with age. The lines in the curve graph on the right indicate the distribution of quantile lines predicted by the model.
Brain aging after prenatal undernutrition: longitudinal BrainAGE estimations

Amber Boots¹, Aline Marileen Wiegersma², Christian Gaser³, Tessa Roseboom², Susanne de Rooij²

¹Amsterdam UMC, Amsterdam, NA, ²Amsterdam UMC, Amsterdam, Netherlands, ³Jena University Hospital, Jena, Germany

Introduction: Environmental exposures during critical periods of early human development have been associated with late-life brain structure and function. It is currently unknown whether these long-term effects represent persistent developmental effects or signal ongoing processes of accelerated brain aging. In the current study, we aimed to investigate longitudinal changes in neuroanatomical brain aging between ages 68 and 74 in men and women exposed or unexposed to the Dutch famine in early gestation.

Methods: We performed a longitudinal follow-up magnetic resonance imaging study in the Dutch famine birth cohort at ages 68 (N = 118) and 74 (N = 81). Brain Age Gap Estimation (BrainAGE), a neuroimaging-based biomarker for neuroanatomical brain aging, was determined for all participants using a longitudinal machine-learning approach. Pace of aging was calculated by taking the difference between BrainAGE scores at age 68 and 74. Additionally, we associated BrainAGE scores to self-reported cognitive problems at age 74.

Results: Men and women exposed to famine in early gestation had higher BrainAGE scores at age 74, similar to the results observed at age 68 (Fig. 1). This was strongest in exposed men. Pace of aging between time points is currently being investigated. Individuals with higher BrainAGE scores had higher odds of reporting cognitive problems at age 74. This association was mostly driven by individuals exposed to famine in early gestation.

Conclusions: The higher BrainAGE scores among those exposed to famine in early gestation at both ages 68 and 74 indicate that the neuroanatomical correlates of adverse prenatal exposures can be identified consistently throughout late life. In addition, this study revealed a clear association between BrainAGE and self-reported cognitive problems, underlining the strength of BrainAGE as a biomarker of brain aging and cognitive decline.

Fig. 1. Regional gray matter BrainAGE scores according to prenatal exposure to famine.
Poster No 1242

A Novel Method to Investigate Neurodevelopment Using Ising Temperature and Graph Neural Networks

Rodrigo Carvalho¹, Walter Pinaya², João Sato¹

¹Federal University of ABC, São Bernardo do Campo, São Paulo, ²King’s College London, London, London

Introduction: One of the biggest challenges in neuroscience is comprehending brain function mechanisms on different temporal and spatial scales. In particular, the topic of neurophysiology during the resting state at the macroscopic level is of great interest, not only in contribution to neurodevelopment and psychiatry but also to emergent patterns that microscopic components cannot explain. Recent studies show that brain dynamics may be modelled by lattice models near criticality, such as the 2D Ising Model. The Ising temperature, which is the order parameter dictating the phase transitions of the model, is being used to better understand different brain states. This work aims to investigate neurodevelopment through a novel method to estimate the Ising Temperature of the brain from functional Magnetic Resonance Imaging (fMRI) data using functional connectivity and Graph Neural Networks (GNNs) trained with Ising Model networks.

Methods: The Attention Deficit Hyperactivity Disorder 200 (ADHD200) dataset (491 healthy subjects, 285 subjects with ADHD, 7–21 years, M=11.99, SD=3.2 years) was used. The functional connectivity graphs of the whole brain were calculated by Pearson’s correlation of the 190 ROIs. The 2D Ising model was simulated using a lattice of 330x330 spins fluctuating over 200 time steps after thermal equilibrium, where each time step gives all the spins of the lattice the opportunity to change their state. Then, the lattice is averaged over blocks of 23x23 spins, in order to get a continuous time series representative of the fMRI signal. The 2D Ising Model graphs were calculated by Pearson’s correlation, resulting in 190 nodes. To prepare the graphs for the GNN, the edges were selected by a 10-nearest-neighbours algorithm using the FC matrix, each node represented a ROI and the node features were the connectivity with the other ROIs. To calculate the Ising Temperature for the brain networks, a GNN was trained, with 3 graph convolutional layers, a global average pooling process, and 2 linear layers. The activation function was Leaky-ReLu, the dropout technique was also used, and the loss function used was the Mean Absolute Error (MAE). The GNN was trained over 300 epochs, using 1200 simulations of the 2D Ising Model around the criticality, and evaluated in 400 simulations. Therefore, the trained GNN was used on whole brain networks to estimate the brain temperature over neurodevelopment. The methodology is shown in Fig. 1.

Results: The GNN performance predicting the temperature on the test set was MAE = 0.08 and r² = 0.70. For the whole brain graphs, age and temperature for healthy subjects were negatively correlated (r = -0.32, two-sided p<0.001). Subjects with ADHD were negatively correlated (r = -0.34, two-sided p<0.001). Moreover, to evaluate the influence of head motion on the Ising Temperature estimation, a linear regression was used. The only variable significant to explain the age was temperature, and it’s also negatively associated (coef = -0.92(0.08), two-sided p<0.001).

Conclusions: In this work, functional connectivity and Graph Neural Networks were used to estimate the Ising Temperature of the brain, in order to investigate neurodevelopment. The main finding indicates a statistically significant negative correlation between age and temperature, suggesting that the brain gets distant from criticality as age increases. Moreover, this novel methodology allows more works to investigate the brain network from GNNs trained on simulated dynamical models.

References
Poster No 1243

Perinatal development of the corpus callosum in term and preterm infants

Wei Wang1, Liyuan Yang1, Gaolang Gong1

1State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Resea, Beijing, Beijing

Introduction: The corpus callosum (CC) is the largest commissural tract, supporting interhemispheric communication and hemispheric specialization of various brain functions1. In fetuses and newborns, the development of this particular structure has been frequently adopted as a key indicator of the entire brain development, possibly due to the easy identification and quantification of the midsagittal CC on MRI or ultrasound images2. Previous studies have demonstrated CC abnormalities in adults with preterm birth3,4, but the impact of preterm birth on perinatal CC development remains unexplored. To address this, we included multimodal perinatal MRI dataset from term and preterm babies and compared their MRI-derived measures. Furthermore, we evaluated the association between perinatal CC microstructures and neurobehavioral outcomes at 18 months old.

Methods: In total, 59 preterm and 381 term infants from the developing Human Connectome Project (dHCP) were included (Preterm group: 37 males, gestational age (GA) = 23.7-36.9 wks, postmenstrual age (PMA) = 37-44.9 wks; Term group: 205 males, GA = 37-42.3 wks, PMA = 37.4-44.7 wks). The dHCP preprocessed structural and diffusion MRI dataset was used5. For each baby, the CC was manually delineated on the native-space midsagittal slice of aligned T2w images. The outlined midsagittal CC was then divided into five subregions according to the Hofer scheme6. Diffusion tensor and neurite orientation dispersion and density imaging (NODDI) were estimated. The mean fractional anisotropy (FA), diffusivity (MD), neurite density index (NDI), orientation dispersion index (ODI), and total area were calculated for each midsagittal CC subregion. For each subregional measure above, we applied the normative modeling (implemented in the PCNtoolkit7) with data from all term infants. For this model, PMA and sex were input as predictors, and 10-fold cross-validation was applied. For each infant (both term and preterm), an individual z-score was derived from the normative model, representing his/her deviation from the normative trajectory during perinatal period. For each infant, neurobehavioral outcomes at 18 months old were assessed by the Bayley III Scales, yielding 5 scores for the cognition, receptive language, expressive language, gross motor, and fine motor ability, respectively. For each measure, two-sample t-test was used to test group difference in the z-scores. In the two groups, partial least square correlation (PLSC) analysis was separately performed to examine the association between perinatal CC microstructural measures and Bayley III scores at 18 months old. The Bonferroni method was applied to correct for multiple comparisons, and corrected p < 0.05 was considered as the significance level.

Results: As shown in Fig. 1, there were significant group differences in microstructural measures in at least one CC subregion. Particularly, preterm infants showed significantly lower NDI in all subregions. In contrast, no group difference of 2D midsagittal area was found in any of the subregions. The PLSC analysis only showed a significant latent component (LC) in the preterm group (r = -0.52, p = 0.006; Fig. 2A). In term infant, applying the associated coefficients of the observed significant LC did not show a significant correlation between CC microstructural measures and neurobehavioral scores (r = 0.04, p = 0.442; Fig. 2B), suggesting the specificity of the observed LC to the preterm infants. For each CC measure and neurobehavioral score, its contribution to this significant LC (as referred to as salience) were illustrated in Fig. 2C.
Conclusions: The present study demonstrated microstructural underdevelopment of the CC around the perinatal period in preterm infants, especially around the genu and anterior body of the CC. Moreover, the perinatal CC microstructures are multivariably associated with neurobehavioral outcomes at 18 months old, highlighting a crucial role of CC early development in behavioral capability of later life.

References
Mental attention: Common and distinct brain areas across development

Andrei Faber¹, Marie Arsalidou²

¹HSE University, Moscow, Russian Federation, ²York University, Toronto, Canada

Introduction: Cognitive abilities develop with age as reflected by improved performance in tasks of executive function and working memory. Working memory is a well-established concept and its neural correlates have been documented with neuroimaging (Owen et al., 2005). We consider mental attention as the maturational component of working memory (Arsalidou et al., 2010). Critically, little is known about the development of the brain correlates of mental attention through childhood and adolescence. We used a developmental construct of mental attention to investigate brain correlates related to solving tasks with multiple levels of difficulty in children, adolescents, and adults using functional magnetic resonance imaging (fMRI).

Methods: Data from children (9–12 years, n = 24), adolescents (13–16 years, n = 27), and adults (21-29 years, n = 31) were analysed. MRI acquisition was performed on a 3T Philips scanner. An anatomical T1-weighted image (TR = 2300 ms; TE = 2.62 ms; FOV = 256 × 256 × 192 mm³; voxel size = 1×1×1 mm³) was collected for the registration with functional images (TR = 1500 ms; TE = 35 ms; FOV = 230 × 230 × 150 mm³; voxel size = 1.75 × 1.75 × 3.0 mm³), which were collected while children completed the CMT (Color Matching Task). In a blocked design, participants were asked to indicate whether the relevant colors match those presented in the previous slide. Task difficulty was indexed by the number of relevant colors (n = 1-6). MRI data preprocessing and analyses were conducted using AFNI (Cox, 1996). Statistical maps were obtained for six contrasts by subtracting task-related blood oxygenation level dependent (BOLD) signal associated with each difficulty level from the signal related to control blocks with fixation cross. A linear regression was applied to whole-brain activity using general linear model (GLM) analyses. The statistical threshold was set at p < .001 with a cluster size threshold of 40 voxels, which is equivalent to cluster-level q < .05, FDR corrected.

Results: The first analytical goal was to examine mental attention activations modulated by level of difficulty separately for each age group. Conjunction analysis revealed common brain areas for each level of difficulty across three age groups. Specifically, common regions of significant activation for easy and moderate levels were the right dorsolateral prefrontal cortex (DLPFC), bilateral superior parietal lobule (SPL), right inferior parietal lobule (IPL), pre-supplementary motor area (Pre-SMA), and bilateral cerebellum lobules VII, VIII in all three age groups (Figure 1). The right intraparietal sulcus was the only common brain area across age groups for the hard levels of difficulty. However, implication and lateralization of other brain regions such as middle frontal gyrus, inferior frontal gyrus, and dorsal anterior cingulate cortex varied by both age and level of difficulty in CMT.

Conclusions: The study revealed that mental attention is expressed in frontoparietal regions in children, adolescents and adults, which is consistent with past research on working memory (e.g., Yaple et al., 2019 for meta-analysis). However, we observe the common brain regions becoming distinct as a function of age group, especially at hard levels of CMT, expressed by effects of hemispheric variation and spatial extent. For instance, children rely primarily on the right dorsolateral prefrontal cortex, whereas adolescents elicit activity in the prefrontal cortex bilaterally. Overall, results highlight the protracted development of the prefrontal cortex and support the notion of functional reorganization during school-age years. Findings have practical and theoretical applications for understanding of cognitive development.
References

Poster No 1245
Developmental Mismatches in Amygdala and PFC Macrostructure and White Matter Tract Integrity
Jamie Roeske¹, Xiangyu Long¹, Meaghan Perdue¹, Madison Long¹, Bryce Geeraert¹, Mohammad Ghasoub¹, Catherine Lebel¹
¹University of Calgary, Calgary, Alberta

Introduction: Brain development varies regionally, with the volumes of subcortical regions like the amygdala plateauing before prefrontal cortex (PFC) volumes. The development of white matter tracts that terminate in the PFC has also been shown to plateau later than other major tracts. As theories like the Developmental Mismatch Hypothesis propose that differences in amygdala and PFC developmental rates drive behaviour development, studying the developmental trajectories of these regions is critical to understanding behaviour and the causes of neurodevelopmental disorders. While previous work has established that amygdala and PFC macrostructural trajectories are mismatched, findings are limited by small sample sizes (~n=30) and do not include the period of most dramatic development, birth to 5 years of age. Few studies have investigated macrostructure and tract integrity within the same sample, with amygdala-PFC connectivity particularly overlooked. Here, we used a large longitudinal dataset to characterize and compare amygdala and PFC volumes and amygdala-PFC tract integrity trajectories in children and adolescents.

Methods: 518 magnetic resonance imaging (MRI) scans from 95 typically developing participants aged 1.95-12.99 were included (48 females). T1 (FSPGR BRAVO, 0.9mm isotropic voxels, TR=8.23ms, TE=3.76ms) and diffusion-weighted (spin-echo EPI, 1.6x1.6x2.2mm voxels, TR=6750ms, TE=79ms, 5 b=0 s/mm² volumes, 30 b=750 s/mm² volumes) scans were acquired on a 3T GE Discovery MR750w system with a 32-channel head coil at the Alberta Children’s Hospital. Advanced Normalization Tools (ANTs) and Analysis of Functional Neuroimages (AFNI) were used to perform an N4 bias correction and 1mm voxel size resampling, respectively, on raw T1 scans. Preprocessed T1 scans were segmented using Multi-atlas Cortical Reconstruction Using Implicit Surface Evolution (MaCRUISE), and amygdala and PFC (middle frontal gyrus (MFG), inferior frontal gyrus (IFG), frontal pole (FP)) volumes were extracted. Diffusion images were preprocessed in ExploreDTI, and then semiautomated deterministic tractography was performed to isolate the amygdala-PFC tract in each hemisphere. Mean fractional anisotropy (FA) and mean diffusivity (MD) were computed for each tract. Volumes and tract metrics were standardized to Z-scores across the full study cohort. Trajectories were modelled using generalized additive mixed effects models (GAMMs) from the mgcv package in RStudio. Age, age+sex, and age*sex models were tested for each metric bilaterally. All volume models contained intracranial volume as a covariate. Models with the lowest Bayesian information criterion values were selected. Metric developmental rates were calculated from the first derivative of the GAMM trendlines. Periods with significant age-related change had first derivative 95% confidence intervals that excluded zero.

Results: Significant age effects were found for all metrics (Figures 1 and 2). Bilateral amygdala volume gradually increased between ages 1.95-5.28. Left amygdala volume decreased slightly between ages 7.89-9.16. Bilateral MFG volume steadily decreased across the age span. Right IFG volume increased slightly between ages 3.23-4.22. Bilateral IFG and FP volumes steadily decreased between 5.06-12.99 years and 5.33-12.99 years, respectively. Bilateral tract FA increased rapidly at early ages and then more gradually across the age span. Bilateral tract MD decreased rapidly at early ages and plateaued by 10.44 years.
Conclusions: Our findings show that amygdala, PFC, and amygdala-PFC tract trajectories are qualitatively mismatched. Amygdala development predominantly occurred in early childhood, while PFC development occurred in late childhood and early adolescence. The amygdala-PFC white matter tract changed most in early childhood and showed larger changes than amygdala and PFC volumes. Future directions include expanding the age range up to age 17 and relating mismatches to behaviour development.

References
Impacts of Short Wavelength Light on Cortical Excitability

Roya Sharifpour, Fermin Aizpurua, Ilenia Paparella, Islay Campbell, Elise Beckers, Nasrin Mortazavi, Ekaterina Koshmanova, Christophe Phillips, Gilles Vandewalle

Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège, Liège, Belgium; University of Liège, Liège, Belgium

Introduction: Given the high levels of short wavelength blue light we are exposed to in modern life and the biological impact of light on sleep-wake regulation (Münch 2017, Gooley 2011), it is important to fully understand the impact of light on brain function, especially in adolescents, as they may be more susceptible to the biological effects of light. Cortical excitability is a basic and yet fundamental aspect of brain function and cognition that depends on sleep-wake regulation (Ly 2016). Here, we assessed whether cortical excitability of healthy adolescents and young adults was affected by blue light exposure using electroencephalogram (EEG) recordings of transcranial magnetic stimulation (TMS).

Methods: Thirty participants, 16 adolescents (16.9±1.1y, 5 Females) and 14 young adults (24.0±3.6y, 6 Females) were included in the study. Participants followed a loose sleep-wake schedule for 5 days prior to the experiment (±1h) to avoid excessive sleep restriction. On the experiment day, participants arrived at the laboratory ~8h after wakeup time and were maintained in dim-light (< 10 lux) for 1h prior to the first TMS-EEG session. The stimulation target was set to the supplementary motor area on the dominant hemisphere. TMS-evoked responses (TEP) were recorded in 2 sessions under 2 different light conditions including a control orange light (30 lux, 24 melEDI lux) and an active blue light (30 lux, 312 melEDI lux). Sessions were separated by at least a 15-minute washout period in dim light (< 10 lux). The order of the sessions was randomized. Each session included around 250 trials and TEP were recorded using a 60-channel EEG amplifier. Data preprocessing was performed using MNE python package. Continues EEG data was filtered, visually inspected, re-referenced to the average of good channels and epoched. Independent components of the epochs were computed and components representing TMS artifacts were set to zero. Artifact free epochs were split to shorter epochs (-300 to 300 ms), re-referenced to the average of good channels and baseline corrected (-100 to -1.5ms). Cortical excitability was then inferred from the amplitude and slope of the first EEG component (0–30 ms) of the mean TEP measured at the closest electrode to the stimulation. Statistical analyses consisted of Generalized Linear Mixed Models, with subject as random factor, light condition as repeated measures, and age group sex and BMI as covariates.

Results: GLMM analysis also showed yielded a illuminance by age group interaction (p = 0.03) (Fig1). Post hoc comparisons indicated that amplitude was higher during the blue light session compared to the orange in young adults (p=0.007), while in adolescents the amplitude did not change significantly (p = 0.8). GLMM analysis of the TEP slope did not reveal any main effects (p > 0.05) neither any illuminance by age group interaction (p=0.1). However, post hoc comparisons revealed significantly higher slope during the blue session compared to the orange in young adults (p=0.03), and no significant change in adolescents (p=0.9).

Conclusions: These preliminary findings suggest that adolescents may not be more sensitive to the biological impact of blue light on sleep-wake regulation or that they are very sensitive to it and reached saturation under the orange light. Funding: European Union (LIGHTCAP Project), FNRS, ULiège, FEDER, Fondation Léon Frédéric.
ABSTRACTS

References

Poster No 1247
Between-sex differences not greater than within-sex differences in early adolescent brain structure
Carinna Torgerson¹, Hedyeh Ahmadi¹, Megan Herting¹, Jeiran Choupan¹
¹University of Southern California, Los Angeles, CA

Introduction: Neuroimaging studies of sex differences in the pediatric human brain predominantly examine mean differences between males and females (Giedd et al., 2012; Giedd & Denker, 2015; Kaczkurkin et al., 2019; Lenroot & Giedd, 2010). Yet, during development, inter-individual variability in brain structure is high (Bottenhorn et al., 2023). Significant sex differences in variance have also been reported in children and adolescents (Bottenhorn et al., 2023; Forde et al., 2020; Wierenga et al., 2018). Unequal variance between groups violates the assumptions of many of the traditional statistical methods for evaluating sex differences - such as ANOVA and t-tests. Without investigating the amount of individual variability within sexes, we cannot say definitively whether the mean differences actually reflect distinct male and female phenotypes (e.g., sexual dimorphism) of the brain.

Methods: We aimed to characterize the relationship between sex and brain macro- and micro-structure in early adolescence using a large sample of 9-11 year-olds from the Adolescent Brain Cognitive Development (ABCD) Study (N=8,272). To do so, we examined homogeneity of variance between sexes, overlap between male and female distributions, and performed an analysis of similarities (ANOSIM) on global metrics of brain structure. For completeness, we performed all statistical tests using both uncorrected (raw) measures of brain structure and after correcting for age, pubertal development, socioeconomic status, race, ethnicity, and MRI scanner manufacturer.

Results: Although mean sex differences were significant in the mixed-effects models of total brain volume, average cortical thickness, and whole-brain mean diffusivity, there was more overlap than difference between male and female distributions for all measurements (Figure 1). Furthermore, we found significant sex differences in variance of total brain volume and mean diffusivity. ANOSIM results showed that within-sex and between-sex variance were similar for all measures.
Conclusions: We found high similarity and low difference between sexes on four common measures of adolescent brain structure. In particular, the ANOSIM results suggest that two random adolescents of the same sex will differ as much as a random female and random male differ. In conjunction with our finding of significant inhomogeneity of variance between males and females, these findings suggest that reported sex differences in global measures of early adolescent brain structure are likely driven by disparities in variance, rather than distinctive sex-based phenotypes. Such results contradict previous reports of consistent, meaningful sex differences in total brain volume throughout the lifespan (Giedd et al., 1997, 2015; Lenroot et al., 2007), but support studies which have found significant variance sex differences in brain structure (Bottenhorn et al., 2023; Forde et al., 2020; Wierenga et al., 2018). The findings also serve as a reminder that aggregate differences should not be applied to inter-individual comparisons.

References

Poster No 1248

Neurotransmitter systems explain lifespan changes of human resting-state brain activity

Leon Lotter1,2,3, Jan Kasper1,2, Simon Eickhoff1,2, Juergen Dukart1,2

1INM-7, Research Centre Jülich, Jülich, NRW, Germany, 2Institute of Systems Neuroscience, Heinrich Heine University, Düsseldorf, NRW, Germany, 3Max Planck School of Cognition, Leipzig, Saxony, Germany, 4INM-7, Forschungszentrum Jülich, Jülich, NRW, Germany
ABSTRACTS

Introduction: Human brain activity, as measured using resting-state functional (rsf)MRI, changes during neurodevelopment and aging (Ferreira & Busatto, 2013; Hu et al., 2014; Uddin et al., 2010). Despite solid evidence for age-related alterations, their interpretation often remains unspecific, due to a lack of non-invasive methods that provide insights into the underlying neurobiological processes. We approach this problem using a framework that was previously successfully applied to identify potential neurobiological mechanisms contributing to structural brain development (Lotter et al., 2023): We first establish regional developmental trajectories of an rsfMRI measure of brain activity – the fractional Amplitude of Low Frequency Fluctuations (fALFF) (Zou et al., 2008) – in a lifespan sample of 2444 individuals. Using these modeled trajectories, we construct “representative” fALFF change brain maps across the lifespan. We hypothesize that fALFF spatial change patterns (i.e., stronger vs. weaker change in one vs. another brain region during a given age span) reflect developmental changes in specific neurobiological systems (Dukart et al., 2021; Lotter et al., 2023). For this, we compute spatial colocalization analyzes testing the extent to which lifespan fALFF changes are explained by distributions of specific neurotransmitter systems and brain metabolism.

Methods: We employed the lifespan Human Connectome Project dataset (HCP-D: n = 642, 5–22 years; HCP-YA: n = 1093, 22–37 years, HCP-A: n = 709, 36–90 years). HCP-preprocessed MRI data was cleaned from white matter and CSF signals, parcellated into 416 cortical and subcortical regions (Huang et al., 2022), and fALFF was calculated on each region’s time series (0.01–0.1 Hz). We used “normative” warped Bayesian linear regression models to model fALFF per brain region across age, accounting for effects of sex, study site, and motion (Rutherford et al., 2021). Predictions from these models were used to construct fALFF change maps across 5-year time windows from 5 to 90 years. As potential biological correlates of fALFF change patterns, we gathered and parcellated a collection of group-average PET maps (Markello et al., 2022). To account for their intercorrelation, we applied hierarchical clustering to group them according to their spatial correlation. Following this hierarchy, we used linear regression models to examine if fALFF change patterns are explained by specific PET-derived neurotransmitter and metabolism maps (outcome: fALFF change, predictor(s): PET maps in a cluster, observations: parcel-wise values, controlled for partial volume effects). Statistical significance was established using spatial null maps and FDR correction (Lotter et al., 2023; Lotter & Dukart, 2022).

Results: Developmental models explain up to 56% of variance in fALFF data and revealed a general trend towards lower brain activity with higher age in mostly transmodal cortical brain areas (examples in Fig. 1A). PET maps cluster broadly according to receptors with high density in subcortical areas (high-striatal vs. high-thalamic) and those concentrate in cortical areas (brain metabolism vs. “general”: serotonergic, glutamateergic, GABAergic transmitter systems; Fig. 1B). Modeled fALFF change patterns are explained to large extents by both main clusters (multivariate R2 up to 49%; Fig. 2: top), with the strongest contribution by major cortical transmitter systems (multivariate R2 up to 42%; center) and an emphasis on glutamateergic and GABAergic receptors (univariate R2 up to 29%; bottom).
White matter integrity change across the lifespan: a systematic review and meta-analysis

Karis Colyer-Patel1, Jalmar Teeuw1, Vivien Maes2, Rachel Brouwer3, Paul Thompson4, Hilleke Hulshoff Pol2

1University Medical Center Utrecht, UMC Brain Center, Department of Psychiatry, Utrecht, Netherlands, 2Utrecht University, Department of Experimental Psychology, Helmholz Institute, Utrecht, Netherlands, 3Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam, Netherlands, 4Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Los Angeles, USA

Introduction: Across the lifespan the brain undergoes significant changes during development and aging which coincide with the maturation of cognition and behaviour during development, and with functional decline later in life. White matter (WM) microstructure changes with development and aging (Lebel et al., 2019; Madden et al., 2012) and is associated with risk and resilience to psychiatric and neurological disorders (Meyer & Lee, 2019; Sorond & Gorelick, 2019). The extent to which and how measures of WM microstructure, including fractional anisotropy (FA), evolve over the lifespan is still not fully understood. Genetic factors influence various metrics of WM microstructure (Kochunov et al., 2015; Koenis et al., 2015) and change-rates of WM volume (Brouwer et al., 2022). However, it is less clear whether change-rates of WM microstructure across the lifespan are also influenced by genetics. The aims of this systematic review are twofold: (1) to investigate how FA changes across the lifespan based on longitudinal data, and (2) to investigate evidence of genetic influences on change rates.

Methods: We systematically reviewed longitudinal studies investigating FA changes across the lifespan. Searches were conducted in Medline, PsycInfo, and EMBASE up to 9th August 2023, with terms related to DTI/FA and longitudinal/change. Inclusion criteria included participants in the age range of 0–99 and included both healthy and patient groups with a sample size of ≥ 75. For the meta-analysis investigating annual whole-brain FA change, a cubic-spline function was applied. When estimating the trajectories of whole-brain FA values across the lifespan, a LOESS curve was used to fit the data. To review the evidence of influences of genetic variants on WM integrity change, we conducted an additional search adding the following search terms: i.e., genes, genome-wide association study, polygenic, family, twins and heritability. The search terms were broadened to include other DTI measures: i.e., mean diffusivity (MD), global and local efficiency.

Results: Our systematic search resulted in 3,017 studies, of which 125 studies measured FA across two timepoints. From these studies, 9 studies had quantified whole-brain FA change and had reported the actual annual changes. A further 9 studies which did not report the actual annual whole-brain FA change, but annual changes could be estimated were also included. Across childhood and adolescence, FA increased and started to plateau in adulthood. Between ages 25-50 there was non-significant change. Beyond 50, significant decreases emerged, which continued to the upper limit of our age range (age 65). Longitudinal studies of FA change above the age of 65 that met are inclusion criteria were sparse. Maximum annual
increase in FA was 0.02 and maximum decrease was -0.025. The additional systematic search focusing on genetic studies resulted in 828 studies, of which thirteen were identified as suitable for the systematic review, including 3 familial risk studies, 1 heritability study and 9 studies investigating specific genetic variants. Overall, findings from the familial and heritability studies provide limited evidence of genetic influences on change in WM integrity across time. In the studies of specific genetic variants, five provided evidence of an influence on changes of both FA and MD over time. These studies investigated genetic variants associated with Alzheimer’s disease, schizophrenia, Huntington’s disease and frontotemporal dementia.

Conclusions: There are significant changes in FA across the lifespan, with average increases up to age 25, non-significant change between 25-50 years, and beyond age 50 decreases up to (at least) age 65. While WM microstructure is substantially heritable, in the sparse studies investigating heritability of change in WM integrity so far, most evidence suggests there is
no significant influence of genes. GWAS in larger samples may be required to identify robust effects of specific common genetic variants.

References

Poster No 1250

Functional and Anatomical Growth Charts of the Cerebellum from Infancy to Young Adulthood

Aikaterina Manoli1,2,3,4, Neville Magielse5,6,1, Felix Hoffstaedter1,6, Nilsu Saglam1, Lorenz Ahle1, Ceyda Yalcin1, Hitid Arslan1, Charlotte Grosse Wiesmann1, Jorn Diedrichsen8,9,10, Sofie Valk1,3,6

1Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, 2International Max Planck Research School on Cognitive Neuroimaging, Leipzig, Germany, 3Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany, 4Faculty of Medicine, Leipzig University, Leipzig, Germany, 5INM-7, Research Center Jülich, Jülich, NRW, 6Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, 7Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, NRW, 8The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada, 9Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Ontario, Canada, 10Department of Computer Science, University of Western Ontario, London, Ontario, Canada

Introduction: Apart from its role in motor processing, the cerebellum is involved in a wide range of cognitive functions, extending its relevance for clinical conditions. Accumulating evidence from paediatric populations suggests that early-life cerebellar abnormalities are linked to neurocognitive deficits in autism and schizophrenia (Olson et al., 2023). Despite these periods being closely linked to the development of neuropsychiatric disorders, a normative framework of cerebellar development is currently lacking. Here, we constructed normative models of cerebellar volumetric growth from infancy to adulthood, by focusing on both anatomical and functional cerebellar parcellations.

Methods: We leveraged open structural (T1-weighted) MRI data from the Baby Connectome Project (BCP; Howell et al., 2019) and the Lifespan Human Connectome Project in Development (HCP-D; Somerville et al., 2018) (Ntotal=993; age range: 0.5-22 years). Infant scans (< 2 years) were preprocessed with iBEAT (Dai et al., 2013), a toolbox optimized for infant brain processing and extraction. Child and adolescent scans (> 2 years) were processed with the standard HCP minimal preprocessing pipelines (Glasser et al., 2013). We obtained native-space anatomical volumes using ACAPULCO (Han et al., 2020), a convolutional neural network-based algorithm that segments the cerebellum into 28 lobules. For functional models, we used an atlas of 10 cerebellar regions spanning cognitive, affective and motor domains (King et al., 2019). We extracted functional parcel volumes by resampling the MNl-space atlas to each subject’s native space with trilinear interpolation. Manual correction of anatomical and functional parcel masks was employed to account for over- or under-inclusion of cerebellar boundaries. We constructed anatomical and functional growth models using hierarchical Bayesian regression (HBR), which allowed us to control for sex and scanner site variability by specifying them as batch effects (Gaiser et al., 2023). We generated linear and 3rd-order b-spline models of cerebellar growth across age for each parcel, after splitting the dataset into a training (80%) and test set (20%). Inference was performed with Markov chain Monte Carlo methods (4 chains with 2000 samples). Finally, linear and b-spline model performance was compared via leave-one-out cross-validation.

Results: We found divergent effects of age on cerebellar volumes within anatomical (Fig. 1A) and functional parcels (Fig. 1B). Anterior anatomical parcels (lobules I–VI) demonstrated larger age-related effects (i.e., steeper growth trajectories) compared to posterior parcels (lobules VII–IX). Contrarily, all functional parcels demonstrated consistent volumetric increases across...
Lastly, models stratified by sex revealed steeper growth trajectories for males compared to females, with females also demonstrating patterns of slight volumetric decrease across development in anatomical parcels.

Conclusions: We found differences in normative trajectories between anatomical and functional cerebellar parcellations. Functional regions, involved in distinct cognitive processes, demonstrated consistent volumetric growth, which could reflect improvement in cognitive tasks across age. By contrast, anatomical regions showed a posterior-anterior gradient, in which anterior volumes increased more steeply than posterior volumes. This can be interpreted in light of the lack of convergence between functional and anatomical boundaries in the cerebellum (King et al., 2019). Anterior anatomical regions, uniformly involved in motor functions, demonstrate consistent growth across development. Conversely, the size of posterior anatomical regions encompasses a mosaic of functional subregions, which span several anatomical boundaries. This highlights a greater relevance of functional maps of the cerebellum for early-life diagnosis of neurodevelopmental disorders, based on deviations from normative trajectories related to specific cognitive functions.

References
Neurodynamic complexity links with early brain development: a resting-state fMRI study on infants

Wenchao Zhou, Ziwei Zhang, Teng Liang, Qiongyu Yan, Guobin Ding, Shiyu Xia, Cunyi Li, Ziqian Zhang, Chun Meng

University of Electronic Science and Technology of China, Chengdu, China

Introduction: The neonatal maturation of neural activity holds pivotal significance for functional manifestation and long-term development in human brain (Tang et al., 2020), which can be assessed by hierarchical cortical dynamics, i.e. intrinsic timescale (Raut, Snyder and Raichle, 2020). Meanwhile the Hurst exponent delineates fractal-based self-similarity and long-range dependence in the BOLD signals, providing another perspective about neurodynamic complexity (Guan et al., 2023). To better understand neurodevelopment differentiation, it is important to elaborate on early-life cortical dynamic properties.

Methods: This study examined fMRI data from 120 neonates (postmenstrual age approximately 40 weeks, gestational age (GA) ranging from 25 to 41 weeks). Timescale and fractal metrics were computed for preprocessed and averaged timeseries using Yeo-400 atlas (Schaefer et al., 2018). The complexity metrics dependent on GA were modeled using linear and quadratic models in Matlab, separately for unimodal and transmodal area. Further, averaged complexity metric across whole brain was correlated between timescale and Hurst exponent across subjects. The spatial correspondence was computed by Spearman correlation between timescale and Hurst exponent across whole brain at the individual level, and then fitted into a linear and quadratic model against GA. The spin test was used to detect significant spatial correspondence.

Results: We found longer timescale and higher Hurst exponent within unimodal compared to transmodal area in neonates, which is contrary pattern compared to young adults (Dong et al., 2018; Ito, Hearne and Cole, 2020), and may be attributed to varying developmental milestones for different brain regions (Bethlehem et al., 2022). Preterm birth demonstrated nonlinear effect on neurodynamic complexity for neonatal brain developing into 40 weeks. Importantly, 29th week seemed to be critical for timescale development (Heikkilä et al., 2023), and Hurst exponent increased linearly with higher GA (<38 weeks), suggesting that preterm birth is associated with more chaotic brain dynamics (Campbell and Weber, 2022). Moreover, our results also confirm that intrinsic timescale and Hurst exponent represent different facets of temporal complexity in early brain development.
Conclusions: Hierarchical cortical dynamics was found to be structured, but contrary to young adults, suggesting they may develop with maturation. Neurodynamic complexity follows nonlinear principle during neonatal development. Very preterm birth earlier than 29 weeks may increase the risk of early brain development.

References:
4. Guan, S. et al. (2023) 'Multifractal long-range dependence pattern of functional magnetic resonance imaging in the human brain at rest', Cerebral Cortex, p. bhad393. Available at: https://doi.org/10.1093/cercor/bhad393.

Poster No 1252

Development of cortical and subcortical asymmetry from mid gestation to old age

Lena Dorfschmidt¹, Simon White², Jenna Schabdach³, Zhiqiang Sha¹, Margaret Gardner⁴, Shreya Gudapati⁵, Gabriel Zimmerman¹, Logan Williams⁶, Vanessa Kyriakopoulou⁵, Emma Robinson⁵, A. Edwards⁵, Lifespan Brain Chart Consortium¹, Edward Bullmore², Russell Shinohara³, Richard Bethlehem⁶, Jakob Seidlitz⁴, Aaron Alexander-Bloch⁴

Introduction: Asymmetry is a key organizing principle of the brain, and has previously been shown to support healthy cognition¹, with alterations in asymmetry observed across neuropsychiatric disorders²,³. While asymmetry emerges during fetal development⁴, its lifelong dynamics and variability remain unknown⁵. The recent development of normative reference charts for the human brain have enabled individuals to be benchmarked against population-level norms across the lifespan⁶. This
study significantly extends this previous work by including regional (left/right) cortical and subcortical brain areas from over 100,000 participants, and comprehensively mapping left-right asymmetry trajectories across the human lifespan and between clinical cohorts.

Methods: We aggregated a dataset of 103 primary studies from 25 countries (Fig. 1A), comprising 129,963 scans from 103,013 subjects spanning 21 post-conception weeks (PCW) to 102 years of age (Fig. 1B). We mapped lifespan trajectories of regional subcortical gray matter volume (GM), surface area (SA), cortical thickness (CT) and ventricular volume for 68 cortical regions of the Desikan-Killiany and 12 subcortical regions defined by FreeSurfer. We fit generalized additive models for location, scale and shape (GAMLSS) to estimate the nonlinear effects of age, stratified by sex, on all phenotypes, while accounting for study effects using random effects (Fig. 1C). Key developmental milestones were defined by deriving the peak and peak rate-of-change of the trajectories. Next, we derived an index of regional brain asymmetry in each phenotype as (L-R)/(L+R), where L and R are the respective values of the regional phenotype in the left and right hemisphere. Accordingly, an asymmetry score of > 0 indicates a left-dominant region, whereas a score < 0 indicates right-dominance. We then used similar GAMLSS methods for modeling lifespan trajectories of regional brain asymmetry, deriving (per)centile scores for each phenotype for each individual. Group effects across multiple brain disorders with more than 1000 subjects each were estimated using the (signed) Cohen's d of the pairwise difference versus controls. Lastly, we derived a map of hemispheric asymmetry in case-control differences for each disorder and phenotype as the difference between left and right case-control differences. We then computed the first principal component of the (disorder*phenotypes) x regions map as a measure of cross-disorder effects on brain asymmetry.
Results: We found that L/R regional tissue trajectories largely peaked in (early) childhood and adolescence (Fig. 2A), with left-right age differences in hemispheric peaks of up to 3 years across phenotypes. Brain asymmetry trajectories across phenotypes and regions showed the greatest dynamics in the first two years of life, generally stabilizing thereafter (Fig. 2C). Overall, asymmetry was greater in GM and SA compared to CT. We found widespread case-control differences in centile scores across phenotypes and disorders, with the largest decreases in GM, SA and CT in AD and MCI, followed by SCZ. Lastly, we estimated a map of cross-disorder asymmetry effects (Fig. 2E). We found that for SA and GM, most disorders negatively loaded onto this component, indicating that the majority of cortical regions were associated with greater case-control differences in the right compared to the left hemisphere (Fig. 2E).

Conclusions: Our findings highlight changes in brain asymmetry over the course of the lifespan and underscore the potential clinical relevance of assessing brain asymmetry in the context of brain disorders across development and aging. The identification of specific deviations and their cross-disorder implications provides a foundation for future research and clinical applications in the realm of brain development and mental health.
References

Poster No 1253
T2 MRI visible perivascular spaces preterm and term born neonates
Lena Meinhold1, Antonio Gennari1, Giancarlo Natalucci2, Beatrice Latal3, Brigitte Koller4, Jean-Claude Fauchere4, Cornelia Hagmann4, Ruth Tuura1
1Centre for MR Research, University Children’s Hospital Zurich, Zurich, Switzerland, 2FLRF Center for Neurodevelopment, Growth and Nutrition of the Newborn Zurich, Zurich, Switzerland, 3Child Development Centre, University Children’s Hospital Zurich, Zurich, Switzerland, 4Department of Neonatology, University Hospital Zurich, Zurich, Switzerland, 5University Children’s Hospital Zurich, Zurich, Switzerland

Introduction: Target audience: Researchers and clinicians interested in the clinical implications and developmental correlates of enlarged perivascular spaces in preterm and term born neonates. Background: Human perivascular spaces (PVS) are recognized as important immunological sites and form part of the brain’s neurofluid clearance system (Iliff et al., 2012). PVS are known to become enlarged with aging and may be associated with several CNS disorders (Wardlaw et al., 2020), however very little is known about PVS in the neonatal brain and PVS alterations in preterm birth (Kim et al., 2023). The purpose of this study was to investigate PVS in preterm and term born neonates and explore potential associations of PVS with preterm birth, maturation and developmental outcome.

Methods: In this retrospective study, we evaluated a cohort of 86 preterm born neonates and 21 term born neonates. T2-weighted fast spin echo (FSE) MRI data were acquired at term equivalent age with a 3T GE HD.xt scanner, using an 8-channel head coil, with TE/TR= 109/5700 ms, FOV=25.6 cm, acquisition matrix=256x256, reconstruction matrix=512x512, slice thickness = 2 mm. T2-weighted images were visually inspected and PVS counts were estimated manually in the basal ganglia (BG) and centrum semiovale (CSO), using a validated scoring system (Wardlaw et al., 2013). Developmental outcome in the preterm group was evaluated with the mental development index (MDI) and psychomotor developmental index (PDI) of the Bayley scales of infant development II. Developmental outcome in the control group was evaluated with the cognitive, language and motor composite scores of the Bayley scales of infant development III. Groupwise differences in PVS counts and associations with postmenstrual age, preterm birth and developmental outcomes were evaluated with Mann-Whitney tests, Kendall’s correlation coefficients and regression analyses, respectively. All statistical analyses were performed with RStudio, R version 4.1.2.

Results: PVS counts in the basal ganglia did not differ between groups, whereas PVS counts in the CSO were significantly higher in preterm born neonates (mean = 1.42, sd = 2.24), compared to control subjects (mean = 0.43, sd = 1.12, p < 0.01). CSO PVS were positively associated with postmenstrual age both before and after controlling for gestational age b = 0.27, p < 0.01, CI [0.08, 0.47] and b = 0.39, p < 0.01, CI [0.19, 0.6], respectively. The effect of gestational age on CSO PVS was significant with b = -0.13, p < 0.01, CI [-0.23, -0.04]. We found no evidence for an association of PVS with developmental outcome. Discussion: To our knowledge, only one other study investigated perivascular spaces in preterm born neonates, demonstrating a lower basal ganglia PVS fraction with increasing maturation (postmenstrual age) (Kim et al., 2023). Interestingly, in our cohort, we identified significantly more white matter PVS in preterm born neonates which increased with maturation, and more PVS were seen in those with lower gestational age, suggesting two separate underlying processes: A) PVS evolve naturally with maturation and B) PVS may be associated with preterm birth. Premature births are often accompanied by neonatal cerebral white matter injury, inflammation and glial activation (Back, 2017) and PVS swelling may be part of the brain’s protective
response to white matter injury but may also influence the development of the neuroimmune and neurofluid clearance system in neonates.

Fig. Association of centrum semiovale PVS with postmenstrual age at MRI in preterm and term born neonates.

Conclusions: These results demonstrate an increase of CSO PVS with maturation in both preterms and healthy controls, as well as an association of CSO PVS with preterm birth. Longitudinal studies may shed further light on the role of preterm birth in the brain’s neurofluid clearance system during development.

References

Poster No 1254
Sex- and Obesity-related Differences in Amygdala Subnuclei Apportionment Exist during Preadolescence

L. Nate Overholtzer1, J. Max Landa1, Jade Li1, Jessica Morrel2, Hedyeh Ahmadi1, Megan Herting1

1University of Southern California, Los Angeles, CA, 2University of Southern California, Los Angeles, CA

Introduction: The amygdala is a subcortical limbic system structure critical for emotional processing, sensory perception, decision-making, and appetitive behaviors (Baxter and Murray, 2002; Izadi and Radahmadi, 2022). Neuroanatomical and imaging techniques demonstrate the amygdala can be cytoarchitecturally, genetically, and functionally divided into distinct subnuclei (Ou et al. 2023). Using the novel CIT168 atlas, 9 subnuclei can be assessed in vivo: lateral (LA), dorsal and intermediate basolateral (BLDI), basomedial nucleus (BM), central (CEN), cortical and medial (CMN), basolateral ventral and paralaminar subdivision (BLVPL), amygdala transition areas (ATA), amygdalostriatal transition area (ASTA), anterior amygdala area (AAA), and other non-classified amygdala areas (OTHER) (Pauli, et al., 2018; Tyszka and Pauli, 2016). Prior research in a group of about 400 adolescents spanning ages 10-17 years old indicated sex-related differences but no effects of obesity in amygdala subnuclei apportionment (Campbell et al. 2021). The current study aims to characterize the relationship between (1) obesity and (2) sex differences with proportional amygdala subnuclei volumes in a large, diverse sample of preadolescents.

Methods: We utilized cross-sectional Siemens Prisma MRI data from 4,155 participants aged 9-10 (Males: 55.4%, Females: 44.6%) from 12 sites of the Adolescent Brain Cognitive Development (ABCD®) Study. B-spline bivariate symmetric normalization (SyN) diffeomorphic registration algorithm from ANTs version 2.2.0 was adapted for image registration of T1w and T2w participant images to the high-resolution CIT168 probabilistic atlas (Figure 1). We measured the probabilistic volumes of 9 subnuclei and calculated the relative volume fraction (RVF) for each subnuclei as the proportion of subnuclei volume
relative to the total hemispheric amygdala volume. We excluded participants with an intra-amygdala contrast to noise-ratio (CNR) less than 1.0 in either hemisphere (Campbell, et. al, 2021). Multilevel modeling was employed to examine the effect of (1) BMIz and (2) sex on subnuclei RVFs while adjusting for covariates (i.e., pubertal status, handedness, race/ethnicity, household income, parental education) and study site. Standardized beta coefficients and confidence intervals are reported; P-values were FDR corrected and p-FDRs < 0.05 were considered statistically significant.

Results: For BMIz, we observed a significant association between obesity and RVFs, including a smaller LA as well as larger BM, CMN, and ATA (all p-FDRs ≤ 0.05, Figure 2a). Also, we saw an association obesity with smaller BLDI RVF in the right amygdala (p-FDRs = 0.03), which trended towards significance in the left amygdala (p-FDR = 0.06, Figure 2a). In both hemispheres, we saw significant sex differences, with smaller RVFs of the BLVPL and ATA, but larger RVFs of the CEN and CMN, in female as compared to male preadolescents (all p-FDR < 0.05, Figure 2b). Sex differences were also noted in some additional left hemisphere subnuclei, with smaller RVFs of LA and OTHER, but larger RVFs of ASTA and BM, in females (all p-FDR < 0.05, Figure 2b).

Conclusions: In a large, diverse sample of preadolescents, we were able to identify distinct associations between obesity and sex in amygdala subnuclei apportionment. This research expands upon prior work (Campbell et al., 2021) in identifying sex differences in additional subnuclei and expands upon obesity-related differences in amygdala subnuclei previously found in a small sample of youth 8-22 years of age (Kim et al., 2020). Given that several subnuclei have been implicated in reward learning and homeostatic regulation of eating behavior, additional research could contextualize how these findings influence self-regulation during preadolescence.

References
ABSTRACTS

Poster No 1255

Development of functional connectivity gradients in multiple frequency bands

Zhu-Qing Gong¹, Xi-Nian Zuo¹

¹Beijing Normal University, Beijing, China

Introduction: A wide frequency range of brain oscillations can be recorded by various techniques. In the near century, a large number of electrophysiological studies have gradually accumulated evidence that oscillations in different frequencies are associated with different functions. In summary, high-frequency oscillations have more local connections and participate in bottom-up processes, while low-frequency oscillations have more long-distance connections and dominate in top-down processes (Buzsaki et al., 2004). In the past decade, an increasing number of functional magnetic resonance imaging (fMRI) studies have investigated the whole frequency range of blood oxygen level-dependent (BOLD) oscillations using multiband frequency analysis and found that BOLD oscillations have similar functional organization hierarchies in that different frequency bands dominate different functions (Zuo et al., 2010; Thompson et al., 2015; Gong et al., 2023). However, the multiband functional organization during development has not been revealed. In this study, we aimed to investigate the developmental patterns of functional organization in multiple frequency bands in school-aged children. Our hypothesis is that since the functions are different among frequency bands, the developmental processes would also differentiate among frequencies.

Methods: Resting-state fMRI data from 381 school-aged children from the Chinese Color Nest Project, an accelerated longitudinal dataset, were chosen for this research (Fan et al., 2023). The data were divided into different age groups from 6 to 18 years old, one for each year of age. After preprocessing, BOLD oscillations were decomposed into three frequency bands: slow-3 (0.082-0.200 Hz), slow-4 (0.031-0.082 Hz) and slow-5 (0.013-0.031 Hz). Then, we performed functional connectivity gradient analysis for each age group in all frequency bands. For each frequency band, spatial correlation of gradient distribution between every two age groups was conducted to quantify the phases and continuity of the developmental changes in gradient distribution patterns.

Results: We mainly considered the first two gradients in this study since they account for the most variation. In each frequency band, the development of the two gradients throughout the school age can be divided into three stages (Fig. 1). In stage 1, the first gradient exhibited functional segmentation among primary sensory and motor regions; the second gradient exhibited functional integration from primary regions to associative regions. Stage 2 shows mixed transition modes for both gradients. In stage 3, the distribution pattern of the first and second gradients is reversed. Fig. 2 shows the developmental stages of the first and second gradients across different frequency bands. Overall, the first gradient maturated earlier than the second gradient, indicating that during the development of brain functional reorganization, functional segmentation is continuously optimized even after functional integration matures. The three frequency bands showed divergent developmental rates, as expected. For the first gradient, slow-3 matured the earliest, followed by slow-5 and then slow-4. For the second gradient, slow-5 matured the earliest, followed by slow-3 and finally slow-4. A recent study reported that slow-3, slow-4 and slow-5 are associated with sensory integration and language-related functions, executive functions, and self-related functions, respectively, offering an explanation for the current results that brain oscillations support these different functions having unique development courses (Gong et al., 2023).
Fig. 1 The spatial correlation of gradient patterns in every two age groups.

Fig. 2 The developmental stages of the first (A) and second (B) gradients across different frequency bands.

Conclusions: Our study characterized the developmental patterns of BOLD oscillations in different frequency bands. The results revealed that the development of brain function is both phased and continuous. The divergent developmental courses for different frequency bands provide evidence for the frequency specificity of brain function.
Distinctive Effects of Depression and Anxiety on Children’s Cognition and Emotional Bias

Jisu Chung¹, Sang Ah Lee¹

¹Seoul National University, Gwanak-gu, Seoul

Introduction: Emotional wellness, such as depression and anxiety, has an impact on cognitive processes such as emotional bias, attention, and inhibitory control. However, while there is a high level of comorbidity in depression and anxiety¹, their cognitive effects may be dissociable². The present study aimed to extend such infestation to the cognitive effects of anxiety and depression symptoms in childhood. To address the challenge of conducting tests involving many trials on children, we used modified versions of the emotional flanker task, emotional stroop task, and an emotion-color conjunction task using animated faces.

Methods: 45 children aged between 5 to 9 were recruited for participation at the children’s museum. 33 (mean age = 7.44, female 18) successfully completed the task and surveys. Three different emotional attentional tasks were employed to examine cognitive abilities and behavioral characteristics of children: an emotional flanker task, an emotional stroop task, and an emotional feature conjunction task. In the emotional conjunction task, participants had to select the target defined with a conjunction of color and facial expression. All three tasks used animated cat faces and a children-friendly interface to draw and sustain children’s attention. Self-report questionnaires, including a depression scale (CES-DC)⁵, anxiety scale (STAI-CH⁴), and ADHD scale (K-ARS)³, were collected to assess children’s emotional health and parent-reported ADHD symptoms. All experiments were conducted in a room within a children’s museum.

Results: Depression and trait anxiety scores were highly correlated (r = 0.461, p = 0.002). However, ADHD surveys (K-ARS) showed a correlation with depression scores (r = 0.403, p = 0.008) but not with anxiety scores (r = 0.143, p=0.368). These results suggest that depression and anxiety may have different effects on cognition. In the emotional flanker task, overall reaction time showed a correlation with depression scores (r = 0.397, p = 0.024, STAI-CH as covariate), but not with anxiety scores (r = -0.188, p = 0.302, CES-DC as covariate). Interestingly, this correlation was driven by the congruent emotion conditions (all positive or negative faces) (positive; r = 0.357, p = 0.045, negative; r = 0.576, p = 0.001, STAI-CH as covariate), showing that a highly emotional stimulus took more time to process in children with depressive symptoms. In contrast, the emotional Stroop task showed slower response times with higher anxiety (r = 0.345, p = 0.053, CES-DC as covariate), particularly in the negative condition (r = 0.373, p = 0.036, CES-DC as covariate). The emotional conjunction task also showed a correlation between response time and anxiety (r = 0.39, p = 0.044), but not with depression (r = 0.139, p = 0.49), particularly when the target was a negative face(r = 0.44, p = 0.02). These results suggest that children with high trait anxiety may have maladaptive emotion regulation, especially with negative emotional stimuli.
Conclusions: Our findings suggest that children's depression and trait anxiety show distinct effects in emotion-related cognitive tasks. We speculate that delayed executive function and conflict resolution are related to depressive symptoms, while decrease in inhibitory function, particularly with respect to negative emotional processing, is associated with children's anxiety. Such tasks can be useful for younger children who may not be able to recognize or explain their cognitive symptoms.

References

Poster No 1257

A Normative Model of Brain Microstructure based on Diffusion MRI in 52,719 Participants

Julio Villalón Reina¹, Alyssa Zhu², Talia Nir³, Neda Jahanshad⁴, Paul Thompson⁶, Elnaz Nouroollahimoghadam², Sebastian Benavidez¹, Clara Moreau¹, Tamoghna Chattopadhyay¹, Sophia Thomopoulos⁶, Leila Nabulsi¹, Yixue Feng⁷, Emily Laltoo⁸

¹University of Southern California, Los Angeles, CA, ²USC, Marina Del Rey, CA, ³University of Southern California Keck School of Medicine, Marina del Rey, CA, ⁴Imaging Genetics Center, Keck School of Medicine of University of Southern California, Los Angeles, California, ⁵Imaging Genetics Center, Keck School of Medicine of University of Southern California, Los Angeles, CA, ⁶USC, Marina del Rey, CA, ⁷University of Southern California, Marina Del Rey, CA, ⁸University of Southern California, Mark and Mary Stevens Neuroimaging and Informatics Institute, Los Angeles, CA
ABSTRACTS

Introduction: Normative models (NM) estimate the centiles of variation of a brain measure as a function of specific explanatory covariates. Assembling a large, representative reference dataset to train the NM requires the pooling of multi-site data, to increase the size of the training sample and improve the reproducibility and generalizability of findings. Even so, acquisition protocols influence diffusion tensor imaging (DTI) metrics, making it important to model protocol and site effects. To create a generalizable NM of brain DTI metrics across the lifespan, we trained a large scale NM on data from 52,719 subjects, using state-of-the-art tools to model and adjust for site-dependent effects, and to detect individual deviations from the norm.

Methods: We analyzed DTI data from: ABCD, AOMIC, CAMCAN, CHBMP, CHCP, HBN, HCP-A, HCP-D, HCP-YA, PeddsDTI, PING, PNC, QTAB, QTIM, SLIM, UKBB, ADN13, OASIS3 and PPMI. Fig.1 summarizes demographic information for the cohorts. We preprocessed all cohorts’ data with the ENIGMA-DTI protocol. Mean fractional anisotropy (FA) and mean diffusivity (MD) were extracted for 21 bilateral ROIs from the JHU-WM atlas and the skeletonized Average-WM. Hierarchical Bayesian Regression (HBR) was run to estimate the age trajectory and centile curves of DTI metrics across the lifespan (3-92 years), for FA and MD. We used age and sex as covariates, with each metric per ROI as the dependent variable and the dMRI protocol as the batch effect (35 protocols). Most sites were acquired at 3T, four sites at 1.5T and one site at 4T; b-values=1000 to 1500s-mm\(^2\); gradient directions=12 to 92. We modeled the effect of age with a cubic b-spline basis. Using the model trained on healthy controls’ data, we characterized the main effect and age-dependent effects of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) on these brain metrics. For testing, we included 81 patients with AD (mean age: 77y±8.4, 46M/35F) and 225 MCI participants (mean age: 75.1y±8.1, 127M/98F). Training and testing data sets were created with an 80% to 20% sample split. Z-scores were calculated for the 20% test control subjects. Likewise, Z-scores for the AD and MCI subjects were also calculated. Probabilities of abnormality (p-values) were derived from all Z-scores. ROI-wise areas under the ROC curves (AUCs) were calculated to determine the classification accuracy of the computed deviations, for AD and MCI. We controlled the false discovery rate (FDR) for each DTI metric separately across ROIs to identify those with significant group differences. For the significant ROIs, we calculated the average of extreme deviations (Z>|2|) for each disease. To achieve stability, we repeated the same procedure 10 times. We report the deviations for the ROIs that passed the FDR correction in 9 out of 10 times.

Results: Normative modeling with HBR (NM-HBR) was able to create lifespan trajectories for the DTI metrics by pooling large-scale multi-site DTI data. The average FA across all WM reached a peak at 29 years; average MD reached a minimum at 42 years (Fig.2). With NM-HBR, we were able to create site-specific NMs, allowing the intercept and the reference values for DTI metrics to vary across protocols (Fig.2C). NM-HBR quantified extreme deviations in the WM for AD and MCI with high anatomical precision. For AD classification, the cingulum of the hippocampus (CGH) attained an AUC=0.68 for FA and AUC=0.71 for MD. In MCI, MD measures in the BCC attained best classification accuracy (AUC=0.58). We found extreme deviations (Z>|2|) in both directions for AD and MCI. Fig. 2D shows the AUCs of the Z-scores across all JHU-WM ROIs for AD in the CGH and GCC.
Conclusions: These NM will be available to the neuroimaging community with DTI data in the ENIGMA-DTI template space and may be applied to multi-site samples of patients with neurologic and psychiatric diseases to detect deviations from age- and sex-specific norms and at different stages of brain disease.

References
17. P. A. Valdes-Sosa et al. (2021), Scientific Data, vol. 8, no. 1, p. 45.

Poster No 1258
Prenatal Familial Income Volatility and Infant Subcortical Brain Volumes
Genevieve Patterson1, Alexander Dufford2, Sun Hyung Kim3, Martin Styner4, Pilyoung Kim1
1University of Denver, Denver, CO, 2Oregon Health & Science University, Portland, OR, 3The University of North Carolina at Chapel Hill, Chapel Hill, NC, 4Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC

Introduction: Unpredictable environments can be a source of stress influencing the developing brain, including during the prenatal period. Subcortical regions including the amygdala and hippocampus have been previously shown to be especially sensitive to stress exposure, in part due to the high number of glucocorticoid receptors present in these regions (Badihian et al., 2020). Emerging evidence suggests that socioeconomic status (SES) is associated with child brain development including in infancy (Betancourt et al. 2016; Ramphal et al., 2020; Gao et al., 2015). Prior studies have consistently reported associations between lower SES and smaller hippocampal volumes with more mixed results for amygdala volume (Rakesh & Whittle, 2021). Household chaos and unpredictability have also been associated with child development at a behavioral (Evans et al. 2005; Davis et al., 2019), physiological (Tarullo et al., 2020; Noroña-Zhou et al. 2020), and neural (Granger et al., 2021) level. Income
volatility, specifically income losses, has been associated with both externalizing and internalizing symptoms throughout development (Miller et al. 2021). However, little is known about the role of income instability and infant brain development. Here we examine the association between familial income instability and subcortical brain volumes in early infancy.

Methods: The current study includes 63 infants from a prospective longitudinal study of pregnant individuals and their infants from diverse socioeconomic backgrounds (31.7% low income, prenatal income to needs ratio <=2). Arc Percent Change (APC) in household earned income was calculated for each month compared to the previous month for the time period covering conception to the month of the child’s birth. An income shock was defined as APC > 25% for a given month, with decreases defined as a negative shock. The number of negative income shocks were summed across the prenatal time period. Infants completed an MRI after birth during natural sleep (Mean Age = 34.9 days, SD = 19.9 days; 52.4% female). Infant amygdala and hippocampus as well as tissue segmentation were individually segmented using a multimodality, multi-template-based automatic method combining T1- and T2-weighted MR images via the MultiSegPipeline v2.2.1 tool (Cherel et al., 2015), which employs deformable registration and label fusion from the ANTs toolset (Tustison et al., 2021). Bivariate correlations were conducted to test the following as potential covariates: total intracranial volume (ICV), postconceptional age at scan (sum of gestational age at birth and age at scan), sex at birth, birthweight, average prenatal income to needs ratio, and NICU stay. Covariates significantly associated with hippocampus and amygdala volumes were included in further multiple regression analysis predicting infant right and left hippocampus and amygdala volume from the total number of negative income shocks.

Results: The number of negative income shocks was significantly associated with smaller right hippocampal volume ($\beta = -33.60, p = .01$) covarying for ICV and birthweight. The number of negative income shocks was significantly associated with smaller right amygdala volume ($\beta = -11.55, p = .008$) covarying for ICV and postconceptional age at scan.

Conclusions: We found evidence that familial income volatility during the perinatal period is associated with infant brain structure after birth. These early differences in brain structure may potentially influence infant’s developmental trajectories with implications for later brain structure, function, and associated behavior. These findings provide support for the development of public programs that prioritize consistency, especially for families and during sensitive periods like pregnancy.

References
Brain Charts for the Rhesus Macaque

1Child Mind Institute, New York, NY, 2University of Pennsylvania, Philadelphia, PA, 3Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom, 4Nathan Kline Institute, Orangeburg, NY, 5University of California Davis MIND Institute, Sacramento, CA, 6Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, 7University of California Davis, Davis, CA, 8California National Primate Research Center, Davis, CA, 9University of Wisconsin Madison, Madison, WI, 10Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 11The Children's Hospital of Philadelphia, Philadelphia, PA, 12Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France, 13Department of Psychology, Queen's University, Ontario, Canada, 14Nathan S. kline Institute for Psychiatric Research, Orangeburg, NY, 15Université de Lyon, Lyon, France, 16Emory National Primate Research Center, Atlanta, GA, 17Claude Bernard University Lyon 1, Villeurbanne, France, 18Emory University, Budapest, Hungary, 19Department of Psychology, Queens University, Ontario, Canada, 20Centre for Neuroscience Studies, Queen's University, Ontario, Canada, 21Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 22Beckman Institute for Advanced Science and Technology, Champaign, IL, 23Abbott Laboratories, Columbus, OH, 24Oregon National Primate Research Center, Portland, OR, 25Columbia University, New York, NY, 26University of Minnesota, Minneapolis, MN, 27Newcastle University, Newcastle, United Kingdom, 28Kunming University of Science and Technology, Kunming, China, 29Netherlands Institute for Neuroscience Royal Netherlands Academy of Arts and Sciences, Meibergdreef, Netherlands, 30National Institute of Health, Baltimore, MD

Introduction: The rhesus macaque is one of the most widely used non-human primate (NHP) models for the human brain, due to resemblance in brain structure, function, and social behaviours. Notably, comparative developmental models of human and macaque provides opportunities to investigate neural plasticity, developmental trajectories, and pathological processes. Recently, analysis of multisite MRI datasets have successfully characterized human brain development across the lifespan1. However, due to multifaceted challenges in NHP studies, we lack comparative brain growth charts for macaques. This study aimed to establish reference standards for macaque brain development that facilitates the comparison of development phases across humans and macaques.

Methods: We studied a collaborative multisite collection of MRI data including the PRIMatE Data Exchange (PRIME-DE) consortium. Structural images were preprocessed through the ‘nhp-abcd-bids-pipeline’32-4, with customized templates for early developmental data (age < 0.3 yr), followed by visual inspections for quality assessment. Prenatal data was manually segmented6. A total of 1,522 scans (1024 macaques, 554 F; age: -.23 - 30.64 yr) across 23 sites were included in the analysis. We estimated global and regional volume, cortical thickness, and surface area and applied a GAMLS, fitting nonlinear growth curves stratified by sex and site as a random effect. We identified the macaque developmental milestones (i.e. growth rates and peak age of trajectories) and transformed them to human surfaces for comparing the developmental phases between humans and macaques.

Results: Overall, macaque trajectories demonstrate similar patterns in total volume of gray matter (GMV), white matter, and subcortical GM compared to humans. However, unlike humans, where GMV peaks in childhood (~6 yr), macaque GMV peaked earlier during infancy (~8 mon), followed by a plateau and gradual decline. Ventricular volume sharply decreases before birth, with a steady postnatal increase, followed by a slight increase towards the end of the lifespan. At the GMV peak age (Fig 1C), the growth rate in volume, area, and cortical thickness shows regional variations6. Except for the frontal pole, volumes in the lateral and medial frontal, middle temporal, and parahippocampal regions continue to increase, while the visual and parietal lobes show a reduction. Cortical thickness mirrors a similar pattern to volume, while surface area displays...
continued expansion in most brain regions, except for the visual cortex. Figure 2 illustrates regional peak ages for volume, area, and thickness. Notably, volume and area share a similar peak age scale across regions, with a late peak age observed in the precentral gyrus and anterior cingular cortex (ACC). In contrast, thickness exhibits an earlier overall peak age. Upon comparing the human peak age with that of macaque transformed on the human surface (Fig 2C-D), a development delay was detected in the insular and ACC across all measures (Fig 2F), highlighting functional relationships including social cognition, autobiographical memory, and affective processing.

Figure 1. Brain charts for rhesus macaque. A) Human and macaque approximate lifecycle stages and demographic information of MRI data. B) Brain volume trajectories and growth rates (per day) over the lifespan shown over a log scale, with comparable human charts from Bothun & Switala et al., (2022). C) Growth rates of volume (mm³/day), surface area (mm²/day), and cortical thickness (mm/day) at total gray volume peak age (6 months).

Figure 2. Peak ages for volume, surface area, and cortical thickness. A) Macaque regional peak ages in years. B) Macaque peak ages at the network level. C) Macaque peak ages aligned to the human surface in the Desikan-Killiany parcellation. D) Human peak age in years in the Desikan-Killiany parcellation. E) Scatterplots represent the comparison of peak age between humans (y-axis) and macaque (x-axis), colored by the cytoarchitectonic classes. Bar plots show relative differences (human - macaque) in age peak normalized by the GMV peak age. F) Difference in peak age between humans and macaques normalized by the GMV peak age within species. G) A Neuroquery meta-analysis of the difference maps, colored matches with difference map in Fig 2F.
Conclusions: This study established normative brain development trajectories for macaque. Compared to human, macaque brain grows faster and plateaus earlier, particularly in regions with functional associations with social cognition, autobiographical memory, and affective processing. Our findings suggest neotenic changes in human brain development with prolonged periods of postnatal brain growth during childhood, which may facilitate cellular maturation, myelination, synaptic wiring, and pruning. Functionally these changes are important for the development of complex cognitive and social behaviours that are core features of human cognition. The normative brain charts offer a window into the brain development of nonhuman primates that provides a baseline from which we can gain an understanding of how human brain development shapes how we think and feel.

References

Poster No 1260

Associations Between Prenatal Stress, Maternal Anxiety, and Infant Functional Connectivity

Jenna Chin1, Haitao Chen2, Wei Gao3, Pilyoung Kim1

1University of Denver, Denver, CO, 2Cedars-Sinai Medical Center, Los Angeles, CA, 3Biomedical Imaging Research Institute (BIRI), Cedars-Sinai Medical Center, Los Angeles, CA

Introduction: There is emerging evidence demonstrating associations between prenatal stress and infant brain outcomes. However, studies examining the specific role of prenatal life events in shaping infant functional connectivity (FC) remain limited. It is also unclear how prenatal psychological distress may interact with stressful event exposure. Here we use resting-state fMRI (rs-fMRI) to examine the effects of stressful event exposure and gestational parent anxiety symptoms on amygdala (amyg)—anterior cingulate cortex (ACC) FC, a neural circuit with known stress-related alterations.

Methods: Participants were 56 gestational parent–infant dyads. Gestational parents (M age=29.86, SD=5.51 years) were recruited for a longitudinal study of pregnancy. Prenatal stress was measured at three prenatal time points using a Life Events Interview (Lobel et al., 1992). Participants rated the severity of endorsed events from neither negative nor undesirable (1) to extremely negative or undesirable (5). Severity scores were summed to compute severity-weighted life event totals. To assess prenatal anxiety symptoms, gestational parents completed the State-Trait Anxiety Inventory at three prenatal time points (Spielberger, 1989). Scores across the three prenatal time points were averaged to create a composite prenatal anxiety score. Infants completed a rs-fMRI scan (M=32.31, SD=16.14 days). Amyg to ACC FC values were computed based on the infant 2-year AAL atlas (Shi et al., 2011). The average fMRI time series for each ROI were calculated by averaging the time series across all voxels within the region. Pair-wise correlations were calculated and values were Fisher-Z transformed. First, associations between each ROI to ROI FC (i.e., left amyg–left ACC, left amyg–right ACC, right amyg–left ACC, right amyg–right ACC) and prenatal stress were tested using four separate regressions. All analyses controlled for infant postnatal age and sex. We then tested whether gestational parent prenatal anxiety symptoms mediated significant associations between prenatal stress and infant rs-FC.

Results: Higher prenatal stress, operationalized as severity-weighted stressful life event totals, was associated with decreased left amyg–left ACC FC values (B= -294, SE = .002, p = .030; Fig. 1a) and decreased right amyg–left ACC FC values (B= -.312, SE = .002, p = .021; Fig. 1b). Prenatal stress was not significantly associated with left amyg–right ACC FC or right amyg–right ACC FC. The effect of prenatal stressful events on infant left amyg–left ACC was fully mediated by prenatal anxiety symptoms, such that the indirect effect of prenatal stressful events on left amyg–left ACC FC was significant (b = -.003, [-.003, -.0003]; Fig. 2a). The remaining direct effect of prenatal stressful events on left amyg–left ACC was not significant. We did not find evidence that the effect of prenatal stress on infant right amyg–left ACC was mediated by prenatal anxiety symptoms (Fig. 2b).
Conclusions: We found evidence that prenatal stress characterized as severity-weighted stressful life events is associated with infant functional connectivity. We also found evidence that gestational parent prenatal anxiety symptoms may mediate this relationship. Our findings contribute to the growing literature on prenatal stress exposure and the functional connectivity of emotional circuits in infants and highlight the prenatal period as a target for interventions that improve infant and family well-being.

References

Poster No 1261

Functional Connectivity in Adolescents with Congenital Heart Disease or Neonatal Encephalopathy

Megan Martin, Lauren Harasymiw, Shabnam Peyvandi, Elizabeth George, Patrick McQuillen, Duan Xu

Introduction: Although congenital heart disease (CHD) and hypoxic ischemic encephalopathy (HIE) are different pathological conditions, CHD restricts oxygen delivery to the neonatal brain and HIE results from restricted oxygen delivery to the neonatal brain. Both are associated with high incidence of neonatal brain injury and altered brain development. Prior studies have shown differences between these groups in brain size and microstructural development as well as associations between graph theory metrics and intellectual performance derived from functionally connected neural networks using resting state functional MR images (rsfMRI). A negative association between average pathlength and intellectual performance and a positive relationship between global efficiency and intellectual performance have been observed. In this study, we compare graph theory metrics of functionally connected neural networks of adolescents who were born with CHD or HIE to examine similarities and differences.

Methods: We evaluated rsfMRI in adolescents with CHD (n=23) between the ages of 8 and 19 years old and HIE (n=20) between the ages of 10 and 15 years old. These adolescents were enrolled in respective longitudinal cohort studies as neonates. An fMRI sequence with 3mm resolution, a repetition time of 2 seconds and 200 passes was acquired continuously.
on a 3T GE MR750 scanner (GE Healthcare, Waukesha, WI, USA) while the subjects were at rest. Additionally, subjects underwent detailed neuropsychological testing. The CONN toolbox (version 22a) was used to preprocess and denoise the rsfMRI data, co-register with the T1 weighted anatomical image and MNI adult brain atlas, and compute functional brain connectomes, adjacency matrices, and graph theory metrics. The graph theory metrics included in this analysis were global and local efficiency, betweenness, closeness centrality, eigenvector centrality, eccentricity, cost, average pathlength, clustering coefficient, and degree. An ANCOVA test was used to assess age as a covariant of neural network graph theory metrics and evaluate groupwise significant differences between CHD and HIE. Groupwise mean and standard deviation were computed when a significant difference was present in a network graph theory metric.

Results: With age evaluated as a covariant, significant differences by diagnosis were identified in two or more graph theory metrics of the sensory motor, visual, salience, dorsal attention, language, and cerebellar networks. No significant differences by diagnosis were identified in the default mode or frontoparietal networks. When significantly different, mean average pathlength was lower in the CHD cohort than in the HIE cohort, except in the cerebellar posterior network, where it was lower in the HIE cohort (Figure 1). Conversely, when significantly different, global efficiency was generally higher in the CHD cohort than in the HIE cohort, except in the dorsal attention frontal eye field and the cerebellar posterior networks where this metric was higher in the HIE cohort (Figure 1).

<table>
<thead>
<tr>
<th>Neural Network</th>
<th>CHD</th>
<th>HIE</th>
<th>CHD</th>
<th>HIE</th>
<th>CHD</th>
<th>HIE</th>
<th>CHD</th>
<th>HIE</th>
<th>CHD</th>
<th>HIE</th>
<th>CHD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensory Motor Lateral L</td>
<td>0.51 ± 1.07</td>
<td>0.06 ± 0.06</td>
<td>0.06 ± 0.05</td>
<td>0.44 ± 0.05</td>
<td>1.07 ± 0.05</td>
<td>0.06 ± 0.05</td>
<td>2.3 ± 0.05</td>
<td>14.07 ± 0.05</td>
<td>27.6 ± 0.05</td>
<td>10.97 ± 0.05</td>
<td>0.15 ± 0.05</td>
</tr>
<tr>
<td>Sensory Motor Superior</td>
<td>0.56 ± 1.17</td>
<td>0.04 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>0.43 ± 0.04</td>
<td>1.07 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>2.3 ± 0.04</td>
<td>14.07 ± 0.04</td>
<td>27.6 ± 0.04</td>
<td>10.97 ± 0.04</td>
<td>0.15 ± 0.04</td>
</tr>
<tr>
<td>Visual Occipital</td>
<td>0.49 ± 0.09</td>
<td>0.04 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>0.43 ± 0.04</td>
<td>0.92 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>2.3 ± 0.04</td>
<td>14.07 ± 0.04</td>
<td>27.6 ± 0.04</td>
<td>10.97 ± 0.04</td>
<td>0.15 ± 0.04</td>
</tr>
<tr>
<td>Salience ACC</td>
<td>0.55 ± 0.05</td>
<td>0.04 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>0.43 ± 0.04</td>
<td>1.07 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>2.3 ± 0.04</td>
<td>14.07 ± 0.04</td>
<td>27.6 ± 0.04</td>
<td>10.97 ± 0.04</td>
<td>0.15 ± 0.04</td>
</tr>
<tr>
<td>Salience Ansa L</td>
<td>0.56 ± 0.06</td>
<td>0.03 ± 0.03</td>
<td>0.03 ± 0.03</td>
<td>0.43 ± 0.03</td>
<td>1.08 ± 0.03</td>
<td>0.03 ± 0.03</td>
<td>2.3 ± 0.03</td>
<td>14.07 ± 0.03</td>
<td>27.6 ± 0.03</td>
<td>10.97 ± 0.03</td>
<td>0.15 ± 0.03</td>
</tr>
<tr>
<td>Salience Ansa R</td>
<td>0.49 ± 0.08</td>
<td>0.04 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>0.43 ± 0.04</td>
<td>0.92 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>2.3 ± 0.04</td>
<td>14.07 ± 0.04</td>
<td>27.6 ± 0.04</td>
<td>10.97 ± 0.04</td>
<td>0.15 ± 0.04</td>
</tr>
<tr>
<td>Salience SNR R</td>
<td>0.56 ± 0.05</td>
<td>0.03 ± 0.03</td>
<td>0.03 ± 0.03</td>
<td>0.43 ± 0.03</td>
<td>1.08 ± 0.03</td>
<td>0.03 ± 0.03</td>
<td>2.3 ± 0.03</td>
<td>14.07 ± 0.03</td>
<td>27.6 ± 0.03</td>
<td>10.97 ± 0.03</td>
<td>0.15 ± 0.03</td>
</tr>
<tr>
<td>Dorsal Attention FEF R</td>
<td>0.47 ± 0.05</td>
<td>0.04 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>0.43 ± 0.04</td>
<td>1.07 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>2.3 ± 0.04</td>
<td>14.07 ± 0.04</td>
<td>27.6 ± 0.04</td>
<td>10.97 ± 0.04</td>
<td>0.15 ± 0.04</td>
</tr>
<tr>
<td>Dorsal Attention IPS L</td>
<td>0.52 ± 0.05</td>
<td>0.04 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>0.43 ± 0.04</td>
<td>1.07 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>2.3 ± 0.04</td>
<td>14.07 ± 0.04</td>
<td>27.6 ± 0.04</td>
<td>10.97 ± 0.04</td>
<td>0.15 ± 0.04</td>
</tr>
<tr>
<td>Dorsal Attention IPS R</td>
<td>0.56 ± 0.05</td>
<td>0.04 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>0.43 ± 0.04</td>
<td>1.07 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>2.3 ± 0.04</td>
<td>14.07 ± 0.04</td>
<td>27.6 ± 0.04</td>
<td>10.97 ± 0.04</td>
<td>0.15 ± 0.04</td>
</tr>
<tr>
<td>Language BFG L</td>
<td>0.52 ± 0.05</td>
<td>0.05 ± 0.05</td>
<td>0.05 ± 0.05</td>
<td>0.43 ± 0.05</td>
<td>0.5 ± 0.05</td>
<td>0.05 ± 0.05</td>
<td>2.3 ± 0.05</td>
<td>14.07 ± 0.05</td>
<td>27.6 ± 0.05</td>
<td>10.97 ± 0.05</td>
<td>0.15 ± 0.05</td>
</tr>
<tr>
<td>Language pSTG R</td>
<td>0.57 ± 0.06</td>
<td>0.06 ± 0.06</td>
<td>0.06 ± 0.06</td>
<td>0.43 ± 0.06</td>
<td>1.06 ± 0.06</td>
<td>0.06 ± 0.06</td>
<td>2.3 ± 0.06</td>
<td>14.07 ± 0.06</td>
<td>27.6 ± 0.06</td>
<td>10.97 ± 0.06</td>
<td>0.15 ± 0.06</td>
</tr>
<tr>
<td>Cerebellar Anterior</td>
<td>0.61 ± 0.07</td>
<td>0.07 ± 0.07</td>
<td>0.07 ± 0.07</td>
<td>0.43 ± 0.07</td>
<td>1.07 ± 0.07</td>
<td>0.07 ± 0.07</td>
<td>2.3 ± 0.07</td>
<td>14.07 ± 0.07</td>
<td>27.6 ± 0.07</td>
<td>10.97 ± 0.07</td>
<td>0.15 ± 0.07</td>
</tr>
<tr>
<td>Cerebellar Posterior</td>
<td>0.54 ± 0.09</td>
<td>0.09 ± 0.09</td>
<td>0.09 ± 0.09</td>
<td>0.43 ± 0.09</td>
<td>1.09 ± 0.09</td>
<td>0.09 ± 0.09</td>
<td>2.3 ± 0.09</td>
<td>14.07 ± 0.09</td>
<td>27.6 ± 0.09</td>
<td>10.97 ± 0.09</td>
<td>0.15 ± 0.09</td>
</tr>
</tbody>
</table>

Figure 1. Significantly different graph theory metrics of brain networks by diagnosis. Values reported as means ± standard deviation.
Conclusions: Our study suggests differences in functional connectivity of neural networks between adolescents with CHD as compared to those with HIE. Further work is needed to determine the association of these differences with detailed cognitive or functional outcomes available for these cohorts.

References

Poster No 1262

Lessons learned from longitudinal MRI study of infant and toddler brain development

Leslie Gaines1, Bosi Chen1, Alexis McKay1, Seyeon Yim1, Cassandra Hendrix2, Natalie Brito3, Moriah Thomas4

1Department of Child and Adolescent Psychiatry, New York University Langone, New York, NY; 2NYU Langone, New York, NY; 3New York University, New York, NY; 4NYU Langone Medical Center, New York, NY

Introduction: Infant and toddler MRI provides a unique opportunity to study rapid changes in both brain anatomy and functional organization in the first years of life1,2. However, scanning infants and toddlers presents multiple practical challenges that often result in limited sample sizes and variable data quality3. In particular, longitudinal MRI studies across infancy and toddlerhood require careful considerations for MRI acquisition strategies during different developmental stages. In an effort to promote communication with other infant toddler imaging labs, we are reporting our scanning protocols, success rates across scan sequences, and motion characterization in our longitudinal infant MRI study as well as planned modifications to our protocol in preparation for scanning toddlers at 4 years of age.

Methods: Participants included infants of women enrolled in the COVID-19 and Perinatal Experiences Study, conducted at NYU Langone Health. 88 infants (47 males) were scanned within the first 5 months after birth (ages 1-5 months; neonatal visit) and 64 infants (36 males) were scanned at around 12 months of age (ages 9-17 months; 1-year-old visit) during natural sleep. All infants were scanned during daytime napping for the neonatal MRI visit but the majority (63%) of infants were scanned during nocturnal sleep for the 1-year-old MRI visit. The MRI acquisition sequence includes T1-weighted and T2-weighted anatomical scans, fMRI, diffusion tensor imaging (DTI), and relaxometry imaging on a 3T Siemens Prisma MRI using a 32-channel head coil. We defined a scan being successful if at least one type of usable data is available. Head motion indexed by framewise displacement (FD) was extracted for each fMRI scan.

Results: The success rate for neonatal MRI scans (84%) is significantly higher than the success rate for 1-year-old MRI scans (56%; X2 (1, N = 88) = 13.03, p < .001). Anatomical T1 were acquired in 83% of the neonatal and 56% of 1-year-old scans. FMRI data were acquired in 74% of the neonatal scans and in 52% of the 1-year-old scans. Full or partial DTI were acquired in 32% of the neonatal scans and in 34% of the 1-year-old scans. While the acquired fMRI data length is comparable between the two timepoints (t (63) = .13, p = .45), head motion is significantly higher during the neonatal scans (t (78.19) = 2.38, p = .02). For the 1-year-old MRI visit, the success rate during nocturnal sleep (66%) is significantly higher than during daytime napping (33%; X2 (1, N = 64) = 6.67, p = .01).

Conclusions: Consistent with reports by other infant MRI research groups4, sleep MRI success rates are higher among younger infants than older infants. Increased awareness of surroundings at 1 year old may hinder children’s ability to fall asleep in unfamiliar environments. Neonates display greater head motion than older infants during MRI, likely related to developmental differences in sleep patterns. For older infants, we attribute greater success rates during nocturnal sleep compared to daytime napping to the higher likelihood of achieving deeper and longer sleep periods at night. Our group is currently preparing for the third longitudinal MRI visit to scan children at age 4 years during nocturnal sleep. These combined findings have informed the development of preparation and scanning protocols for toddlers. A comprehensive preparation protocol, including an age-appropriate social story, a narrated video of the MRI visit, and a 7-day at-home habituation process, is under development and will be included as part of this presentation.
Developmental Sex Differences in White Matter using Advanced and Conventional dMRI Models
Sebastian Benavidez¹, Katherine Lawrence¹, Gaon Kim², Zvart Abaryan², Emily Laltoo¹, James McCracken², Paul Thompson¹

1Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, USC, Marina del Rey, CA, 2Children’s Hospital of Los Angeles, Los Angeles, CA, 3Department of Psychiatry, University of California San Francisco, San Francisco, CA

Introduction: Childhood and adolescence are periods of substantial white matter (WM) maturation. WM abnormalities have also been implicated in adolescent-onset psychiatric disorders. Understanding sex differences in the typically developing brain may offer insight into sex-specific variation in these brain-based disorders (Boyd et al., 2015). Although prior research has extensively characterized WM sex differences in adults (Salminen et al., 2022), WM sex differences during development are less well understood. Here we aimed to characterize sex differences in WM microstructure during typical development – from early childhood through emerging adulthood – using diffusion-weighted MRI (dMRI) data modeled with conventional diffusion tensor imaging (DTI) (Basser et al., 1994) and the advanced tensor distribution function (TDF) (Leow et al., 2009).

Methods: We analyzed dMRI data sourced from the Healthy Brain Network (Alexander et al., 2017), from 239 typically developing participants aged 5-22 years (46.0% female). Participants were included in our sample if they received a full clinical evaluation and were not given a clinical diagnosis. dMRI scans were acquired across four scanners: three 3T scanners (1.8 mm isotropic voxel size, 72 slices), and one 1.5T scanner (2.0 mm isotropic voxel size, 72 slices). All dMRI scans had one b = 0 s/mm² volume and 64 directions at b = 1000 s/mm². All dMRI scans were preprocessed using the ENIGMA-DTI protocol (Jahanshad et al., 2013). Measures of fractional anisotropy (FADTI), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were generated using DTI. The TDF model was used to generate FATDF, which is similar to FADTI but more accurately describes voxels with crossing fibers. These measures were then skeletonized using tract-based spatial statistics. Using the JHU WM brain atlas (Mori et al., 2008), the average value along the WM skeleton was extracted for each metric in 25 regions of interest (ROI). We harmonized the ROI data using ComBat within each metric (Radua et al., 2020; Fortin et al., 2018). A fixed-effects linear regression was used to assess WM sex differences, adjusting for age, age-squared, the interaction between sex and age, and the interaction between sex and age-squared. The false discovery rate (Benjamini & Hochberg, 1995) was used to correct for multiple comparisons across the 25 ROIs, and significance was determined by a corrected p-value of 0.05.

Results: The effect of sex was regionally consistent, as boys generally exhibited lower FADTI and FATDF and higher MD, AD, and RD than girls. For the DTI metrics, boys displayed significantly lower FADTI in the sagittal stratum (SS); higher MD across the whole brain, in the corona radiata (CR), posterior corona radiata (PCR), anterior corona radiata (ACR), external capsule (EC), uncinate fasciculus (UNC), posterior thalamic radiation (PTR), superior longitudinal fasciculus (SLF), and SS; higher AD in the PCR, SLF, and SS; and higher RD in the SS compared to girls. For FATDF, boys exhibited significantly lower values than girls in the CR, superior corona radiata (SCR), PCR, EC, fornix/stria terminalis (FXST), PTR, retrolenticular limb of the internal capsule (RLIC), SLF, SS, and tapetum (TAP). The TDF model was more sensitive to sex differences than DTI, detecting more significant ROIs than the DTI model (Fig. 1).
Conclusions: We found widespread sex differences in WM microstructure during typical development. The observed sex differences across WM regions suggest greater FA and lower diffusivity for females compared to males, which may have implications for understanding sex-specific vulnerabilities in psychiatric disorders. As a whole, these findings highlight the need to consider sex in neurodevelopmental research and underscore the value of the advanced TDF model.

References

Poster No 1264
Cerebello-cortical Connectivity During Early Brain Development
Wenjiao Lyu1, Kimhan Thung1, Li Wang1, Weili Lin1, Sahar Ahmad1, Pew-Thian Yap1
1University of North Carolina at Chapel Hill, Chapel Hill, NC

Introduction: The cerebello-cortical system stands out as one of the most crucial networks in the human brain. In comparison to other primates, the expansion of key regions within the human cerebello-cortical system has undergone the highest evolutionary rate, suggesting a pivotal role of the cerebellum in the cognitive evolution of humans. The cerebellum undergoes rapid growth in the late stages of gestation and continues to develop after birth, establishing long-range connections with the brain through the formation of white matter fibers. However, during the early childhood period, when the cerebellum undergoes continuous development, a clear picture of the evolution of cerebello-cortical connectivity remains elusive. Abnormal connections between the cerebellum and the cerebral cortex have been found to be associated with disorders such as autism spectrum disorder and hyperactivity disorder, which tend to manifest in childhood and are associated with cognitive
and motor abnormalities. It is therefore crucial to investigate the fundamental patterns of cerebello-cortical connectivity during early childhood. Here, we map the typical developmental patterns of cerebello-cortical connectivity in early children.

Methods: Over 1000 BCP scans from 285 healthy participants (M/F:137/148), aged between birth and 5 years were collected in this study. The rs-fMRI data were processed using the following steps: head motion correction, EPI distortion correction, brain extraction, registration to structural MRI, high-pass filtering, ICA-AROMA denoising, and co-registration to MNI space. Then 2 stages of group independent component analysis (GICA) were used to generate the independent components. Based on the anatomical location of the individual components, 26 components were selected from 35 components and further grouped as 9 cortical functional networks (FNs). Dual regression was used to obtain individual FNs. For each individual non-overlapping FN, a representative eigen time series was computed. For each cerebellar voxel, partial correlations were computed with respect to all the FN eigen time series. Finally, the correlations were converted to z-scores using Fisher r-to-z transform. SUIT and R were used for visualization.

Results: We identified 26 components and categorized them into nine brain functional networks, namely the Sensorimotor Network (SMN), Default Mode Network (DMN), Salience Network (SN), Executive Control Network (ECN), Visual Network (VIS), Auditory Network (AUD), Dorsal Attention Network (DAN), Ventral Attention Network (VAN), and Limbic Network. Cerebello-cortical functional connectivity maps across months were derived through partial correlation analyses involving all the specified components. Generally, the connectivity between the SMN and the cerebellum surpasses that of other cortical brain networks. Particularly, connectivity is more pronounced in Lobule I-IV, Lobule V, and Lobule VIII. Robust connectivity has been identified between the visual network and Lobule V. Connectivity between higher-order functional networks and the cerebellum is typically weaker in early childhood. Around age one, children display cerebello-cortical connectivity patterns similar to those seen in adults (Figure 1). During childhood, the overall strength of cerebello-cortical connectivity exhibits an ascending trend. Connection between the cerebellum and different brain functional networks develops asynchronously and heterogeneously. Certain brain networks demonstrate gender differences in connectivity with the cerebellum (Figure 2).

Figure 1. Cerebello-cortical connectivity during early brain development.
Figure 2. Developmental trajectories of cerebello-cortical functional connectivity.

Conclusions: We mapped the cerebello-cortical functional connections from 0 to 5 years of age, capturing the asynchronous and heterogeneous patterns of development during this early phase of brain development.

References
5. Thung et al. (2022), “Analysis of ICA-AROMA motion denoising on fMRI data in infant cohort,” OHBM.

Poster No 1265

Distinct spatial dimensions of changes in cortical structure during early adolescence

Mari Shishikura1, Alain Dagher2

1McGill University, Montreal, QC, 2Montreal Neurological Institute and Hospital, McGill University, Montreal, QC

Introduction: Adolescence is a critical period when the brain undergoes structural and functional maturation. Previous studies have shown that mean cortical thickness peaks at 1-2 years of life and decreases thereafter, whereas total cortical surface area
continues to expand during childhood until it peaks in late childhood/adolescence1,2. However, less is known about region-specific trajectories of these cortical structures during the maturation process. Moreover, we have yet to elucidate if different regions are coordinated in the way they mature. In this study, we aimed to depict the region-specific developmental trajectory in the cortex during early adolescence. We further identified clusters of regions that had a common structural change pattern. Finally, we investigated whether these common change factors were associated with changes in impulsivity scores over the same period.

Methods: We used T1-weighted magnetic resonance images from Adolescent Brain Cognitive Development study3, an ongoing longitudinal study where subjects were recruited at age 9-10 and are scanned every two years (baseline, 2-year-, and 4-year-follow-up data are currently available). We included subjects who were scanned at least twice, totaling 7904 subjects. Images were pre-processed and the cortex was segmented into 68 regions (DK atlas) by the ABCD working group. Site differences were corrected using Longitudinal ComBat4. For each region, we fitted a separate latent growth curve model5 to obtain baseline measures (intercept) and annual change (slope) of cortical surface area and thickness. Estimate of change is reported as % change per annum. We then simultaneously estimated growth curves of all regions in the left hemisphere and obtained a latent correlation matrix, which represents how correlated slopes are among regions. Exploratory factor analysis (EFA) was conducted on the matrix to identify latent factors, which capture spatially distinct dimensions of cortical structural change. As a confirmatory factor analysis (CFA), we modeled growth curves simultaneously in the right hemisphere with the identified latent factors. Model fit was assessed based on Comparative Fit Index (CFI) and Standardized Root Mean Squared Residual (SRMR), with CFI>0.9 and SRMR<0.08 as a good fit. Finally, we assessed the Pearson correlation between the latent change factors and the change in UPPSP impulsivity scores6.

Results: Latent growth curve modeling revealed that while all regions undergo cortical thinning from age 10 to 14 (maximum in cuneus, 1.13%, minimum in entorhinal cortex, 0.13%), surface area show mixed direction of change. Specifically, regions in frontal lobe had surface area expansion (maximum in anterior cingulate, 0.54%), whereas regions in parietal and occipital lobe showed decrease in surface area (maximum in precuneus, 0.6%) (Fig 1). Although EFA suggested a two-factor solution for cortical thickness changes, CFA showed a moderate fit (CFI=0.81, SRMR=0.08). For cortical surface area, four-factor model had a good fit (CFI=0.94, SRMR=0.02). The loadings of the four factors are shown in Fig2. Factor 3, which had high loadings on frontal cortex, showed significant association with UPPSP lack of planning (r = -0.059, p=0.006).

Conclusions: We showed that cortical regions can be grouped together in regard to the trajectory of development during early adolescence. These underlying spatial patterns may be crucial in assessing brain-behavior associations during development.

References
The leading influence of life stressful events on the dynamic reconfiguration of brain networks

Xinnan Wang¹, Ying He²

¹Beijing Normal University, Chengdu, Sichuan, ²Beijing Normal University, Beijing, Beijing

Introduction: The occurrence of stressful events in life will increase the risk of emotional and behavioral problems. Some studies have found that among adolescents, previously experienced stressful life events can accurately predict the emergence of problem behaviors one year later (Kim et al. 2003) and have also been shown to affect behavioral, emotional, social, physical, and cognitive development. Many previous studies have focused on the influence of the occurrence of previous life stressful events on subsequent brain structural features, the occurrence of stressful events, represented by neglect or deprivation (financial or parental care), has also been shown to be associated with changes in activation and functional connectivity of the frontoparietal network and the default network (Chahal et al. 2022).

Methods: Participants: A total of 2774 twins have finished the questionnaires through two time points. A total of 108 pairs of twins completed MRI scans at the third timepoints. Questionnaire: SLE were measured for all participants for stressful life events. CBCL were adopted to measure the externalized behavioral factors and attention deficits of the subjects. fMRI Data: A total of 73 pairs (146 subjects) were used for brain image data analysis. A template containing 1024 uniformly sized gray matter regions was selected, the average time series of each voxel in each region was extracted, and then the dynamic functional connection matrix was calculated using the sliding time window method. The iterative and ordered Louvain algorithm is used by Matlab2016 to modularise the functional connections for each time window.

Results: There are significant differences in visual network, somatic motor network, dorsal attention network, default network, and subcortical network (visual network: t (140) = 3.123, pcorrected = 0.0174; Physical motor network: t (140) = 2.657, pcorrected = 0.0176 ; Dorsal attention network: t (140) = 2.739, pcorrected = 0.0176; Default network: t (140) = 2.303, pcorrected = 0.0364; Subcortical network: t (140) = 2.731, pcorrected = 0.0176). The ventral attention network, limbic system and frontoparietal network also showed a trend of more dynamic activities in the low life stress group. In terms of module variation rate, the low life stress group also showed a trend of more dynamic activities, and the visual network, the somatic motor network and the dorsal attention network showed marginal significance (visual network: pcorrected = 0.0529; Physical motor network: pcorrected = 0.0529; Dorsal attention network: pcorrected = 0.0529). The occurrence of prior disciplinary behavior significantly predicted the MV rate of the brain frontoparietal network and the default network (FPN: t = -2.226, p = 0.0285; DMN: t = -2.160, p = 0.0335), and in the NSR, DMN showed a significant edge (t = -1.793, p = 0.076), and PPN only showed a trend, but not significant (t = -1.130, p = 0.261). Also, the results show that the reduced NSR of the subcortical network is associated with an increased problem of aggressive behavior (t = -2.762, pcorrected = 0.0260), problem of external behavior (t = -2.608, pcorrected = 0.0260), and the overall score of behavior problems (t = -2.36, pcorrected = 0.0328). On the basis of NSR, the increase of externalized behavior problems is also correlated with less MSR (attack behavior: t = -2.010, p = 0.0473; Externalized behavior problems: t = -2.260, p = 0.0263), while the total score of behavior problems showed a negative correlation trend (t = -1.835, p = 0.0699).

Conclusions: We found that the dynamic recombination activity of brain regions, such as the frontoparietal network and the default network, is mainly influenced by environmental factors, and stressful life events may be an important factor. These findings contribute to a better understanding of the factors behind the organizational patterns and changes of brain functional networks and provide a basis for prevention and intervention of abnormal development in children and adolescents.

References
ABSTRACTS

Poster No 1267

Brain-Age Prediction: Systematic Evaluation of Site Effects, and Sample Age Range and Size

Yuetong Yu1, Hao-Qi Cui1, Shalaila Haas2, Fayie New2, Nicole Sanford2, Kevin Yu1, Denghuang Zhan1, Guoyuan Yang2, Jia-hong Gao4, Dongtao Wei5, Jiang Qiu6, Boris Bernhardt5, Paul Thompson2, Sophia Frangou1, Ruiyang Ge5, ENIGMA consortium8

1University of British Columbia, Vancouver, British Columbia, 2Icahn School of Medicine at Mount Sinai, New York, NY, 3Beijing Institute of Technology, Beijing, China, 4Peking University, Beijing, Beijing, 5Southwest University, Chongqing, Chongqing, 6Montreal Neurological Institute and Hospital, Montreal, Quebec, 7USC, Marina Del Rey, CA, 8Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Marina del Rey, CA, CA

Introduction: Structural neuroimaging data have been utilized to estimate the biological age of the brain (brain-age). This metric has shown associations with other biologically and behaviorally significant indicators of brain development and aging. The continuous interest in brain age research underscores the necessity for robust, publicly accessible pre-trained brain age models, constructed using extensive data from healthy individuals. In response to this demand, we previously introduced a developmental brain age model (5-22 years). In this work, we expand upon our prior efforts to create, empirically validate, and share a pre-trained brain age model that spans across a broader spectrum of the human lifespan.

Methods: We examined the impact of site harmonization, age range, and sample size on brain age prediction using a discovery sample comprising 35,683 healthy individuals (53.59% female, age range 5-90 years), a replication sample (N=2101, 55.35% female, age range 8-80 years), and a longitudinal consistency sample (N=377, 49.87% female, age range: 9-25 years). Morphometric features were extracted from FreeSurfer processing, and included Desikan-Killiany atlas measures of cortical thickness (n=68), cortical surface area (n=68), and regional subcortical volumes (n=14) based on the Aseg atlas. Following our previous work1, support vector regression with radial basis function kernel was adopted to train the sex-specific brain-age models. The primary performance measures for all models were the mean absolute error (MAE), and the correlation coefficient (CORR) between brain-age and chronological age. The procedures used to generate optimized sex-specific models are illustrated in Figure 1. For all models, hyper-parameter tuning was performed in the discovery sample using a grid search approach in a 10-fold cross-validation scheme across five repetitions. We evaluated 3 site handling strategies in each of 5 scenarios after partitioning the discovery sample into different age bins as follows: (i) a single bin with the full sample age range (5-90 years); (ii) nine bins each covering sequential 10-year intervals; (iii) four bins each covering sequential 20-year intervals; (iv) three bins each covering sequential 30-year intervals; (v) two age bins each covering sequential 40-year intervals. The following 3 site handling strategies were applied to each bin: (i) data residualization with respect to the scanning site using Combat-GAM2; (ii) data residualization with respect to the scanning site using a generalized linear model3, and (iii) no site harmonization. The approach and age partition with the best-performing MAE and CORR values were considered for further evaluation. To estimate the minimum sample size required for a stable model, the discovery sample was randomly partitioned into 30 sex-specific subsets, ranging from 200 to 6,000 participants in increments of 200, without replacement. The model with the lowest replication MAE and highest replication CORR in the replication sample and in the longitudinal consistency sample was chosen as the preferred model.

Results: (1) The accuracy of age prediction from morphometry data was higher when no site harmonization was applied (Fig 1A); (2) dividing the sample into two age-bins (5-40 and 40-90 years) provided a better balance between model accuracy and explained age variance than any other alternatives (Fig1A, Fig2A), as well as achieved optimal consistency on the longitudinal data (Fig2B); (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1,600 participants (Fig1B). These findings have been incorporated into an open platform for individualized neuroimaging metrics4.

Conclusions: In this work, we present empirically validated models for brain-age that can accommodate studies using data across most of the lifespan. We outline the methodological choices that have led to these models and their performance within and across samples as well as longitudinally.
References
4. https://centilebrain.org/#/brainAge2

Poster No 1268
Normative modeling of thalamic nuclear volumes
Manojkumar Saranathan¹, Taylor Young¹
¹University of Massachusetts Chan Medical School, Worcester, MA

Introduction: The thalamus and its constituent nuclei are implicated in several neurological and neuropsychiatric disorders, but the roles of specific nuclei are still being elucidated as thalamic nuclei segmentation methods have been suboptimal, until
ABSTRACTS

recently. Thalamus optimized multi-atlas segmentation (THOMAS) is a recently developed state-of-the-art method that utilizes the improved contrast of white-matter nullled (WMn) MRI to generate accurate nuclei parcellations. It has been validated against manual segmentation guided by the Morel atlas. Recently, THOMAS has been adapted for standard 3T T1 MRI by synthesizing WMn-MRI data from standard T1 MRI prior to segmentation. Normative modeling is an emerging framework that has proven sensitive in detecting subtle heterogeneity often present in mental disorders, missed by conventional case-control analyses. Using the modified THOMAS method, we analyzed thousands of T1 MRI datasets from publicly available databases and created what we believe to be the first normative model of thalamic nuclear volumes across the lifespan. We then used this normative model to examine data from patients with dementia (early and late mild cognitive impairment, Alzheimer’s disease), ADHD, bipolar disorder, affective and non-affective psychosis, and schizophrenia.

Methods: Volumes of the whole thalamus and 12 nuclei were generated for each side using THOMAS in control subjects (n=2374, 1279 female 1095 male) and disease cohorts (n=694, 301 female 393 male). Site effects were harmonized using COMBAT-GAM and volumes were adjusted by total intracranial volume (FreeSurfer eTIV output). Multiple modeling approaches have been presented for normative modeling. To determine the optimal model for thalamic nuclear volumes, three models- Ordinary least squares regression (OLS), multiple fractional polynomial models (MFP), and generalized additive models of location shape and scale (GAMLSS)- were evaluated with 5-fold cross validation on a subset of 200 subjects. Using maximum absolute error and mean squared error as metrics, MFP models performed the best and were computationally efficient (in concordance with) and was used for creating NMs on the whole dataset. For each nucleus and hemisphere, an MFP-based NM was trained on control subjects in sex-stratified datasets with age as a covariate, resulting in 13*2*2=52 models. These models were then applied to patient data from the disease cohorts. For each control subject and patient, z-scores were calculated from model residuals. Infranormal (z<=-2) and supranormal (z>=2) deviations were tabulated. Multi group comparisons were performed using the Kruskal-Wallis rank sum test and z-score distributions were compared using the z-test.

Results: Figure 1 shows a normative model for left mediodorsal nucleus as a function of age with the different quantiles. Ridge plots of z-score distributions showed shifts in specific nuclei associated with the conditions. For example, significant (Bonferroni p<0.05) shifts in z-score distributions showed a gradual progression from predominantly left anteroventral, mediodorsal, and pulvinar in early MCI to nearly all nuclei bilaterally in AD. Figure 2 summarizes extreme infranormal z-score deviations (<2) as a function of disease diagnosis. Note the progression from EMCI to AD as well as significant deviations in non-affective psychosis and schizophrenia. Supranormal z-score deviations (>2) were all non-significant.

![Graph showing normative model for left mediodorsal nucleus as a function of age.](image1)

![Ridge plots showing shifts in specific nuclei associated with the conditions.](image2)
Conclusions: We have created the first normative models of thalamic nuclear volumes from large cohorts of publicly available MRI data. Preliminary analyses on neurodegenerative and neuropsychiatric disease cohorts show the utility of NM in the elucidating heterogeneity (e.g. in schizophrenia) that is missed by traditional case-control (average volume) studies. Future work will fine tune these models to detect hitherto undetected changes in thalamic nuclear volumes in earlier disease stages to help in drug discovery and mechanistic modeling.

References

Poster No 1269

Functional connectome through the human life span

Lianglong Sun1, Tengda Zhao1, Xinyuan Liang1, Mingrui Xia1, Qiongling Li1, Xuhong Liao2, Gaolang Gong1, Qian Wang1, Chenzuan Pang1, Qian Yu1, Yong He1

1State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China, 2School of Systems Science, Beijing Normal University, Beijing, China

Introduction: The emergence, development, and aging of the intrinsic connectome architecture enables the dynamic reorganization of functional specialization and integration throughout the lifespan, contributing to continuous changes in human cognition and behavior (Zuo et al., 2017). Understanding the spatiotemporal growth process of the typical functional connectome is critical for elucidating network-level developmental principles in healthy individuals and for pinpointing periods of heightened vulnerability or potential. The growth chart framework provides an invaluable tool for charting normative reference curves in the human brain (Bethlehem et al., 2022; Rutherford et al., 2022). However, the normative growth trajectory of the functional brain connectome across the human lifespan remains unknown.

Methods: We employed a comprehensive data quality control framework that combined automated assessment tools and expert manual review to assess both structural and functional images across all 45,525 scans. The final sample included 33,809 scans (N = 32,328) with high-quality images from 119 sites (Fig. 1a). Using the standardized and highly uniform processing pipeline, we obtained the surface-based preprocessed BOLD signals in fsaverage4 space for each individual. We then constructed a vertex-wise functional connectome matrix by calculating the Pearson correlation coefficient between the time courses of each vertex. We examined the individual connectome at the whole-brain, system, and regional levels, harmonizing all measures across sites. Guided by the WHO recommendation (Borghì et al., 2006), we used GAMLSS to elucidate the age-related nonlinear trajectories for healthy populations, with sex and in-scanner head motion as fixed effects. To assess the rate of change and inflection points, we calculated first derivatives of the trajectories. By proposing a Gaussian-weighted iterative age-specific group atlas generation approach, we established a set of continuous growth atlases with accurate system correspondences across the life course.

Results: The lifespan curve of global mean functional connectivity (Fig. 1c) showed a nonlinear increase from 32 postmenstrual weeks onward, peaking at 40.0 years (95% CI 39.4-40.5), followed by a nonlinear decline. The peak of the increased rate of growth occurred at 17.8 years (95% CI 14.8-20.0), while the maximum rate of decline was observed at 57.4 years (95% CI 55.8-59.9). Global variance in whole-brain functional connectivity (Fig. 1d) also showed a nonlinear growth pattern, peaking in adulthood at 34.7 years (95% CI 32.4-37.2), with maximum rates of increase and decline occurring at 32 postmenstrual weeks and 59.0 years (95% CI 57.4-62.9), respectively. Consistent with the developmental pattern of the age-specific atlas (Fig. 2a, 2b), the normative growth trajectories showed that the similarity of the individualized atlas to the reference increased from 32 postmenstrual weeks, peaked at 31.7 years (95% CI 30.7-32.6), remained stable until 54.1 years (95% CI 53.7-54.6), and then continuously declined at an accelerated rate until 80 years of age (Fig. 2c). Whole-brain system segregation across all systems peaked at 24.7 years (95% CI 23.0-26.0) and showed a more pronounced accelerated decline around the sixth decade of life (Fig. 2d). Different networks manifested heterochronous growth patterns (Fig. 2e). Lifespan growth of functional connectivity at the regional level reveals a spatial gradient pattern (Fig. 2f, 2g).
Conclusions: Through systematic analysis at the whole-brain, system, and regional levels, we charted the multiscale, nonlinear trajectories of functional connectome and revealed previously unidentified key growth milestones. We created the lifespan age-specific atlases, serving as a foundational resource for future research on brain network development and aging.
ABSTRACTS

References

Poster No 1270

An Optimised Surface Projection Pipeline for Enhanced Analysis of Fetal Brain Connectivity

Pablo Prieto Roca¹, Logan Williams¹², Sean Fitzgibbon³, Vanessa Kyriakopoulou², Alice Davidson², Alena Uus¹², Antonis Makropoulos¹, Andreas Schuh⁴, Lucilio Cordero-Grande⁵, Emer Hughes², Anthony Price², Eugene Duff⁶, Tomoki Arichi²⁷, A. Edwards²⁷, Daniel Rueckert¹⁰, Stephen Smith³, Joseph Hajnal³, Emma Robinson¹², Vyacheslav Karolis²
¹Biomedical Engineering Department, King’s College London, London, United Kingdom, ²Centre for the Developing Brain, King’s College London, London, United Kingdom, ³Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford, Oxfordshire, United Kingdom, ⁴Department of Computing, Imperial College London, London, United Kingdom, ⁵Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain, ⁶UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, London, United Kingdom, ⁷MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom, ⁸Paediatric Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom, ⁹Neonatal Intensive Care Unit, Evelina London Children’s Hospital, London, United Kingdom, ¹⁰Klinikum rechts der Isar, Technical University of Munich, Munich, Bavaria, Germany

Introduction: The human fetal period is a key time for the formation of the functional brain connectome¹². Detailed exploration of this process is now possible with the availability of the open-access dataset from the Developing Human Connectome Project (dHCP) and advancements in fMRI in-utero methodology³. However, studying this is particularly challenging, partly due to the rapidly changing shape of the fetal brain, which complicates the alignment of cortical areas across subjects and different ages. In this context, surface-based methods markedly improve the accuracy of co-localizing cortical areas compared to volume-based methods⁴. Here we describe an optimized pipeline for projecting fetal volumetric functional data onto surfaces, enabling robust population-level inference.

Methods: Resting-state in-utero dHCP fMRI data from 164 healthy developing fetuses (87 males and 77 females, age range of 24.5-38.5 gestational weeks) were acquired using a 3T Philips Achieva system, and underwent dynamic geometric and slice-to-volume motion corrections, and temporal denoising¹. A recently developed spatiotemporal surface fetal brain atlas⁵, which encompasses individual templates for each gestational week, ranging from 21 to 36 weeks, was used as a template space. Our projection pipeline, illustrated in Figure 1, represents a modified version of the HCP pipeline for volume-to-surface mapping and incorporates tools from the Connectome Workbench software and FSL⁶. The process involves 5 steps: (1) the structural surface is mapped into native functional space; (2) individual functional data features are then mapped onto the surface through a ribbon-constrained volume-to-surface mapping process; (3) Surface matching between the individual surface and the 36th week of the spatio-temporal fetal surface template⁵ was then calculated using Multimodal Surface Matching (MSM)⁶ in two stages. First, (3.1) individual surfaces were mapped to the “nearest” template (from the closest gestational age); then (3.2) template-to-template registration was performed between consecutive weekly templates (e.g. from 25 to 26 weeks, and 26 to 27 weeks etc); finally (3), these mappings were concatenated together in order to map all individuals to the 36 week template in which the group-level analysis was done, the latter serves two primary purposes: 1) It allows a gradual transition between spaces, through expected cortical development patterns. This aspect is particularly emphasised by the kernel-weighted averaging across subjects utilised for the template construction⁶; 2) It enables the transition from any specific week’s template to a desired group-level template in a single interpolation step, simplifying the workflow and enhancing efficiency. To demonstrate the utility of our pipeline, we performed a group-level ICA with 25-dimensional factorization using FSL MELODIC⁰.
Results: Figure 2 presents the outcomes of the Group-ICA with our pipeline, the first-ever performed on the fetal cortical surface. ICA components were excluded if upon visual inspection they were likely to be related to noise which was non-neural in origin. Although derived single components lack distributed network properties, several pairs of maps showed a distinctive interhemispheric symmetry, suggesting a coordinated emergence of activity across hemispheres.
Conclusions: Our study’s projection pipeline contributes to the field of fetal brain imaging by the mapping of volumetric functional data onto the cortical surface for subsequent application of a surface-based registration to template framework. This method has the potential of improving the analysis of in utero brain activity, offering insights into functional connectivity during the critically important fetal period. Such insights could be valuable for prenatal health and developmental neuroscience research, although further studies are required to fully understand their implications.

References

Poster No 1271

Functional Connectivity Changes of the Paternal Brain: A Longitudinal Study

Negin Daneshnia, Natalia Chechko, Susanne Nehls

1RWTH University Hospital Aachen, Aachen, Germany

Introduction: During the last two decades a global shift in fatherhood has been observed, including factors such as paid paternal leave and increased involvement in child-care (McGill, 2014). Along with that, a growing scientific interest in the neurobiological underpinnings of fatherhood can be noted. While our preliminary findings hint at paternal brain neuroplasticity, with dynamic structural changes during the first 12 weeks postpartum, others hint at paternal-specific networks involved in aspects such as infant cry perception (Witteman et al., 2019). Nonetheless, findings are sparse and inconsistent. Based on that, the present longitudinal study investigated functional connectivity in the paternal brain during a 6-month postpartum period.

Methods: We examined paternal (N=23) brain function within the first week of childbirth, as well as after 3, 6, 9, 12 and 24 weeks postpartum. The subjects (mean age = 32.46, SD= 7.85) were healthy and the biological fathers of healthy infants who had been born at the University Hospital Aachen. Resting state fMRI images were obtained during every of the six sessions and data was analyzed using the CONN toolbox (Nieto-Castanon, 2020). Seed-based connectivity (SBC) and whole-brain ROI-to-ROI analysis were conducted to examine functional connectivity (FC) changes over the period of 24 weeks postpartum. For the SBC analysis, connectivity strength (z) across a-priori-defined regions of the default mode network (DMN) (the MPFC, the PCC, the left and right lateral parietal cortices) was calculated. Statistical thresholds were set for both analyses, with cluster threshold p < .05 (FDR corrected); voxel threshold p < .001 (p-uncorrected), and connection threshold p < .05 (p-uncorrected); cluster threshold p < .05 (p-uncorrected) for the SBC and ROI-to-ROI analysis respectively.

Results: SBC analysis displayed significant connectivity patterns between the DMN to other brain areas throughout the postpartum period. More specifically, enhanced connectivity was observed as soon as 3 weeks postpartum, persisting through week 6. These associations encompassed regions in the bilateral cerebellum and frontal lobules, as well as the right thalamus and the middle and superior temporal gyrus. Notably, connectivity changes appeared to fade in weeks 9 and 12 postpartum, with FC observed only in the left postcentral gyrus. In contrast, at 24 weeks postpartum, connectivity associations were revealed in bilateral temporal areas, particularly in Heschl’s and temporal gyr, as well as in the left cerebellum, the angular gyrus, the insula and right thalamus. Additional whole-brain ROI-to-ROI analysis was conducted, comparing 1 week to 24 weeks postpartum, to identify possible connections outside the DMN. The cluster of FCs included, inter alia, parts of the
Variations of the Corpus Callosum in Congenital Adrenal Hyperplasia (CAH)
Eileen Luders¹, Debra Spencer², Caitlin Dale¹, Melissa Hines², Florian Kurth¹

¹University of Auckland, Auckland, New Zealand, ²University of Cambridge, Cambridge, United Kingdom

Introduction: Congenital adrenal hyperplasia (CAH) is a genetic variant that causes high levels of androgens during gestation in females, whereas levels in males are largely normal. Only little is known about the brain in CAH, and no study has specifically focused on the corpus callosum.

Methods: Here we compared callosal area measures between 53 individuals with CAH and 53 control participants, who were pair-wise matched with respect to sex (33 women/20 men) and age (mean±SD: 30.2±7.8 years). The corpus callosum was manually outlined on T1-weighted brain images, obtained on a 3 Tesla scanner, and divided into seven sections according to the Witelson scheme (i.e., rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus, and splenium). The midsagittal callosal areas were compared using a two-way ANOVA, while co-varying for age and total brain volume.

Results: Neither the main effect of biological sex (women vs. men) nor the group-by-sex interaction was significant. In contrast, there was a significant main effect of group (CAH vs. controls) for some callosal areas. More specifically, women/men with CAH had significantly smaller callosal areas than control women/men within the isthmus (p=0.0024) and splenium (p=0.0048), both effects surviving Bonferroni corrections for multiple comparisons. In addition, there was a trend for a smaller posterior midbody in women/men with CAH compared to control women/men (p=0.0586).

Conclusions: Given the lack of significant group-by-sex interactions (CAH-related effects were present in both sexes) it is likely that callosal abnormalities do not manifest as effects of prenatal androgens (otherwise effects would be restricted to women). Instead, they may reflect aspects of the disease and/or effects of treatment as both women and men with CAH receive supplements of glucocorticoids. The latter seems especially noteworthy because glucocorticoids are applied in a wide range of medical conditions, and possible adverse effects on the human brain may not be restricted to CAH.

Protective Role of Parenthood on Age-Related Brain Function
Edwina Orchard¹, Sidhant Chopra¹, Leon Ooi², Pansheng Chen³, Lijun An³, Sharna Jamadar¹, B. T. Thomas Yeo², Helena Rutherford¹, Avram Holmes⁵

¹Yale University, New Haven, CT, ²National University of Singapore, Singapore, Singapore, ³National University of Singapore, Queenstown, Queenstown, ⁴Monash University, Melbourne, NA, ⁵Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ

ABSTRACTS
Introduction: Parenthood is a largely ubiquitous experience, yet little is known about how the extreme environmental and biological changes of parenting impact humans across their lifespan. Emerging research in humans and non-human animals suggests parenting may confer long-term benefits to cognition and brain structure, however the effect on brain function remains unknown.

Methods: Here, we investigate the effect of number of children parented (parity), and age on brain function using a large population-based adult sample of females (N=19,964) and males (N=17,607) from the UK Biobank. For each participant, we mapped brain-wide inter-regional functional connectivity between 419 brain regions. To characterize the effect of parity and age on brain function, we examined the Spearman correlation with functional connectivity at each edge, using the Network Based Statistic (NBS) for inference at the level of connected-components of edges showing a common effect.

Results: In both sexes, we observed widespread increases in functional connectivity associated with increased parity (pFWE<.001; Fig1A-B), largely concentrated within the somato/motor network, and between the default network and the rest of the brain. While these effects could indicate neural changes resulting from the early stages of parenthood that stabilize and endure throughout the lifespan, it also could indicate networks and regions that are impacted at later stages. As we show an association between number of children parented (parity) and brain function, this suggests a cumulative impact of parenthood on brain function, such that having additional children continues to alter brain function in a dose-dependent manner. We find widespread functional connectivity decreases associated with age (pFWE<.001; Fig1D-E), largely within the somato/motor networks, and increases between subcortical and association networks and the rest of the brain. This pattern of dysconnectivity has been described in studies characterizing normative ageing trajectories, where the dysconnectivity of the somatomotor network is among the first age-related functional brain changes, consistent with our mid-life sample. Both the effect of parity (r=.67; p<.001; Fig1C) and age (r=.90;p<0.001; Fig1F) on functional connectivity were consistent between females and males. Critically, we find that the effects of parity on functional connectivity were negatively correlated with the effects of age on functional connectivity for females (r=-.41; p<.001; Fig1G), and males (r=-.56; p<.001; Fig1H), suggesting that an increasing number of children is associated with patterns of brain function that are in the opposite direction to age-related brain changes in both sexes.

Conclusions: Overall, our results align with prior work in humans and animals to suggest that parity may be protective against age-related brain changes, with the biological and environmental changes accompanying parenthood conferring benefits to brain health across the lifespan. As these relationships exist consistently for both males and females, they implicate the parental environment. This could include direct parenting mechanisms which alter the brain via behavioral actions of caregiving. If so, this could imply that these effects may also exist for other types of caregiving experience, with a potential impact for non-gestational parents of all genders, as well as for any other person with a strong relationship with or responsibility for children, including grandparents, and childcare workers.

References
1. Orchard, Chopra et al., 2024, in Preparation
Poster No 1274

Human brain normative modeling by brain eigenmodes

Sina Mansour L.¹, B. T. Thomas Yeo², Maria Di Biase³, Andrew Zalesky⁴

¹National University of Singapore, Singapore, NA, ²National University of Singapore, Singapore, Singapore, ³The University of Melbourne, Parkville, Victoria, ⁴The University of Melbourne, Melbourne, Victoria

Introduction: Normative models (NMs) construct reference charts for population-wide distributions of a biological phenotype¹. Analogous to growth charts in medicine, assessing a child’s height relative to their age and sex, normative brain charting is a framework for modeling variations in structural brain phenotypes, such as cortical thickness. Previous research has demonstrated NM’s efficacy in accurately capturing the heterogeneity of normative deviations in brain structure². Normative charting of brain MRI data holds the potential to yield insightful spatial estimates of variations in cortical phenotypes³. Nevertheless, methodological limitations have thus far impeded the development of NMs with high spatial precision. Recent advances have increased the spatial resolution of NMs to predefined brain atlases⁴. Despite these notable efforts, existing approaches fall short of achieving spatially detailed norms comparable to the original resolution of MRI data. The establishment of a normative framework to detect subtle spatial nuances remains an unfulfilled aspiration for precision psychiatry.

Methods: To establish and evaluate our normative reference models, we combined data from three distinct Human Connectome Project (HCP) cohorts to cover the human lifespan (HCP Development⁵, Young Adult⁶, and Aging⁷), comprising 2,473 individuals (54.7% female) aged 5 to 100. Cortical thickness was extracted for each scan using HCP’s minimal preprocessing pipeline⁸. Computing high-resolution NMs is challenging due to the high dimensionality of the feature space. Appropriate low-dimensional encoding of cortical phenotypes could hence enable the development of computationally tractable high-resolution normative references. To this end, we utilized brain eigenmodes⁹ as basis functions for information reconstruction (Fig. 1a,b). We constructed a sparse, high-resolution connectome and used graph signal processing techniques to generate connectome eigenmodes via singular value decomposition of a random-walk Laplacian shift operator. These eigenmodes were utilized as a basis for normative reconstruction by graph signal filtering¹⁰. Specifically, 2,000 brain eigenmodes encoded the high-resolution thickness information in the graph frequency domain. Thickness loading on each eigenmode formed a distinct spectral phenotype of the cohort. Distinct hierarchical Bayesian regression NMs were trained to model spectral phenotypes as a function of age and sex while accounting for scanner/site effects. This facilitated the generalization of pre-trained reference NMs to unseen spatial normative queries (Fig. 1c,d).

ABSTRACTS

30TH ANNUAL MEETING OF THE ORGANIZATION FOR HUMAN BRAIN MAPPING • SEOUL • 2015
Results: After training spectral NMs, we conducted a comprehensive evaluation of their ability to infer norms in comparison to a direct model. Posterior predictive distributions of spectral NMs were used to reconstruct normative ranges for alternative families of spatial queries. Notably, global spatial queries (e.g., mean thickness), regional spatial queries (e.g., thickness of a functional network), and high-resolution queries focused on specific cortical vertices were tested to evaluate goodness of fit (Fig. 4). Our findings indicate that spectral NMs are capable of generating effective normative ranges at various spatial resolutions.

Conclusions: We present a novel approach to extract versatile normative ranges from a set of pre-trained NMs constructed from brain eigenmodes. Our findings underscore the effectiveness of spectral NMs in generating accurate normative ranges. This obviates the necessity for the computationally intensive task of fitting new reference models for distinct spatial queries. This can inform clinical studies investigating normative trajectories of healthy brain development and aging, all without the need for direct access to or extensive processing of large imaging datasets.

References
Unraveling lifespan signatures: Time-series phenotyping and age prediction using MEG

Christina Stier\(^1\), Elio Balestrieri\(^1\), Jana Fehring\(^1\), Andreas Wollbrink\(^1\), Niels Focke\(^3\), Joachim Gross\(^1\,\(^2\)

\(^1\)Institute for Biomagnetism and Biosignal Analysis, University of Muenster, Muenster, Germany, \(^2\)Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany, \(^3\)Clinic of Neurology, University Medical Center, Goettingen, Goettingen, Germany

Introduction: Understanding the developing and aging brain is critical for predicting and assessing individual health risks. While the effects of age on the structural architecture of the brain have been studied previously for a wide age range (Bethlehem et al., 2022), similar efforts for neurophysiological dynamics have been sparse. In particular, it remains unclear which functional metrics predict individual age and can be used to estimate deviations from the normative lifespan.

Methods: We extensively characterized 5 min of MEG resting-state signals derived from the Cambridge Center for Ageing and Neuroscience (CamCAN, Taylor et al., 2017) using 5988 features and whole-brain anatomical parcellation. We extracted features from the highly comparative time-series analysis toolbox (hctsa, Fulcher et al., 2017) and conventional features encompassing frequency-specific power, amplitude- and phase-based connectivity, the 1/f exponent (slope), and alpha peak frequency (instantaneous alpha peak frequency, center of gravity). Each feature was used to predict the individual age of participants (n = 350, 18-88 years) using partial least squares regression (PLS, 5 components) and 10-fold cross-validation (15 repetitions). The model performance was evaluated with the correlation between the true and predicted age (Pearson’s r) and the mean absolute error (MAE), and potential confounding bias by sex and estimated intracranial volume (eTIV) tested (Spisak, 2022). To elaborate on the regional information of well-performing features, we applied k-means clustering on transformed PLS regression weights (Haufe et al., 2014).

Results: Conventional features showed a prediction accuracy between \(r = 0.17\) (MAE = 17.1) and \(r = 0.65\) (MAE = 11.99), with the lowest performances of amplitude- and phase-coupling measures and best performances of measures depicting alpha peak frequencies (Figure 1). 107 features extracted from the hctsa toolbox outperformed conventional ones (\(r > 0.7\)), with the highest accuracies for the autocorrelation function at a time delay of 36 ms (lag 11; \(r = 0.75\), MAE = 10.38, Figure 2). The prediction analyses for each feature were not confounded by sex or eTIV (pFDR > 0.05). Clustering of the PLS weights for high-performing features (\(r > 0.73\)) showed that signal changes in the visual cortex, frontal-parietal areas, and central-temporal areas were most indicative of age.
Conclusions: We provide an overview of the predictive value of neurophysiological metrics commonly studied to describe the healthy or diseased brain and a comprehensive set of time-series features in the context of development and aging. The profiling of regional MEG signals revealed lifespan patterns that can be captured by simple linear time-series measures, which were more accurate than the conventional spectral features. While further investigations on the relationship between informative features are needed to shed light on aging mechanisms, they all point to profound functional alterations in the visual, central-temporal, and frontal-parietal brain regions during adulthood.

References

Poster No 1276

White matter brain charts: modelling diffusion imaging data across the lifespan

Ramona Cirstian1, Natalie Forde2, Christian Beckmann3, Andre Marquand4

1Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Gelderland, 2Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, NL, Nijmegeb, Netherlands, 3Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Gelderland, 4Radboud University Nijmegen, Nijmegen, Gelderland

Introduction: Diffusion MRI (dMRI) is a neuroimaging modality used to evaluate brain structure at a microscopic level and can be exploited to map the direction of the white matter fibers in the brain. In this study, we curated a reference cohort comprising high-quality multi-shell diffusion neuroimaging data from 10 sites across 5 different studies (N=25104; ages 2–100) and using normative modeling, we delineated lifespan trajectories of fractional anisotropy and mean diffusivity for 50 white matter tracts based on the JHU white matter tract atlas. Normative modelling is an innovative method used to model biological and behavioral variation across a study population and can be used to make statistical inferences at an individual level1. This is achieved by mapping a response variable (e.g., neuroimaging derived phenotypes) to a covariate (e.g., age) in a similar way growth charts are used in pediatric medicine to map the height or weight of children to their age. Establishing reference models to capture population variations and examining individual deviations is important for comprehending inter-individual variability and its connection to the onset and advancement of medical conditions2.

Methods: We compiled data from four large open-source datasets for this analysis: UK Biobank (N = 22654, age 46-82), HCP Young Adult (N = 1065, age 22-37), HCP Development (N = 454, age 8-21), HCP Aging (N = 239, 35-100) and Developing HCP (age 2-3). The data were pre-processed using the HCP pipeline with the exception of the UK Biobank which was obtained
already pre-processed\(^3\). The data were later processed using DTIfit and TBSS to obtain the FA and MD means for each tract using the JHU atlas. A normative model was trained with the training set (n=16736) to estimate the normal range of each IDPs value according to age. To account for the possible non-linear effects and non-Gaussian distributions within the dataset, we used a warped Bayesian linear regression (BLR) model\(^4\). We used fixed effects to model the effect of site as demonstrated in our previous publications\(^5\). Next, the test set was used to estimate each subjects` deviation from the normal range of each IDP by computing the individual z-score (equation 2). The fit statistics of the model were computed including explained variance, skew, and kurtosis. The deviation for each subject was visualized by plotting the individual z-scores across the mean and centiles of variation predicted by the model.

Results: The initial concatenation of the five datasets showed severe site effects caused by discrepancies between scanner parameters, resulting in data scaling. These effects are visualized in Figure 1 and 2 on the left side of each panel. Figure 1A displays the scatterplot of average FA values within the body of the corpus callosum obtained from the skeletonized data. Each dataset is color-coded to emphasize the discrepancy in data distribution and scaling. The same principle applies to Figure 1C, which represents the average FA values within the uncinate fasciculus right (on the skeleton). In contrast, on the right-hand side in Figure 1C and 1D, the datapoints represent the z-scores obtained from applying the BLR normative modeling, which predicts the centiles of variation across the entire lifespan. This approach accounts for the non-Gaussianity of the dataset while adjusting and rescaling the datapoints to correct for site effects. The same principles are applied to Figure 2, where the MD values for the same two tracts are represented.
Conclusions: In this study, we developed normative brain charts for fractional anisotropy (FA) and mean diffusivity (MD) using a diverse lifespan dataset. Our models, adaptable to non-Gaussian distributions, accommodate new sites and prioritize individual variations, moving beyond group-level inferences for personalized insights.

References

Poster No 1277

Neural correlates of device-based sleep characteristics in adolescents

Qing Ma†, Wei Cheng†

†Fudan University, Shanghai

Introduction: Adolescence is marked by significant transformations in sleep patterns, including shortened sleep duration, delayed sleep time and shifted circadian rhythm². These predictable changes often coincide with ongoing development of key cognitive and regulatory neural systems that is essential for cognitive development preparing for adult life³. Therefore, investigating the relevance between sleep characteristics and the underlying brain development that facilitates cognitive development becomes particularly significant.

Methods: 3300 adolescents aged 11-12 years old (the 2-year follow-up data) from Adolescent Brain Cognitive Development (ABCD 5.0) study, integrating extensive device-based sleep characteristics and multimodal imaging data. The replication sample consisted of 1,271 adolescents aged 13-14 years old (the 4-year follow-up data). Sleep characteristics were objectively collected through wristband records using Fitbit. An average of 18 sleep indicators were collected daily over the three-weeks period. For brain imaging, we collected 85 regional volumes, including 68 cortical and 17 subcortical areas, respectively. Resting state functional connectivity among 12 networks and subcortical regions were also involved. Specific functional networks are auditory, cingulo-opercular, cingulo-parietal, default-mode, dorsal-attention, fronto-parietal, retrosplenial-temporal, salience, sensorimotor-hand, sensorimotor-mouth, ventral-attention, and visual networks. Cognitive performance was measured using NIH Toolbox. Here, we first applied sparse canonical correlation (sCCA) analysis to obtain the relationship between dimensional sleep and brain structure and function. Subsequently, significant canonical variates derived from brain imaging data were used to cluster adolescents into distinct biotypes. Then, we used one-way analysis of covariance (ANCOVA) to identify sleep characteristics, cognitive performance, academic attainment, and brain imaging measures that differed between relatively homogeneous biotypes.

Results: 1. Two sleep-brain dimensions. We revealed two sleep-brain dimensions: one characterized by later being asleep and shorter duration, linked to decreased subcortical-cortical network functional connectivities; the other showed higher heart rate and shorter light sleep duration, associated with lower brain volumes and decreased functional connectivities. 2. Three adolescent biotypes based on dimension of brain measures. Hierarchical clustering based on brain dimension associated with sleep characteristics revealed three biotypes of adolescents, marked by unique sleep profiles: biotype 1 exhibited delayed and shorter sleep, coupled with higher heart rate during sleep; biotype 3 with earlier and longer sleep, accompanied by lower heart rate; and biotype 2 with intermediate pattern. 3. Biotype-specific cognitive performance, academic attainment, and brain measures. Results showed that the three biotypes differed significantly in the cognitive performances (FDR correction at P < 0.05), including crystallized intelligence (F = 22.21, P < 0.001), picture vocabulary (F = 20.04, P < 0.001), and oral reading recognition (F = 13.35, P < 0.001). 4. Longitudinal analyses revealed that all three biotypes exhibited progressive improvements in cognitive ability, specifically in crystallized intelligence, picture vocabulary, and oral reading recognition, over the four-year span.

Conclusions: Collectively, our novel findings delineate a linkage between objective sleep characteristics and developing brain in adolescents, underscoring their significance in cognitive development and academic attainment, which could serve
as references for individuals with sleep difficulties and offer insights for optimizing sleep routines to enhance better cognitive development and school achievement.

References
Elevated ALFF in Early Developing Brain Systems from Birth to Three Years

Ashley Nielsen1, Alyssa Labonte2, Max Herzberg1, Deanna Barch3, Joan Luby2, Cynthia Rogers2, Chad Sylvester2, Christopher Smyser2

1Washington University in St. Louis, Saint Louis, MO, 2Washington University in St. Louis, St. Louis, MO, 3Washington University, Saint Louis, MO

Introduction: The blood oxygen level dependent (BOLD) signal measured with functional magnetic resonance imaging (fMRI) indirectly reflects the synaptic activity of neural populations. Early in development, the maturation of inhibitory interneurons refines the synaptic activity of neural populations, shifting from synchronous, high amplitude activity to sparse, suppressed activity and marks the closing of sensitive periods. Thus, the amplitude of the low-frequency fluctuations (ALFF) in the BOLD signal has been proposed as a putative indicator of cortical maturity and neuroplasticity, illuminating changes in the balance of excitation and inhibition. Developmental patterns of ALFF during childhood and adolescence differ across the brain (Sydnor et al. 2023). In sensorimotor areas that develop early, ALFF decreases in childhood, while, in association areas that develop late, ALFF increases across adolescence and then decreases into adulthood. How ALFF emerges beginning at birth when neuroplasticity and developmental change are greatest has yet to be characterized. Here, we aimed to chart the developmental trajectory of ALFF during the first three years of life to potentially uncover how developmental neuroplasticity differs across the brain in humans.

Methods: fMRI was acquired during natural sleep at birth (n=261), age 2 years (n=98), and age 3 years (n=80) as part of the Early Life Adversity and Biological Embedding Study. Functional data were mapped to individual surfaces. ALFF, the amplitude of low-frequency (0.01-0.08 Hz) fluctuations, was derived using the Fast Fourier transform for each vertex in the cortical surface and each voxel in the subcortex and cerebellum. Longitudinal change in ALFF from birth to age 2 years (n=75) and from age 2 years to age 3 years (n=39) was determined. We also examined how sub-millimeter head motion in the scanner impacts estimates of ALFF to avoid inflating or obfuscating true developmental change. Head motion was quantified as mean frame-wise displacement (meanFD) and de-noising strategies were applied to evaluate the relationship between head motion and ALFF.

Results: Across all three timepoints (Figure 1 A-C), ALFF was highest in sensorimotor areas (somatosensory, visual, auditory) and the subcortex (thalamus, amygdala, hippocampus). The change in ALFF between birth and age 2 years was four times greater than between age 2 years and 3 years. ALFF increased the most in somatosensory and visual areas as well as parts of the thalamus and putamen (Figure 1 D-E). ALFF remained low in the majority of frontal cortex from birth to age 3 years. ALFF varied with head motion (meanFD) such that greater head motion was associated with greater ALFF, but the effect was reduced by applying de-noising strategies.
Conclusions: ALFF has been proposed as a marker of neuroplasticity and maturation. These findings demonstrate that, during the first three years of life, ALFF is highest in brain regions known to undergo the earliest maturation. The greatest change in ALFF occurred between birth and age 2 years, potentially indicating the opening of sensitive periods and/or the rapid developmental change occurring during this period. Later developing brain areas, like frontal cortex, did not exhibit increases in ALFF, consistent with the notion that the greatest developmental change in the balance of excitation and inhibition has not yet occurred for this region. During this developmental window decreases in ALFF were not observed (except for the cerebellum), potentially indicating that early developing sensorimotor systems are still sensitive to environmental exposures and have not yet completed maturation. Charting how ALFF varies across the brain during early development as a potential guide to when plasticity is greatest could greatly facilitate efforts to promote healthier brain development and prevent adverse exposures during sensitive developmental windows.

References

Poster No 1279

Development of Infant Brain Structure-function Coupling Indicates Spatiotemporal Disassociation

Rui Zhou, Lingbin Bian, Jiawei Huang, Feihong Liu, Yajuan Zhang, Tianli Tao, Mianxin Liu, Zhuoyang Gu, Xinyi Cai, Lianghu Guo, Feiyu Quan, Yan Liang, Dinggang Shen, Han Zhang

1School of Biomedical Engineering, ShanghaiTech University, Shanghai, China, 2School of Information Science and Technology, Northwest University, Xi’an, China, 3Department of Research and Development, United Imaging Intelligence Co., Ltd., Shanghai, China, 4Shanghai Clinical Research and Trial Center, Shanghai, China

Introduction: The infant brain rapidly matures after birth with distinct brain regions interconnecting for unique functions at different developmental stages, underpinning different behavioral milestones (Tierney 2009). A critical knowledge gap is how the interweaved relation between brain structure and function evolves during early development and whether such relation can predict later outcomes. Most previous studies focused on the youths or adults, holding divergent views on how such a relationship is built in infancy (Suárez 2020). We systematically studied infant brain structure-function coupling, including its spatial and longitudinal patterns, hemispheric lateralization, and the association with developmental scores such as fine motor skills. Our findings provide insights into how the infant brain’s wiring influences brain functioning and behavior.

Methods: We utilized resting-state fMRI and diffusion MRI data from the Baby Connectome Project (Howell 2019), comprising 318 scans with 180 subjects within the 0-36 month age range. Our data preprocessing involved motion correction, distortion correction, functional-anatomical registration, one-time resampling, and a deep learning-based denoising for fMRI, as well as denoising, distortion/eddy-current correction, ODF fitting, and probabilistic fiber tracking for diffusion MRI. We used Schaefer’s (Schaefer 2018) and Yeo’s (Yeo 2011) atlases to parcellate the brain into 400 ROIs and 7 subnetworks for connectivity analysis. Structure-function coupling was determined through Spearman correlations of both nodal and global connectivity profiles, generating ROI-level and brain-level measures. Hemispheric asymmetry in structure-function coupling was assessed. Longitudinal changes in the coupling were depicted using a linear mixed-effect model. The relationship between the coupling and the developmental outcomes measured by the Mullen Scale was examined (Mullen 1995).

Results: Fig. 1A shows the spatial distribution of ROI-wise structure-function coupling in the brain averaged across 0-36 months of age. The primary areas exhibit higher coupling, indicating efficient sensory information processing due to their maturing priorities. Conversely, lower coupling at the high-order cortices suggests immature high-level cognitive functions during early infancy (Molloy 2022). Fig. 1B depicts a logarithmic longitudinal changing pattern of the global structure-function coupling, with a faster change after birth which is slowing down later. Fig. 1C displays the logarithmic slopes of ROI-wise structure-function coupling changes. The primary areas again show steeper decreases compared to the high-order areas. Only bilateral inferior prefrontal cortices and the temporal pole exhibit slightly increasing yet statistically insignificant coupling. This may indicate that the primary cortices develop faster with quicker indirect connection being formatted while functioning of the high-order cortices was still largely defined by their prototypic hard wiring (Dehaene-Lambertz 2015). Fig. 2A reveals hemisphere disparities in the subnetwork-level structure-function coupling trajectories. The ventral attention network consistently exhibits a higher rightward coupling toward the right hemisphere, while the default mode network (DMN) shows a consistent leftward lateralization (Fig. 2B), suggesting their functional specialization (Baum 2020). We found significant associations between the coupling of the right DMN/left frontoparietal control network (FPC) and fine motor skills (Fig. 2C&D), indicating that the structure-function coupling can predict developmental outcomes.
Conclusions: We present infant brain structure-function coupling and their developmental trajectories for the first time, describing how the white matter structure is related with neuron activity in different regions and indicating rapidly developing functional specialization in early infancy and their neurodevelopmental significance.

References

Acknowledgements
This work utilizes data acquired with support by an NIH grant (1U01MH110274) and the efforts of the UNC/UMN Baby Connectome Project (BCP) Consortium. This work is partially supported by The National Key Technology R&D Program (No. 2022ZD0209000), Shanghai Pilot Program for Basic Research - Chinese Academy of Science, Shanghai Branch (No. JCYJ-SHYF-2022-014), Open Research Fund Program of National Innovation Center for Advanced Medical Devices (No. NMED2021ZD-01-001), Shenzhen Science and Technology Program (No. KCXFZ20211020163408012), and Shanghai Pujiang Program (No.21PJ1421400).
Using Infant fMRI to Study the Developing Social Brain in the First Year of Life

Sohye Kim1, Hannah Spear1, Satrajit Ghosh2,3, Rahul Brito2,3, Tiffany Moore Simas1, Nancy Byatt1, Stephen Nicholas1,4, Lawrence Rhein1, Sarabeth Broder-Fingert1, David Kennedy1, Jean Frazier1

1University of Massachusetts Chan Medical School, Worcester, MA, 2Massachusetts Institute of Technology, Cambridge, MA, 3Harvard University, Cambridge, MA, 4William James College, Newton, MA

Introduction: The fundamental architecture of the social brain is developed in infancy, and early deficits in social development are difficult to compensate for later in life (Ma, 2015). However, current techniques limit our ability to assess early differences and deficits in the infant’s social brain. This has limited our fundamental knowledge of the developing social brain in human infants and has delayed the development of new diagnostics and therapeutics targeting these crucial earliest years. The goal of the present study was to demonstrate the feasibility of using a novel fMRI paradigm to measure infants’ developing social responsiveness to the first social partner—the mother—at 6 months of age.

Methods: Our novel fMRI paradigm uses an established MRI protocol to scan infants during natural sleep and relies on the infant’s fully developed auditory responsiveness present by 6 months and well preserved under sleep (Blasi, 2011; Wild, 2017). Twenty-four (15 males) typically developing 6-month-old infants underwent scanning during natural sleep, listening to maternal voice, unfamiliar female voice, and speech-shaped noise. Unfamiliar voices were distinct from maternal voice on 512 features extracted by the Pyannote machine learning model (Bredin, 2020; Coria, 2020). Speech-shaped noise consisted of white noise edited to match maternal voice on frequency and loudness. FMRI data was processed using FEAT (FMRI Expert Analysis Tool) version 6.00, part of FSL. A total of 54 runs from 18 infants (11 males) passed quality assurance, showing distinct auditory activation and no excessive movement, and were included in the analysis. Voxel-wise whole-brain analyses examined the infant’s fMRI response to: (a) human (maternal and unfamiliar) voice compared to speech-shaped noise, and (b) maternal voice compared to unfamiliar voice, adjusting for infant sex, infant age (in weeks), and maternal age. Z-statistic images were thresholded using clusters determined by Z > 3.1 and a corrected cluster threshold of p = .05. Correlational analysis examined Pearson’s r between the infant’s fMRI responses to the maternal > unfamiliar voice contrast and concurrent behavioral measures of maternal anxiety (State-Trait Anxiety Inventory; Spielberger, 1989), maternal stress (Perceived Stress Scale; Cohen, 1983), maternal depression (Edinburgh Postnatal Depression Scale; Cox, 1987), and infant negative emotionality (Infant Behavior Questionnaire-Revised, Very Short Form; Putnam, 2014).

Results: Compared to speech-shaped noise, human voice elicited increased activations in multiple cortical regions of the infant’s social brain (Figure 1A), including the superior temporal gyrus, temporoparietal junction, and medial prefrontal cortex. Compared to unfamiliar voice, maternal voice elicited increased activations in all aforementioned cortical regions, and additionally in key dopamine- and oxytocin-rich subcortical regions (Figure 1B), including the striatum, amygdala, and ventral diencephalon (encompassing the hypothalamus, ventral tegmental area, and substantia nigra). Compared to maternal voice, unfamiliar voice did not elicit any additional activations. Maternal anxiety, stress, depression, and infant negative emotionality negatively correlated with the infant’s preferential brain responses to maternal voice in key social brain regions (Figure 2).

Conclusions: Six-month-old infants show preferential brain responses to human voice and voice of their first social partner. Our findings provide support for the feasibility of using fMRI to measure the developing brain’s responsiveness to social cues. Our findings also provide preliminary evidence that the infant’s preferential response to social cues is negatively associated with maternal anxiety, stress, and depression, and infant negative emotionality. When extended to at-risk infants, this work has the potential to yield breakthroughs in identifying novel neural markers that can detect early differences and deficits in an infant’s developing social brain.
ABSTRACTS

Figure 1. fMRI can be used to measure early differences and deficits in the developing social brain. (A) Infants show preferential brain response to human voice: Human voice (Maternal voice + Unfamiliar voice) > Speech-shaped noise contrast (at corrected p < .05). (B) Infants show preferential brain response to maternal voice: Maternal voice > Unfamiliar voice contrast (at corrected p < .05).

Note. *p < .01 for bar graphs.

Figure 2. Maternal anxiety, stress, and infant negative emotionality negatively correlates with the infant's preferential brain responses to maternal voice.

Note. Maternal Anxiety: State-Trait Anxiety Inventory; Maternal Stress: Perceived Stress Scale; Infant Negative Emotionality: Infant Behavior Questionnaire-Revised.

References
Hierarchical Development of White Matter Tracts in Youth

Audrey Luo1,2, Valerie Sydnor3, Joelle Bagautdinova1, Aaron Alexander-Bloch1, Bart Larsen4, Fang-Cheng Yeh5, Fengling Hu1, Marc Jaskir6, Arielle Keller1, David Roalf7, Golia Shafiei1, Russell Shinohara1, Matthew Cieslak8, Theodore Satterthwaite8

1University of Pennsylvania, Philadelphia, PA, 2Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 3Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 4University of Minnesota, Minneapolis, MN, 5Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 6Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, 7Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 8UPenn, Philadelphia, PA

Introduction: Previous work has shown regional variation in the pattern and timing of white matter (WM) development, but the relationship between WM development and hierarchical brain organization remains sparsely investigated. Recent studies have shown that spatiotemporal developmental patterns of functional connectivity align with the sensorimotor-association (S-A) axis1-2. Studying WM development in the context of cortical organization can provide insight into how structural connectivity develops to support cortical activity. We hypothesized that the pattern and timing of developmental changes in WM tracts occur hierarchically along the S-A axis of cortical development.

Methods: We used diffusion MRI data in youth ages 8-22 from the Human Connectome Project: Development (N=569). All images were preprocessed using QSIPrep 0.16.1. Next, 50 white matter tracts were mapped using automated fiber tracking from DSI studio4 as part of a QSIPrep reconstruction workflow. We used mean fractional anisotropy (FA) along each tract to characterize WM. Site effects were harmonized using CovBat, in which age was modeled as a smooth term via a generalized additive model (GAM)5,6. To model both linear and non-linear associations between FA and age, we used GAMs with penalized splines while covarying for sex and in-scanner motion. The age of maturation was defined as the earliest age at which the first derivative of the smooth was not significant. To define S-A ranks for each tract, we used a population-based WM tract-to-cortical region connectome mapping7 based on HCP-MMP atlas regions8, which identified the population probability that a given tract was connected to each HCP-MMP atlas region. Tract-to-region connections present in at least 5% of the population were retained. We parcellated the S-A axis using the HCP-MMP atlas, yielding regional S-A ranks. Next, a weighted mean S-A rank was computed for each tract by weighing the average S-A ranks of the regions that a tract connected to by the population probability of each tract-to-region connection. We used Spearman's rank correlations to characterize the spatial association between developmental effects and S-A axis ranks. Spin-based spatial permutation tests were used for significance testing9.

Results: We visualized each tracts’ weighted mean S-A rank and the cortical regions each tract connected to using Yeh’s tract-to-region probabilities (Fig. 1). Weighted mean S-A rank tended to correspond to associated tract functions described in literature; for example, the optic radiation ranked lowest whereas arcuate fasciculus ranked high on the S-A axis (Fig. 1A-B). Mid-ranking tracts tended to connect diverse cortical regions spanning across the S-A axis (Fig. 1D). A tract’s rank was significantly associated with its age of maturation (Fig. 2A, r = 0.41, p<0.001).Sensorimotor tracts tended to mature earlier, including corticospinal tracts and the optic radiations. In contrast, higher order tracts (i.e., those with higher S-A ranks) tended to mature later, such as the frontal aslant tracts and anterior thalamic radiations. The uncinate fasciculus uniquely matured earlier among higher order tracts. Fitted smooths based on model-predicted data were computed in all tracts (Fig. 2B-E). The FA of lowest-order tracts (rank less than 100) tended to have flatter trajectories of developmental change (Fig. 2B and C). In contrast, FA in many higher order tracts (rank greater than 200) continued to increase throughout adolescence (Fig. 2E), though several tracts displayed earlier flattening, including the uncinate fasciculus.
Conclusions: We found WM maturation occurs hierarchically along a major axis of cortical organization. Characterizing patterns of healthy WM development is important for understanding how deviations from normative hierarchical development may confer risk for diverse psychopathology. Replication of these results in additional datasets is necessary to establish generalizability.

References

Poster No 1282

Unveiling Co-Development of Cortical Surface Area and Thickness Asymmetry in Young Brain

Xinran Wu¹, Xiangzhen Kong², Lena Palaniyappan³, Gunter Schumann⁴, Jianfeng Feng⁵, Jie Zhang⁶

¹Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, Shanghai, ²Department of Psychology and Behavioral Sciences, Zhejiang University, Zhejiang, China, Hangzhou, Zhejiang, ³Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia, Parkville, Victoria, ⁴Centre for Population Neuroscience and Stratified Medicine (PONS), Fudan University and Charite, Shanghai, Shanghai, ⁵Institute of Science and Technology for Brain inspired Intelligence, Shanghai, Shanghai, ⁶Institute of Science and Technology for Brain-inspired Intelligence (ISTBI), Shanghai, Shanghai

Introduction: Hemispheric asymmetry is a fundamental aspect of human brain organization (Duboc et al., 2015), yet its developmental processes remain poorly understood. Unique asymmetrical patterns have been identified in cortical surface area (CSA) and cortical thickness (CT) (Kong et al., 2018), and undergoing various developmental changes with age (Roe et al., 2023). Abnormal alterations in asymmetry have been linked to certain neurodevelopmental disorders in adolescents, such as autism (Postema et al., 2019), underscoring the significance of comprehending the asymmetric development of the brain for overall brain health. However, the current study exclusively delineated the trajectories of asymmetry development for different features, and the correlation between the asymmetry development of distinct modalities remains incompletely understood.

Methods: This study investigates brain structural asymmetry development, genetic factors, and cognitive/psychiatric associations in youths. We used MRI data from two longitudinal datasets: Adolescent Brain Cognitive Development (ABCD) study (N=11,000, 2 time points: 10 and 12 years) and IMAGEN study (N>2,000, 3 time points: 14, 19, 22 years). Asymmetry indices (AI) from CT, CSA, and subcortical volume were assessed with linear mixed models (LMM) for age-related effects. Cognitive processes associated with CSA and CT asymmetry developmental pattern were determined through a Neurosynth-based meta-analysis. Besides, the associations between AI and cognitive / psychiatric phenotype were investigated using LMM. Finally, genetic association analysis (GWAS), gene enrichment analysis, and temporal expression analysis using BrainSpan dataset were performed on ABCD genetic sequencing data to investigate genetic factors influencing CSA and CT asymmetry and its changing rates (DAI) from ages 10 to 12.

Results: Despite baseline CT and CSA AI pattern differences with each other (Fig 1A), CT and CSA asymmetry showed similar developmental trajectories: Frontal and temporal regions exhibited increasing left-lateralization with age (Fig 1B, C), which associated with language and emotion functions (by Neurosynth, Fig 1D, E). Age-related changes in CSA and CT within these regions indicated that asymmetry development was driven by more rapid CSA and CT reduction in the right frontotemporal regions during adolescence than their left homotopic regions. Phenotype association analysis suggested prolonged CT asymmetry development in the superior frontal cortex (less leftward than peers) related to better cognitive function (Fig 2A). Genetic analysis revealed more genes linked to DAI than AI, and enrichment analysis revealed the genes influencing both CSA and CT DAI primarily associated with neural and synapse development (Fig 2B, C, D); besides, these genes had increased expression upon adolescence (especially in frontal lobe) (Fig2 E).

Conclusions: In summary, this study showed that despite CSA and CT were influenced by distinct developmental and genetic mechanism, a similar co-developmental trajectory still exists between asymmetry of the two different morphological features, primarily in frontotemporal regions. This shared trajectory may result from common biological pathways in adolescent brain like synaptic pruning and dendritic changes affecting both CSA and CT. Leftward development in these regions may underlie advanced cognitive abilities, including language. Prolonged cortical thickness asymmetry growth in superior frontal gyrus correlated with higher cognitive abilities, which might suggest more neural plastic and less inflammation (Tooley, Bassett,
Mackey, 2021) that can preserve neurons and synapses, and finally enhanced brain function. These findings hold important implications for understanding normal and abnormal brain development.
References

Poster No 1283

Chinese Baby Connectome Project (CBCP): Advanced and Comprehensive Infant Cohort Protocols

Lixuan Zhu1, Qiang Yang1, Feiyu Quan1, Yan Liang1, Qiong He1, Ying Lin2, Jian Sun1, Ruili Ma1, Jiayang Guo1, Weiija Zhang1, Zhixin Wang1, Yajuan Zhang1, Tianli Tao1, Xinyi Cai1, Lin Zhang2, Mingwen Yang2, Zuozhen Lan2, Chaowei Zhang3, Dan Cai4, Na Hu4, Xianghui Huang5, Wei Wei6, Xuechen Ding7, Xinpei Xu6, Mingming Zhang7, Xiaojian Yan7, Chenbo Wang8, Weijun Zhang9, Jiayu Zhu9, Jian Cheng9, Kunyu Xu10, Peng Chen12, Qian Wang1, Feng Shi13, Anqi Qiu14, Chunfeng Lian15, Junfang Liu2, Dan Li4, Guoqiang Cheng16, Han Zhang17, Dinggang Shen13,17

1School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
2Department of Radiology, Xiamen Children's Hospital, Children's Hospital of Fujian, Fujian, China
3Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Fujian, China
4School of Psychology, Shanghai Normal University, Shanghai, China
5Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen, Fujian
6Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai, China
7Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
8School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
9Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China
10School of Computer Science and Engineering, Beihang University, Beijing, China
11Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China
12School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an, China
13Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
14Department of Biomedical Engineering, National University of Singapore, Singapore
15School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
16Department of Neonatology, Children's Hospital of Fudan University, Fudian, China
17Shanghai Clinical Research and Trail Center, Shanghai, China

Introduction: Studies based on the developing Human Connectome Project (dHCP) (Edwards et al., 2022) and the UNC/UMN Baby Connectome Project (BCP) (Howell et al., 2019) have significantly advanced our understanding of the early development of brain. Our research extends cutting-edge magnetic resonance imaging (MRI) acquisition techniques, including AI-driven approaches, to investigate infant brain development. In the Chinese Baby Connectome Project (CBCP), we integrate infant-tailored, accelerated imaging with comprehensive non-imaging data collection, aiming to build the first longitudinal atlas in China (Fig. 1b). Aligned with children aged 0-6 years, the CBCP protocol covers imaging, physiological, genetic, environmental, and behavioral data, providing a holistic perspective on brain development.

Methods: Cohort Design: CBCP aims to gather full-spectrum data from over 1000 healthy infants aged 0-6 in 12 sub-cohorts, utilizing an accelerated longitudinal design. Rigorous criteria ensure enrollment of term-birth children without adverse prenatal conditions. Preparations: Lab layout (Fig. 1a) and experimental procedure (Fig. 1c) are detailed. Pre-MRI preparation includes 25-min mock scanner training with motion monitoring, sleeping with noise training, and sleep deprivation to increase success rate. MRI scan: we encourage children of age 0-3 undergo MRI scans during natural sleep and those of age 3-6 take awake scans while watching cartoons (black screen for resting-state fMRI (rffMRI)), but allow overlapped age period between sleep and awake scans. All sites use 3.0T MRI scanners of the same model (uMR 890, United Imaging) with a 64-channel head coil. Informed by pilot studies, CBCP MRI protocol (Table 1) encompass T1w and T2w structural MRI (sMRI), rfMRI, diffusion MRI (dMRI), and multiplex imaging (MTP) (Ye et al., 2022). For sMRI, we utilize AI-assisted compressed sensing (ACS) (Liu et al., 2023) to ensure fast acquisition of 3D sMRI (0.8mm isotropic), saving 37.8% time compared to BCP. To further “freeze” head motion and increase success rate for certain infants who prone to move, 1-min ultra-fast 3D sMRI scans are implemented. Compared to BCP with 2mm isotropic rfMRI, CBCP collects rfMRI with higher spatial resolution (1.8mm isotropic) at a 800ms TR. dMRI with complete incremental acquisitions of 3-shell scheme at both AP and PA phase encoding directions. MTP...
incorporates dual repetition time, dual flip angle, multi-echo, and optional flow modulation features, which provides 16 qualitative and 9 quantitative images (Fig. 1b). Quality control (QC): a pilot study with traveling subjects ensured data quality across centers. Phantom scans before the experiment assure scanner stability. All the MRI data will be immediately uploaded to a data-management platform for QC. An automated infant MRI preprocessing pipeline, using deep learning, guarantees reliable retrieval of subjects’ attributes. Non-imaging data: includes EEG/ERP for infants (0-6) during various tasks and resting state. Behavioral observations, audio/video recordings, social assessments, IQ, and Griffiths developmental evaluations are conducted following a comprehensive digitized questionnaire on environmental, perinatal, and family factors. Genetic data will be collected for deep sequencing.

Table 1 CROP MR imaging protocol

<table>
<thead>
<tr>
<th>Sequences</th>
<th>Matrix</th>
<th>FOV (mm)</th>
<th>Resolution (mm)</th>
<th>TE (msec)</th>
<th>TR (msec)</th>
<th>Slice Orientation</th>
<th>Time (minutes)</th>
<th>Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>grc scout</td>
<td>255-255</td>
<td>260-260</td>
<td>1.02-1.02-8</td>
<td>4.02</td>
<td>6.4</td>
<td>sag</td>
<td>90.87</td>
<td></td>
</tr>
<tr>
<td>grc scout ref</td>
<td>255-255</td>
<td>260-260</td>
<td>1.02-1.02-8</td>
<td>4.02</td>
<td>6.4</td>
<td>sag</td>
<td>90.87</td>
<td></td>
</tr>
<tr>
<td>Fast T1-weighted</td>
<td>220-300</td>
<td>252-240</td>
<td>0.8-0.8-0.8</td>
<td>5.0</td>
<td>60-60</td>
<td>sag</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>Fast T2-weighted</td>
<td>220-300</td>
<td>252-240</td>
<td>0.8-0.8-0.8</td>
<td>5.0</td>
<td>60-60</td>
<td>sag</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>T1-weighted</td>
<td>220-300</td>
<td>252-240</td>
<td>0.8-0.8-0.8</td>
<td>5.0</td>
<td>60-60</td>
<td>sag</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>T2-weighted</td>
<td>220-300</td>
<td>252-240</td>
<td>0.8-0.8-0.8</td>
<td>5.0</td>
<td>60-60</td>
<td>sag</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>Field Map</td>
<td>116-116</td>
<td>209-209</td>
<td>1.8-1.8-1.8</td>
<td>37</td>
<td>800</td>
<td>Axial</td>
<td>90.45</td>
<td>-</td>
</tr>
<tr>
<td>rMRI PA</td>
<td>116-116</td>
<td>209-209</td>
<td>1.8-1.8-1.8</td>
<td>37</td>
<td>800</td>
<td>Axial</td>
<td>90.45</td>
<td>-</td>
</tr>
<tr>
<td>dMRI-A, B, C</td>
<td>140-140</td>
<td>210-210</td>
<td>1.5-1.5-1.5</td>
<td>77.1</td>
<td>3017</td>
<td>Axial</td>
<td>92.9</td>
<td>-</td>
</tr>
<tr>
<td>dMRI PA, B, C</td>
<td>140-140</td>
<td>210-210</td>
<td>1.5-1.5-1.5</td>
<td>77.1</td>
<td>3017</td>
<td>Axial</td>
<td>92.9</td>
<td>-</td>
</tr>
<tr>
<td>dMRI-A, B, C</td>
<td>140-140</td>
<td>210-210</td>
<td>1.5-1.5-1.5</td>
<td>77.1</td>
<td>3017</td>
<td>Axial</td>
<td>92.9</td>
<td>-</td>
</tr>
<tr>
<td>MTP</td>
<td>192-192</td>
<td>210-190</td>
<td>0.8-0.8-1.6</td>
<td>3.91</td>
<td>48.1</td>
<td>Axial</td>
<td>96.7</td>
<td>-</td>
</tr>
</tbody>
</table>

Contingent on the baby continuing to sleep or coping

Figure 1 a) Integrated child-friendly experimental preparation and data collection laboratory layout. b) Specialized new technologies used in the construction of cross-sectional: MTR, A/S, Q-Sca, and MinCap Correction. c) The workflow of the CROP data collection process. d) The recruitment of participants, participant screening for inclusion, laboratory practice and preparation for data collection, scheduling appointments, obtaining informed consent via signature, establishing individual data profiles, and detailing the process of MRI data collection. This includes distinctions between scans conducted during natural sleep and those during wakefulness. The workflow also addresses response measures and plans for handling various scenarios.
Results: As of 10/23, we’ve collected MRI data from 298 infants with a 78% success rate (sMRI, fMRI, and dMRI complete acquisition). CBCP QC standards show pass rates: T1w, 94.4%; T2w, 85.7%; rfMRI, 69.4%; dMRI, 87.1%. Applying the same criteria to BCP data yields: T1w, 95.8%; T2w, 93.2%; rfMRI, 56%; dMRI, 72.1%.

Conclusions: We report our protocol for this ongoing CBCP project aiming to build China’s largest, high-quality, longitudinal infant brain-behavior dataset. CBCP embraces advanced imaging techniques for a comprehensive longitudinal cohort, offering a unified and standardized protocol from acquisition to both imaging and non-imaging data in depicting healthy brain developmental trajectories.

References
6. Acknowledgement
7. This work is partially supported by the STI 2030—Major Projects (2022ZZD0209000 and 2021ZZD0200516), Shanghai Pilot Program for Basic Research—Chinese Academy of Science, Shanghai Branch (JCYJ-SHFY-2022-014), and Shenzhen Science and Technology Program (No. KCXFZ20211020163408012).

Poster No 1284
7T BOLD fMRI characterisation of depth dependent hemodynamics in developing human cortex

Jucha Willers Moore1, Elisabeth Pickles1, Philippa Bridgen2, Pierluigi Di Cio2, Alena Uus1, Ines Tomazinho1, Beya Bonse1, Maria Deprez1, Sharon Giles2, A. Edwards1, Joseph Hajnal1, Saifan Malik1, Tomoki Arichi1, Jonathan Polimeni1

1King’s College London, London, United Kingdom, 2London Collaborative Ultra high field System (LoCUS), London, United Kingdom, 3Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA

Introduction: Neuronal activity, neurovascular coupling and vascular dynamics undergo rapid maturation in the perinatal period1–3. The amplitude and temporal features of the neonatal hemodynamic response to neuronal activity therefore differ markedly from that typically seen in adults4. It is thus unclear if cerebral cortical depth-dependent hemodynamic responses features related to differences in hemodynamics across different levels of the intracortical vascular hierarchy5 can be generalised to the developing newborn brain. To address this, we developed a platform for high-resolution 7T fMRI studies in newborn infants and performed a cortical-depth analysis of task-driven BOLD responses in primary motor cortex (M1).

Methods: NHS research ethics committee approval and written parental consent was provided for data collection. Data were acquired from 10 healthy infants at term equivalent age (median: 39.7 weeks postmenstrual age at scan: range: 37.4–42.9, 5 female) during natural sleep using a Siemens 7T system (MAGNETOM Terra, Siemens Healthineers, Erlangen, DE) and a 17X-32RX Nova Medical head coil (Wilmington, MA, USA) with locally imposed safety restrictions6. A GRE-EPI sequence was used to acquire BOLD fMRI data over 6 m 51 s with parameters: resolution=0.8 mm isotropic (full Fourier), TR/TE=2660/48 ms, 25 slices, 1.06 ms nominal echo spacing, and R=2 acceleration with Dual-Polarity GRAPPA reconstruction7. Sensorimotor stimulation (on/off blocks of 26.6 s) was elicited with a custom robotic device8 (Fig. 1A). After pre-processing using tools implemented in FSL, ROIs spanning the full cortical thickness were manually defined within significant clusters of activation (Z>2) in M1; data were up-sampled; 3 equi-volume layers were defined using LAYNII9; and layer-specific BOLD timeseries were extracted, from which normalized trial responses of percent signal change were calculated and then averaged across infants (Fig. 1B-D).

Results: fMRI data were successfully acquired in 7/10 infants with significant activation identified in the contralateral hand area of M1 in response to sensorimotor stimulation (Fig. 1B). Trial-averaged responses showed a rise in BOLD signal around 8 s after stimulus onset in the superficial cortical depths (Fig. 1E, F) with a median positive peak of 5.54 % BOLD signal change (Fig. 2B). Conversely, at deeper cortical depths, a subtle initial dip was seen followed by a trend for a delayed rise in BOLD signal and a significantly lower median peak amplitude of 3.08 % signal change (p=0.004) and 1.79 % signal change (p=0.002) in the middle and deep cortical depths respectively (Fig. 2A, B). A trend emerged for a more pronounced post-stimulus undershoot in the BOLD response at superficial cortical depths, but it did not reach significance.
Conclusions: We present the first evidence of differing hemodynamic responses across cortical depths in the neonatal brain, which differ markedly than those typically seen in adults. This may reflect differences in the vasculature, such as the endothelium of the diving arterioles which dilate first in the deeper cortical depths in adults, propagating vasodilation upstream to the pial surface. As the arteriolar endothelium develops postnatally, propagation likely differs in neonates resulting in a delayed BOLD response in the deeper cortical layers. The increased functional contrast-to-noise ratio at 7T provides a unique opportunity for detailed in vivo studies of neurovascular coupling and hemodynamics during the critically important perinatal period. This offers new insight into the early development of cortical hemodynamics and a means to explore generalisability of our mechanistic understanding of adult cortical hemodynamics. Future work can investigate how hemodynamics evolve during early development, whether the sleeping state during our task affects hemodynamics, and whether alterations are seen in pathology.
Prenatal environment is associated with the pace of network development over the first 3 years

Ursula Tooley¹, Aidan Latham², Jeanette Kenley², Dimitrios Alexopoulos², Tara Smyser², Barbara Warner², Joshua Shimony², Jeffrey Neil², Joan Luby², Deanna Barch³, Cynthia Rogers³, Christopher Smyser²

¹Washington University in Saint Louis, Saint Louis, MO, ²Washington University in St. Louis, St. Louis, MO, ³Washington University, Saint Louis, MO

Introduction: Environmental influences on brain structure and function during development have been well-characterized, and the pace of early brain development has been associated with important risk factors and behavioral outcomes (Shaw et al. 2010; Farah 2017). As children mature, intrinsic cortical networks become more segregated, with sets of brain regions displaying more densely interconnected patterns of connectivity and large-scale systems becoming increasingly distinct (Grayson & Fair 2017). Some theoretical models posit that environmental influences on brain development might arise by way of effects on the pace of brain development, such that brain development proceeds faster in neonates and toddlers from lower-SES backgrounds (Tooley et al. 2021).

Methods: In a set of pre-registered analyses (AsPredicted #128836), we explicitly test whether early SES is associated with differences in the pace of intrinsic cortical network segregation during the first three years of life. We capitalize on a unique cohort of neonates and toddlers (n=261, M=41.3 weeks at first scan) with longitudinal fMRI neuroimaging data and extensively characterized early environments (Stout et al. 2022), using generalized additive mixed models (Wood 2004) to examine moderating effects of prenatal SES (Luby et al. 2023) on development of cortical network segregation, controlling for sex at birth, amount of uncensored data included, in-scanner motion, and average network connectivity. We take a hierarchical approach, first examining measures of cortical network segregation (Figure 1a-c) at whole brain resolution, then analyzing at the level of functional brain systems, and finally in individual brain regions. Finally, we examine whether differences in measures of cortical network segregation at age two years are associated with language and cognitive abilities (Bayley Scales of Development-III).

Results: Cortical network segregation increases with age during the first three years of life (Figure 1d-f), and prenatal SES significantly moderates trajectories of cortical network segregation across scales (Figure 1g-i). Neonates and toddlers from lower-SES backgrounds show a steeper increase in cortical network segregation with age, consistent with accelerated network development. We find that associations between SES and cortical network segregation are present primarily at the local scale. Effects of prenatal SES are strongest in the somatomotor and dorsal attention systems (Figure 2a-b) and conform to a sensorimotor-association hierarchy of cortical organization (Figure 2c). Importantly, SES-associated differences in cortical network segregation are associated with language abilities at age two years, such that lower segregation is associated with improved language abilities, even when controlling for prenatal SES (Figure 2d-f).

References

ABSTRACTS

Figure 1: Associations between the early environment and developmental changes in cortical network segregation. a, System segregation is a whole-brain measure of functional network segregation that quantifies the difference between mean within-system connectivity and mean between-system connectivity as a proportion of mean within-system connectivity. b, Modularity is a measure of network segregation that estimates the extent to which the nodes of a network, or in this case brain regions, can be subdivided into modules characterized by strong, dense intramodular connectivity and weak, sparse intermodular connectivity. c, The clustering coefficient is a measure of local segregation that quantifies the amount of connectivity between a node and its immediate neighbors. d, Global segregation increases significantly with age (β = 0.26, p = 0.001, p_{wild} = 0.001). e, Meso-scale segregation increases significantly with age (β = 0.39, p = 0.01, p_{wild} = 0.001). f, Local segregation increases significantly with age (β = 0.43, p = 0.001, p_{wild} = 0.001). g, Prenatal SES moderates trajectories of global cortical network segregation (β = 0.36, p = 0.001, p_{wild} = 0.001). h, Prenatal SES moderates trajectories of meso-scale cortical network segregation (β = 0.48, p = 0.001, p_{wild} = 0.001). i, Prenatal SES moderates trajectories of local cortical network segregation (β = 0.43, p = 0.001, p_{wild} = 0.001). Bars below the x-axis in d-f depict the derivative of the fitted smooth function of age. The filled portion of the bar indicates periods where the magnitude of the derivative of the fitted curve is significant, with the saturation of the fill representing the value of the derivative. SES was modeled continuously; here we show model trajectories from lowest (blue) and highest (orange) deciles of SES. Individual points represent individual scans, with lines indicating scans from the same participant. Panels a-i reprinted with permission from 1.

Figure 2: Environmental effects on developmental increases in local segregation are enriched in sensorimotor systems and associated with language abilities. a, The heterogeneous pattern of the magnitude of age-by-SES effects (F-statistic) on local segregation is shown on the cortical surface. Regions that show significant age-by-SES effects passing 174 correction at p_{wild} = 0.05 are outlined in black. b, SES effects on developmental changes in local segregation are enriched in sensorimotor systems. Each point is an individual parcel. c, The magnitude of age-by-SES effects is related to a canonical sensorimotor-to-association axis of cortical organization. Each point is an individual parcel, the color of the points represents the magnitude of age-by-SES effects. A Pearson’s correlation between these two measures assessed by a conservative spin-based rotation test was significant (r = 0.5, p_{wild} = 0.001). d, Effects of prenatatal SES on trajectories of age-standardized Bayley language composite scores (β = 0.54, p = 0.001, p_{wild} = 0.001). e, Local segregation at two years of age was negatively associated with language abilities at two years (β = 0.33, p = 0.01, p_{wild} = 0.03), even after controlling for prenatal SES (β = 0.25, p = 0.01). f, The directionality of this association is such that higher levels of local segregation, found in toddlers from lower SES backgrounds, are associated with worse performance on measures of language ability.
Conclusions: We find that the development of cortical brain networks during the first three years of life is strongly associated with features of the early environment, suggesting these influences may play a key role in shaping this trajectory. Being born into a more advantaged (higher SES) environment is associated with a more protracted trajectory of cortical functional network development in early childhood; more protracted cortical network development might reflect prolonged periods of plasticity or alterations in synaptic proliferation and pruning (Tanti et al. 2013; Manzano Nieves et al. 2020). Importantly, environmental influences on development of cortical network segregation might underlie SES-associated differences in language abilities observed later in development. Our results suggest that infancy and toddlerhood may be an important period for promoting healthy brain development, emphasizing the first years of life as a target for policies supporting optimal child development.

References

Poster No 1286
High field multi-echo fMRI in infants

Julia Moser1,2, Kimberly Weldon1, Sooyeon Sung1, Alireza Sadeghi-Tarakameh3, Thomas Madison1, Hannah Pham1,4, Jacob Lundquist1, Edward Auerbach3, Gregor Adriany3, Yigitcan Eryaman3, Steve Nelson1,5, Jed Elison1,2, Damien Fair1,2, Essa Yacoub1

1Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 2Institute of Child Development, University of Minnesota, Minneapolis, MN, 3Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 4Department of Neuroscience, University of Minnesota, Minneapolis, MN, 5Department of Pediatrics, University of Minnesota, Minneapolis, MN

Introduction: Important insight into brain structure and function during early development can be gained from fMRI in infants. However, a number of methodological challenges arise when working with this age group that go beyond practical considerations. Lacking commercially available head coils optimized for developmental populations, the use of head coils designed for adults results in sub-optimal signal-to-noise ratios and increases in partial voluming because of the smaller brain sizes relative to the standard voxel sizes. Higher spatial resolutions can be achieved by moving to higher field strengths (i.e. > 3T). However, despite the availability of FDA approved 7T MRI scanners, they are rarely used in infants because it requires additional safety considerations. Further, the most popular 7T system, the Siemens Magnetom Terra, is currently not FDA-approved for subjects as light as infants (<30kg). Independent of field strength, finding optimal acquisition protocols, which consider the tissue properties of the developing brain, is an additional challenge. We recently showed that multi-echo (ME) fMRI at 3T could be a promising tool to account for this in a developmental population. Up to now, the application of ME fMRI sequences have not been tested in infants at 7T. We show initial results from a high resolution 7T ME-fMRI acquisition and compare them to an adult as a reference.

Methods: The example infant presented here was a healthy full-term infant, seven weeks old from whom we acquired 3T and 7T data within a four day period. To make 7T acquisition possible, we developed an in-house system to assess the safe operating power limits for a newborn infant. Functional data at 3T was acquired using a four-echo sequence (14ms, 39ms,
ABSTRACTS

64ms, 88ms, TR = 1.761s, 2mm res). Functional data at 7T was acquired using a three-echo sequence (14ms, 35ms, 57ms, TR = 1.768s, 1.6mm res). T2w and T1w anatomical references were acquired at 3T. All data acquisitions were performed during natural sleep. We preprocessed data using NORDIC for thermal denoising, BIBSnet for creating segmentations of the anatomical data, Nibabies with its multi-echo preprocessing workflow and XCP-D for functional connectivity processing. Functional connectivity matrices were calculated using low motion data (framewise displacement < 0.3mm) only.

Results: All ME data acquired at 3T and 7T showed high functional tissue contrast, indicating that despite halving the voxel volume at 7T, sensitivity was still not limited (Figure 1). As expected, T2* relaxation times for the same infant across both field strengths were shorter in 7T compared to 3T, to a similar extent than in the adult (Figure 2A). At both field strengths, T2* across the cortex revealed a similar variance and showed similar areas with shorter T2*s due to susceptibility artifacts, highlighting the benefits of ME imaging. Functional connectivity matrices showed similar correlation patterns between brain regions for data acquired at 3T and 7T. However, the absolute magnitude of functional connections was higher in data acquired at 7T (Figure 2B).

![Figure 1: Multi-echo fMRI data of same infant acquired at 3T and 7T.](image1)

![Figure 2: A) T2* relaxation times. Histograms show distribution across the surface. B) Example functional connectivity seedmap showing increase in magnitude of functional connections.](image2)
Conclusions: Our initial results show that ME fMRI in infants at 7T is not only feasible but feasible with much higher resolutions, resulting in data with high specificity and sensitivity. Investigation of T2* relaxation times points towards similar advantages of ME fMRI in infants in 7T as previously shown in 3T. The observed increase in functional connectivity strength is consistent with the adult literature and our example adult subject. Given careful safety considerations and suitable acquisition protocols, 7T imaging could be established as a promising tool for developmental neuroimaging as the smaller voxel size achievable at 7T is more suitable for the size of an infant brain. Moving forward, further benefits for functional connectivity research that go beyond the absolute strength of connections can be explored as well as even smaller voxel sizes.

References

Poster No 1287
Identifying a common cause of macrocephaly using brain growth charts
Ayan Mandal1, Barbara Chaiyachati2, Jenna Schabdach2, Margaret Gardner1, Susan Sotardi2, Maria Henry2, Joanne Wood2, Aaron Alexander-Bloch1, Jakob Seidlitz1
1University of Pennsylvania, Philadelphia, PA, 2Children’s Hospital of Philadelphia, Philadelphia, PA

Introduction: Macrocephaly, defined as a head circumference measurement of greater than two standard deviations from the mean on typical growth charts, is among the most common clinical indications for an MRI scan in young children. The differential diagnosis for macrocephaly is broad, constituting potentially serious etiologies such as non-accidental head trauma or neurogenetic disorders as well as benign causes. A common cause of macrocephaly is benign enlargement of the subarachnoid space (termed “BESS”), a condition marked by elevated thickness of extra-axial CSF (eaCSF) which typically self-resolves after 1-2 years of age. The diagnosis of BESS is complicated by the dynamic nature of eaCSF in early infancy as well as a lack of supporting quantitative diagnostic criteria for this condition. Growth charts of eaCSF could be a tremendous aid to clinicians seeking to differentiate BESS from other more clinically concerning causes of macrocephaly.

Methods: We accessed 457 clinically-acquired T1w MRI scans from pediatric patients (ages 0 -22) at the Children’s Hospital of Philadelphia (CHOP) to form a cohort of clinical controls, termed Scans with Limited Imaging Pathology (SLIP), described previously. In parallel, nine T1w MRI scans from subjects with a diagnosis of BESS from a board-certified radiologist were also accessed. SynthSeg, a segmentation algorithm based on convolutional neural networks, was used to segment each T1w scan into various tissue types, including eaCSF. To isolate the components of eaCSF relevant to BESS, we isolated the eaCSF superior to the anterior commissure for each patient, consistent with prior studies. Extra-axial CSF thickness was measured using the function “measure_bb_thick” in AFNI and then averaged to produce a mean thickness for each subject (Figure 1). Growth charts of eaCSF thickness were modeled in R using generalized additive models for location, scale, and shape (GAMLSS) within the total cohort.
Figure 1: Coronal T1 MRI with sequential method processing. From left to right: Raw, Total segmented, Supratentorial eaCSF restricted segmentation mask, Voxel-thickness estimation.

Results: In the SLIP cohort, eaCSF thickness varied nonlinearly with age, increasing from birth to six months, then gradually declining until around eight years, when it rises again and trends upwards throughout adolescence (Figure 2). Based on these normative trajectories of eaCSF thickness, seven of the nine patients with a clinical diagnosis of BESS were above the 97.5% percentile for their age.

Figure 2: Extra-axial CSF Thickness in Childhood and Adolescence. Thickness reflects voxel-based average of supratentorial eaCSF mask from clinically acquired images in normal (gray) and BESS (orange)

Conclusions: We demonstrate that the thickness of the subarachnoid space changes in a dynamic but relatively predictable pattern throughout childhood and adolescence. The dynamic nature of these changes complicates the diagnosis of BESS, a common cause of macrocephaly. We show that patients with BESS can be reliably differentiated from clinical controls using computational measurements of eaCSF thickness paired with normative modeling. Our findings demonstrate the feasibility of updating diagnostic guidelines and aiding clinical decision-making for BESS and likely other macrocephalic conditions using brain growth charts.

References
Is corpus callosum biometry at school age related to preterm birth in children with cerebral palsy?

Monica Crotti1,2,3, Manuel Lubián-Gutiérrez4,5, Nofar Ben Itzhak1,2, Lisa Mailleux2,6, Lize Kleeren2,3,6, Lisa Decraene2,6,7, Els Ortibus1,2,8

1KU Leuven, Department of Development and Regeneration, B-3000 Leuven, Belgium, 2KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium, 3KU Leuven, Leuven Brain Institute, B-3000 Leuven, Belgium, 4Puerta del Mar University, Biomedical Research and Innovation Institute of Cádiz (INIBICA), Cádiz, Spain, 5Puerta del Mar University Hospital, Department of Paediatrics, Division of Neonatology, Cádiz, Spain, 6KU Leuven, Department of Rehabilitation Sciences, Research group for Neurorehabilitation, B-3000 Leuven, Belgium, 7Hasselt University, Rehabilitation Research Centre, B-3590 Diepenbeek, Belgium, 8University Hospitals Leuven, Cerebral Palsy Reference Centre, B-3000 Leuven, Belgium

Introduction: Cerebral palsy (CP) is a motor developmental disorder caused by damage to the developing fetal or infant brain (Rosenbaum et al., 2007). Previous findings showed a reduction in the length of the corpus callosum (CC) in infants with CP compared to those with neurotypical development (Panigrahy et al., 2005). Half of the children diagnosed with CP are born preterm (PT; gestational ages≤36 weeks) (Van Naarden Braun et al., 2016), a condition associated with a reduction in CC total length compared to birth at term (Caldú et al., 2006). Nevertheless, there is a lack of research specifically investigating the relation between PT birth and CC biometry assessed at school-age in children with unilateral CP (uCP). Here, we aim to investigate if CC total length and the thickness of its subdivision (i.e., genu, body, isthmus, and splenium) differ between children with uCP born PT and at term (T).

Methods: T1-weighted images were acquired (TE/TR/TI 4.2/9.1/760.3 ms, voxel size 0.9×0.9×0.9 mm3, matrix 284×269×200) using a 3.0-T scanner (Hercules, Philips Medical Systems) in 38 children with uCP (age=11y6m±2y9m, 21 males). CC biometry (total CC length; thickness of genu, body, isthmus, splenium; Figure 1) was measured manually using the midline sagittal T1 scan and classified as above or below the median according to age normative values of Garel et al. (2011). Children were divided according to gestational age (GA) in PT (N=18; median GA=32.50, IQR [30.75-36]) and T (N=20; median GA=40, IQR [39-40]). Differences in CC biometry between children born PT and at T were investigated with one-way ANCOVA with birth weight and age at MRI as covariates. Statistics were performed using IBM SPSS Statistics (Version 28.0.1).

Results: Biometry below the normative range (Table 1) was found in 66% (n=25) of children with uCP for the CC total length (n(PT)=10; n(T)=15); in 34% for the genu (n(PT)=7; n(T)=6); in 76% for the body (n(PT)=12; n(T)=17); in 85% for the isthmus (n(PT)=15; n(T)=17); and in 74% of the splenium (n(PT)=14; n(T)=14). No significant difference was found in CC biometry between children with uCP born PT and born at term (p>0.05).

<table>
<thead>
<tr>
<th>CC biometry</th>
<th>Children with uCP born preterm (N=18)</th>
<th>Children with uCP born at term (N=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>median (IQR)</td>
<td>n(%) of children below the median</td>
</tr>
<tr>
<td>Total length</td>
<td>66.95 (49.80-72.50)</td>
<td>10 (56)</td>
</tr>
<tr>
<td>Genu</td>
<td>11.00 (5.60-14.20)</td>
<td>7 (39)</td>
</tr>
<tr>
<td>Body</td>
<td>4.85 (2.90-7.20)</td>
<td>12 (67)</td>
</tr>
<tr>
<td>Isthmus</td>
<td>2.80 (1.20-5.20)</td>
<td>15 (83)</td>
</tr>
<tr>
<td>Splenium</td>
<td>9.35 (4.60-11.50)</td>
<td>14 (78)</td>
</tr>
</tbody>
</table>

CC: corpus callosum; uCP: unilateral cerebral palsy; n: number of children out of the total sample of 38 children with uCP; n(PT): number of children out of the sample of children born preterm (18) and at term (20); n(%) of children, number of children as a percentage of the total sample.
Conclusions: Our results suggest that preterm birth does not influence CC biometry assessed at school-age in children with uCP. Plasticity processes occurring through infancy might compensate for differences between children born at term and PT. Nevertheless, a high number of children with uCP still present with reduced CC biometry when assessed at school-age, in particular in the mid-posterior part. Further research is warranted to unravel if CC biometry in earlier stages could potentially help to predict CP diagnosis in both children born at term and PT.

References

Poster No 1289
Identifying spatiotemporal changes in cortical neurodevelopment using post-mortem and in vivo data

Thanos Tsigaras¹, Juergen Dukart¹, Simon Eickhoff¹, Casey Paquola¹

¹INM-7, Forschungszentrum Jülich, Jülich, North Rhine Westphalia

Introduction: Despite numerous attempts to model human cortical neurodevelopment, we lack details on spatiotemporal changes occurring within the cortex. Here, we leverage the complementarity of post-mortem and in vivo approaches to track cortical microstructure throughout early development.

Methods: We assessed age-related changes in cortical cytoarchitecture using photomicrographs of cresyl-stained post-mortem human brain tissue (254 cortical patches from 29 Von Economo areas; 0, 1, 3, 15, 24 and 48 months; 6-7 brains per age). We identified the contours of individual cells using a tailored segmentation algorithm and used a sliding-window approach to extract the number of cells per window and the percentage of area covered by cells in each window (Fig. 1A). Measurements were averaged across matching depths (Fig. 1B). To examine temporal changes of the cytoarchitectural features, we calculated the product-moment correlation coefficients (r) between age and cytoarchitecture for each area and depth. We characterised cortical microstructure in vivo using T1w/T2w images from the developing Human Connectome Project (dHCP, n=328, 37-44 weeks post-menstrual age). We sampled T1w/T2w intensities at 14 intracortical depths, producing microstructure profiles at each vertex (Fig. 2A). Given these profiles are inherently smoother than the histological profiles, we synopsised their shape using central moments (CMs; mean, centre of gravity, standard deviation). We assessed the influence of age on microstructure via area-specific product-moment correlations with the CMs. To test whether the CMs can be explained by depth-specific cytoarchitecture changes, we linearly modelled their relationships. Post hoc univariate tests were performed to better interpret how depth-specific changes in cytoarchitecture contribute to in vivo changes in microstructure.

Results: Number of cells per window decreases with age at all cortical depths in most brain areas, though the magnitude of the effect varied (Fig. 1C). In contrast, the area covered by cells increased or decreased with age depending on cortical depth. Age-related increases were prominent deeper in the cortex, whereas decreases were widespread in superficial cortex. This depth-wise shift was most prominent in association cortex, including prefrontal cortex and temporoparietal areas that neighbour the occipital lobe. We observed significant global increases in mean intensity of MRI-derived profiles, but region-specific changes in the balance of microstructure across cortical depths (Fig. 2B). Specifically, the centre of gravity increased in areas on the inferior surface of the cortex, suggestive of microstructural increases deeper in the cortex. In contrast, the standard deviation of the profiles decreased with age in the frontal and temporal lobes, signifying increasingly balanced microstructural density across cortical depths. Multivariate regressions showed more than 60% of variance in CM changes could be explained by depth-specific changes in cytoarchitecture. Effects were more prominent in mid-cortical depths, pointing towards a depth-specific correlation between cytoarchitecture and MRI-derived microstructure.

Conclusions: Our study provides novel insights into the cellular basis of intracortical development. We found evidence for selective decreases in cellular density, as well as increases in cell size. Furthermore, by demonstrating the statistical
relationship between histology- and MRI-derived changes, our work provides the foundation for further investigations into the multi-scale nature of cortical development, involving microstructure, morphology and connectivity.
Introduction: Cortical folding varies widely among mammals and is particularly pronounced in human brains. Sulcal deepening begins in utero and continues in the first two years of life. It has been hypothesized that sulci deepen to accommodate for cortical expansion. However, how early emerging sulcal folds deepen during infancy remains largely unknown. Here, we examined how early emerging sulcal folds deep in the first year of human life and whether sulcal deepening is associated with changes in macrostructural features such as curvature, surface area, and cortical thickness, and microstructural tissue properties in gray and adjacent white matter such as increases in tissue microstructure associated with myelination.

Methods: We used MRI to measure T1- and T2-weighted anatomicals and quantitative MRI to measure relaxation rate (R1) in 43 infants over 87 session (27 infants are longitudinal) in newborns (n=27, 10 females, M=29.1 days, SD=9.9 days), 3-month-olds (n=27, 14 females, M=105.8 days, SD=18.6 days), 6-month-olds (n=22, 10 females, M=189.3 days, SD=15.8 days), and 1-year-olds (n=11, 4 females, M=385.1 days, SD=16.9 days). Higher R1 indicates higher tissue density and a more developed cortex. To test sulcal development, we analyzed 12 sulcal folds that emerge in utero between 16 - 31 gestational weeks, distributed across the cortical surface (Fig 1A). We used the adult average FreeSurfer brain and cortex-based alignment to identify each sulcal fold in every individual infant’s brain and age (Fig 1B). We validated the reliability of automated sulcal fold identification by comparing the accuracy of automated versus hand-drawn sulci using dice coefficients. We found no significant age-related effect of dice coefficient (3-way ANOVA, with factors: age, hemisphere, and sulcus, no main effect of age: F=0.20, p=0.90, sulcus: F=0.73, p=0.70, or hemisphere: F=1.04, p=0.31). Then, in each individual sulcus, we measured the average sulcal depth, surface area, thickness, curvature, and R1. Using linear mixed models (LMMs), we quantified the development of sulci as a function of age and tested if sulcal deepening is significantly related to macro- and microstructural properties.

Results: Our study revealed five main findings: First, all sulcal folds significantly deepen in the first year of life, except for the calcarine sulcus, which remains unchanged (Fig 1C). Second, early emerging sulci are deeper at birth than later emerging sulci, but deepen more slowly after birth (Fig 1D, O). Third, surface area and cortical thickness increase with age (Fig 1D, E), but all sulci become less concave (Fig 1F). Fourth, R1 linearly increases in both gray and white matter in all sulci, with R1 being larger at birth in gray matter than in white matter (Fig 1G, H). However, this pattern reverses after birth, whereby the rate of R1 development in white matter is higher than that in gray matter (Fig 1M, N). Together, these data suggest heterogenous
development of macro- and microstructural properties in these sulci. LMMs relating sulcal depth with macro- and microstructural properties revealed that a linear combination of surface area, curvature, thickness, and R1 best predict sulcal depth across the first year of life ($R^2=0.78; \text{AIC}= 2150$). This combined model demonstrated a significant positive relationship between sulcal depth and R1 ($\beta=2.08; p=0.0005$), thickness ($\beta=0.248, p=0.005$), surface area ($\beta=0.0008, p<0.0001$), and a negative relationship with curvature ($\beta=-6.09, p=6.46x10^{-6}$).

Conclusions: Our results indicate that there are differential developments in macro- and microstructural properties of early emerging sulcal folds of the human brain. Mechanistically, we propose that cortical expansion, characterized by changes in surface area, thickness, and curvature, and microstructural tissue growth contribute to sulcal deepening during the first year of human life.

References

Poster No 1291

Structural neural basis underlying externalization-internalization transition during adolescence

Deying Li$, Haiyan Wang$, Yufan Wang$, Congying Chu$, Lingzhong Fan$

1Institute of Automation, Chinese Academy of Sciences, Beijing, China

Introduction: Adolescence, marked by swift neurodevelopment and cognitive-behavioral transformations impacting cognition, personality, and mental health, witnesses problematic behaviors categorized as internalizing or externalizing (Fuhrmann, Knoll et al. 2015, Achenbach, Ivanova et al. 2016), which is correlated with various adverse developmental outcomes. Neuroimaging objectively quantifies developmental changes. Specifically, the geometry of the cerebral cortex and neural connectivity
ABSTRACTS

are acknowledged to mutually influence and undergo adaptations during developmental processes (Vasung, Lepage et al. 2016, Wu, Palaniyappan et al. 2023). Comprehending the dynamics of cortical geometry and connectivity changes can yield insights into the emergence of cognitive functions and behaviors (Giedd, Blumenthal et al. 1999). A significant challenge lies in the lack of well-established methodologies for seamlessly integrating cerebral cortex geometry and neural connectivity to comprehensively understand the interplay between brain structure and externalizing/internalizing behaviors in adolescence. This understanding is crucial for determining the optimal timing and nature of interventions. In this study, we propose a novel structural indicator that combines both gray matter and white matter measurements to assess the internalizing and externalizing transition processes during adolescence.

Methods: IMAGEN, a large-scale longitudinal neuroimaging cohort study, spanned ages 14, 19, and 22, involving 647 unrelated subjects. T1-weighted images and DWI data underwent preprocessing (Li, Wang et al. 2023), with subsequent probabilistic tractography mapping the whole-brain anatomical connectivity pattern. We reconstructed 72 tracts identified by TractSeg (Wasserthal, Neher et al. 2018). The fiber connection fingerprint results from projecting each fiber onto the white surface, computed using the LaPy Python library (Pang, Aquino et al. 2023). Geometric modes of the white surface mesh were computed for each age and utilized to reconstruct the fiber connection fingerprint. Reconstruction coefficients were then extracted, forming the novel Fiber Decomposition Index (FDI). Behavioral symptoms in IMAGEN participants were assessed using screening questions from DAWBA and SDQ, covering externalizing and internalizing symptoms (Xie, Xiang et al. 2023). PLSCanonical (PLSC) analysis of FDI with internalizing and externalizing behavioral symptoms was conducted. To avoid overfitting, we implemented a train/test design, assigning 90% to the training set and 10% to the test set. This study specifically focuses on the first principal component, possessing the largest explainable variance.

Results: We examined the explanatory power of geometric eigenmodes for diverse aspects of the white matter fiber connection fingerprint, derived from the white surface mesh at three time points. 200 modes were selected for the study. This decomposition was used to assess the accuracy of geometric eigenmodes in capturing the fiber connection fingerprint in 647 individuals from the IMAGEN dataset. Reconstruction accuracy, measured by vertex-wise Pearson correlation between empirical and reconstructed maps, exceeding a correlation coefficient (r) of 0.80 with 200 modes. The PLSC analysis is conducted on the same participant cohort at both 14y and 19y. A noteworthy relationship is identified between externalizing symptoms with FDI at 14y and internalizing symptoms in 19y.

Conclusions: The geometric foundation of the cerebral cortex aligns well with fiber projection across the cortex. The fitting coefficients exhibit statistically significant associations with both internalizing and externalizing behaviors at ages 14 and 19. Our findings indicate that, at 14y, FDI is significantly linked to externalizing behaviors. Conversely, at 19y, it shows significant associations with internalizing behaviors. This unveils a developmental pattern wherein adolescents transition from externalizing to internalizing behavioral problems.
ABSTRACTS

References

Poster No 1292

Maturation of cortical connectivity in the core functional systems – infancy through childhood

Jiaxin Tu1, Aidan Latham1, Jeanette Kenley1, M. Camacho1, Omid Kardan2, Eric Fezcko3, Sydney Kaplan1, Trevor Day3, Chad Sylvester1, Oscar Miranda Dominguez1, Lucille Moore1, Damien Fair3, Christopher Snyemr1, Jed Elison3, Timothy Laumann4, Evan Gordon4, Adam Eggebrecht5, Muriah Wheelock1

1Washington University in St. Louis, St. Louis, MO, 2University of Michigan, Ann Arbor, MI, 3University of Minnesota, Minneapolis, MN, 4Washington University, St. Louis, MO, 5Washington University School of Medicine, St. Louis, MO

Introduction: Resting-state functional correlations (FC) of BOLD time-series detects brain regions that activate together at rest, revealing functional systems with distinguishable functionalities(Seitzman et al., 2019; Wig, 2017). Prior evidence suggested that the degree to which these systems are segregated – showing strong within-system FC relative to between-system FC – increases with brain development(Cao et al., 2017; Grayson & Fair, 2017; Tooley et al., 2022a), but the results
were inconclusive and sometimes conflicting. Furthermore, FC within the same system are typically closer in space than those between systems (Zhi et al., 2022), yet the most significant developmental changes in connectivity are observed over longer distances (Liu et al., 2022), further complicating the interpretations.

Methods: We analyzed group-average vertex-wise FC resting-state fMRI data from three developmental windows: babies (0-3 years) (Howell et al. 2019; Kaplan et al. 2022), children (6-15 years) (Alexander et al. 2017), and young adults (19-32 years) (Power et al. 2014), assessing the six core functional systems widely recognized for their distinct roles (Wig 2017; Uddin, Yeo, and Spreng 2019). Unlike traditional single-seed-based methods, we evaluated the average connectivity of all brain vertices within a system (Fig. 1A, 1B). We quantified the maturity of this system-average FC map using its eta-squared (η^2) coefficient (Cohen et al. 2008) to that in the young adult. We additionally calculated the within and outside system FC for geodesic distance in fsLR standard mesh up to 150 mm in 10 mm bins to examine system segregation as a function of distance.

Results: Our analysis revealed that system-average FC in full-term neonates closely resembles that in adults ($\eta^2 = 0.82$), with this similarity increasing throughout development in babies (0-3 year, growth rate of $\eta^2 = 0.019$/year, $P = 0.028$) and children (6-15 year, growth rate of $\eta^2 = 0.003$/year, $P < 0.001$) (Fig. 1B). An age-group interaction showed a significant difference in growth rate ($\beta = 0.016$, $P = 0.007$). The maturity of connectivity in full-term neonates also varied across system (MI = 0.81±0.07 across six systems). There was a significance increase in maturity of connectivity in the default system for babies and children but not in the somatomotor system (Fig. 1B). We also obtained a matrix of within and between system FC by summing these average FC map within predefined system topography (Yeo et al., 2011) (Fig. 1C). We noted that while within-system FC generally increased from infancy to adulthood, between-system FC changes were more nuanced: the FC between default and frontoparietal systems decreased, but the FC between visual, somatomotor, dorsal attention and cingulo-opercular systems increased across development. Furthermore, we found that FC was higher within than outside systems across all distance bins (Fig. 1C).
2A) and systems (Fig. 2B) in young adults. System-specific long-range connectivity was also present in neonates, suggesting that it was established before birth, rather than developing throughout the first year of life (Fig. 2C). During development from neonate to adult, the within-system FC at >50 mm increased, and the within- and between-system FC at <50 mm decreased, leading to an overall increase in the difference between within- and between-system FC (Fig. 2C). These dynamics can be observed in all systems, with varying degrees of short-distance and long-distance system segregation across stages of development (Fig. 2D).

Conclusions: Our findings affirm that from birth, within-system connectivity is stronger than between-system connectivity for the core functional networks, and this disparity expands throughout development.

References
The associations between microglia function, prenatal environment and white matter development

Shi Yu Chan1, Eamon Fitzgerald2, Zhen Ming Ngoh3, Janice Lee1, Jasmine Chuah1, Marielle Fortier4, Juan Helen Zhou5, Patricia Silveira3, Michael Meaney2, Ai Peng Tan6

1Singapore Institute for Clinical Sciences, Singapore, Singapore, 2McGill University, Montreal, Quebec, 3Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research in Singapore, Singapore City, Singapore, 4KK Women’s and Children’s Hospital, Singapore, Singapore, 5National University of Singapore, Singapore, Singapore, 6National University Hospital, Singapore, Others

Introduction: The biological embedding of early life experiences on neurodevelopment is postulated to be mediated through the immune system (Berens, Jensen et al. 2017). As the brain’s resident immune cell, microglia play a role in environmental surveillance and respond to both adverse and enriched environments (Cathomas, Holt et al. 2022). Microglia have also been shown to regulate neurodevelopment, including synaptic plasticity (Cathomas, Holt et al. 2022). White matter development, indexed by changes in fractional anisotropy (FA), affect a variety of psychopathological outcomes (Stephens, Langworthy et al. 2020), and is shaped by early life environment and genetic factors (Lebel and Deoni 2018). Thus, individual variation in microglia function may interact with early life experiences to influence white matter development. In this study, we examined the associations between microglia function, early life environment and white matter FA slopes. We also explored the sex-dependency of these associations.

Methods: Diffusion imaging data and T1-weighted images were collected from the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) cohort (Soh, Tint et al. 2014) over three time-points (age 4.5, 6.0, 7.5 years) from early to mid-childhood. 351 participants had diffusion imaging data collected at more than one time-point and were included in the current study. Diffusion datasets were processed in FMRIB’s Software Library (FSL v6.0.4) (Smith, Jenkinson et al. 2004) to calculate parametric maps of FA. T1-weighted images were processed with the FreeSurfer v6.0 recon-all pipeline (Fischl 2012) to obtain bilateral cerebral white matter masks. We applied the bilateral white matter mask to the FA maps to extract mean white matter FA. Individual variation in microglia function was indexed by an expression-based microglia polygenic score (ePGS). Two cumulative prenatal environment scores (adverse and advantageous) were derived from demographic and maternal health measures during pregnancy (Silveira, Pokhvisneva et al. 2017). Linear mixed effects models were used to estimate white matter FA slopes over childhood for each participant. Spearman’s correlation and linear regression models were used to examine the associations between microglia ePGS, white matter FA slopes, sex and prenatal environment.

Results: We observed a significant association between individual estimates of white matter FA slopes and microglia ePGS scores (Spearman’s r = 0.144, p = 0.008). This association was modulated by sex (Microglia ePGS:sex interaction: p = 0.026), where a significant positive correlation was only observed for females (Spearman’s r = 0.243, p = 0.0013). Similarly, a significant interaction between microglia ePGS and an advantageous prenatal environment on white matter FA slopes was observed for females (estimate = -0.221, Std Error = 0.084, t-value = -2.63, p = 0.01), but not for males (p = 0.745). In addition, we did not observe a significant interaction between microglia ePGS and an adverse prenatal environment on white matter FA slopes for both males and females (all p > 0.3).

Conclusions: We show that a significant association between an advantageous prenatal environment and white matter development was only observed in females with high microglia ePGS. Our findings suggest that variations in microglia function may explain the heterogeneity in individual susceptibility to early life environment on white matter development.

References
Poster No 1294
The Development of Brain Morphometric Similarity Network in School-aged Children

Xiao Wang¹, Chu-Chung Huang¹, Qing Cai¹
¹East China Normal University, Shanghai, China

Introduction: The development of brain networks in early school-age children plays a pivotal role in the maturation of complex cognitive and behavioral functions (Dong et al., 2021; Shaffer & Kipp, 2013). Evidence suggests that brain structural maturation involves a process of interconnected networking, in which multiple brain regions undergo synchronized morphometric changes in a coordinated manner (Wu et al., 2023). Therefore, exploring the cortical similarity networks is likely to provide a comprehensive understanding of brain maturation trajectories. However, the developmental pattern of the brain morphometric similarity networks in school-age children has yet to be fully revealed and validated through longitudinal data.

Methods: Utilizing the T1-weighted longitudinal imaging data (N = 639, 1-5 time points, aged 6-11) from East China Normal University, we investigated the developmental trajectories of the cortical similarity networks using linear mixed effects model (Figure 1). The Morphometric INverse Divergence (MIND) approach was employed to estimate the within-subject similarity between cortical areas based on the divergence between their multivariate distributions of multiple morphometric features (Sebenius et al., 2023). To investigate the topographical properties of MIND networks systematically, we detected the modular structure using a community detection approach. Additionally, we associated the MIND similarity with both the Raven IQ and the working memory ability.

Results: The prominent developmental pattern observed in multiple morphometric features during the school-age period was the expansion of surface area and the thinning of cortical thickness, together with the increased gray matter volume in the higher-level transmodal areas and the decreased volume in the primary areas (Figure 2A). The modularity of MIND networks shown increased with age (Figure 2D). Five modules including Frontal-Temporal Area 1 and 2, Sensory-Motor Area, Insula-Limbic Area, and Orbital-Frontal Area were identified (Figure 2B). The morphometric similarities within and between the modular structure decline with age, except for the similarity between the Insula-Limbic Area and Frontal-Temporal Area (Figure 2C). The morphometric similarity of MIND network was decreased with age, while the regional degrees of bilateral insula and anterior cingulate cortex increased (Figure 2E-G). No significant association between cognitive scores (Raven IQ and working memory ability) and the morphometric features or the MIND network was found.
Conclusions: In summary, we longitudinally investigated the developmental trajectories of brain morphometric similarity network in school-aged children using T1w images. We observed that the MiND networks displayed a modular architecture, where most modules exhibited a decreased in similarity with age increased. Notably, higher-level transmodal areas, such as the bilateral insula and anterior cingulate cortex, demonstrated an opposite trend. These findings highlight the pattern of the brain segregation in fronto-temporal areas and increased inter-modular integration in insula-limbic areas. This study suggested that the cortical morphometric similarity can serve as a maturational marker during the school-age stage and provided insights into typical brain development.

References

Poster No 1295

Unveiling Fetal Cortical Folding: Neuroimaging and Genetic Insights
Xinyi Xu1, Ruike Chen1, Tianshu Zheng1, Zhiyong Zhao1, Mingyang Li1, Dan Wu1
1College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang

Introduction: The human fetal cerebral cortex undergoes genetically orchestrated gyration (cortical folding) during the prenatal period. Recent fetal brain MRI advancements allow spatiotemporal quantification of macro- and microstructures...
ABSTRACTS

during cortical folding (Figure 1a). Researchers aim to understand the relationship between morphological changes and underlying microstructural alterations associated with cortical folding (Garcia et al., 2021). Transcriptomic technologies revealed regional gene expression patterns during prenatal development (Miller et al., 2014, Li et al., 2018). Pioneering studies by (Huang et al., 2013) and (Vasung et al., 2021) correlated MRI measurements with relevant genes using ex-vivo and in-vivo fetal brains but fell short in describing cortical folding. Therefore, we aim to comprehensively characterize spatiotemporal macro- and microstructural development of the fetal cerebral cortex by integrating in-utero fetal structural MRI, diffusion MRI, and gene expression.

Methods: Fetal brain MRI data: We used fetal brain T2 atlas (Xinyi et al., 2022) and diffusion MRI atlas data (Chen et al., 2022) from 23-38w gestational age (GA), served as standard average representations of a healthy fetal population. Macro- and microstructural characterization of cortical folding was conducted weekly (Figure 1a). Curvature, indicating the degree of cortical folding, was computed as the morphological representation. The Diffusion Basis Spectrum Imaging (DBSI) model (Wang et al., 2011) estimated the fiber, restricted, hindered, and water components of brain tissue using the DBSI toolbox (Spees et al., 2018). Bulk tissue gene expression data: Cortical gene expression data, quantified as Reads Per Kilobase Million (RPKM), were obtained from PsychEncode project (Li et al., 2018). Postmortem human brains underwent regional dissection encompassing 11 neocortical regions (Figure 1b). For this study, we selectively incorporated RPKM data from 4 prenatal specimens (two at 21 pcw, one at 35 pcw, and another at 37 pcw) to match GAs of fetal brain MRI atlases (Figure 1c). Structural equation modeling (SEM): To examine directional influence between early macrostructural cortical folding changes and late microstructural alterations, we conducted SEM in R (lavaan package). This analysis focused on curvature and four DBSI metrics at early (23w) and late (35w-38w) stages (Figure 1d). FDR correction was applied within each DBSI metric. Correlation of Gene expression and Macro-/Micro-structural Measures: We compared regional variation in cortical MRI measures (curvature and DBSI metrics) with prenatal gene expression in correspondent cortical regions (Figure 1b). Pearson correlation between MRI measures and log of RPKM for selected 5438 marker genes (similar selection process to (Ball et al., 2020)) was performed. Enrichment analysis of significant associated genes was conducted using WebGestalt (https://www.webgestalt.org/#).
Results: Early changes (23w) in curvature were significantly associated with changes in DBSI fiber and hindered fractions at later stages (35w-38w) (Figure 2a-c). Based on these SEM results, we further analyzed the correlations of curvature at 23w and two DBSI metrics at 37w-38w with gene expression data. Of 5438 genes, 87 correlated significantly with curvature, 79 with DBSI fiber fraction, and 30 with DBSI hindered fraction after FDR correction (p<0.05) (Figure 2d). Significant enrichment of the genes that were significantly associated with curvature identified neurodevelopmental terms, including neurogenesis and neuron differentiation (Figure 2e). Genes significantly correlated with DBSI fiber and hindered fractions were both enriched for cell adhesion, biological adhesion, and extracellular matrix organization.

Conclusions: Our study combines advanced imaging modalities and genetic analysis to probe fetal cortex development dynamics, enhancing our understanding of macro- and microstructural interplay in neurodevelopment.

References
Dual long-axis reorganization of hippocampus in youth

Debin Zeng¹, Qiongling Li², Deyu Li¹, Yirong He², Xiaoxi Dong², Shaoxian Li², Yong He², Xi-Nian Zuo², Shuyu Li²
¹Beihang University, Beijing, China, ²Beijing Normal University, Beijing, China

Introduction: The reorganization of human hippocampus, especially its interaction with cortex, remains largely undefined in youth. The organization of a single hippocampal long-axis has been predominantly characterized as monotonic (Genon et al. 2021; Strange et al. 2014), despite recent indications of nonmonotonic features in neuron density (Gandolfi et al. 2023) and geometric eigenmodes (Pang et al. 2023). While the human cortical hierarchy has been well recognized for significant developmental and evolutionary advantages (Dong et al. 2021; Tong et al. 2022), hippocampus has been typically considered an evolutionarily conserved brain structure (Strange et al. 2014; Pandya et al. 2015), and overlooked regarding its integrative role of cortical hierarchical processing during development.

Methods: Our study utilized data from the Human Connectome Project Development (HCP-D) with 652 participants (5-21 years) and the Children School Functions and Brain Development Project (CBD, Beijing Cohort) with 300 children (6-13 years). We used the HippUnfold tool (DeKraker et al. 2022) to segment the hippocampus and generate mid-thickness surfaces. Hippocampal-cortical connectomes were created by correlating rs-fMRI time series between hippocampal vertices and cortical regions (defined by the Glasser atlas (Glasser et al. 2016)). A diffusion embedding method yielded the hippocampal functional gradient (Fig. 1a), and cortical projections were computed by taking the dot product between the gradient and the hippocampal functional connectivity for each cortical region. Geometric eigenmodes for each hippocampus were obtained through Laplace–Beltrami operator-based analysis. All developmental effects were studied using generalized additive models. Lastly, transcriptomic association and developmental enrichment analyses were conducted to explore the neurobiological basis of dual long-axis functional gradient development.
Results: Here, we corroborated the presence and significance of a dual long-axis representation of the hippocampal connectome and geometry including both linear and quadratic gradients along its long-axis in youth (Fig. 1b and e). This finding was robust across two independent large-scale developmental cohorts. Projecting the connectome gradients onto the cortex, we clarified how distinct cortical hierarchies allocate functional connectivity differently along the long-axis, thus coding the hippocampus’s intricate and multifaceted role in cortical hierarchical processing (Fig. 1c and d). These discoveries challenge classical views that propose a monotonic gradient of structural and functional differentiation along the hippocampal long-axis, and question the traditional notion of the hippocampus as being evolutionarily conserved in terms of its organization. We observed substantial developmental reorganization of dual long-axis gradients in supporting the maturation of the cortical hierarchy in youth (Fig. 2b). The reorganization further unfolds that the human hippocampus continues to loosen its geometric constraints on functional gradients to support the executive function performance (Fig. 2c and d). Notably, we revealed that neurodevelopmental variability in the functional gradient profiles mirrors a gradient associated with a plasticity-limiting factor (myelin content, estimated by T1w/T2w ratio) (Fig. 2a). At micro-level, we found that neural growth, stress hormone regulation, and neuroactive signaling are involved in this geometry-function-cognition alignment, facilitating such reorganization of the dual hippocampal long-axis gradients in youth (Fig. 2e).

Conclusions: Our findings enrich the understanding of hippocampal-cortical reorganizational principles across structural, functional, and molecular dimensions as well as its maturation, and define the plasticity distribution within the human hippocampus at systems level, holding potentials to enhance and translate neurodevelopment and neuropsychiatric healthcare.
Microstructural Features Linking White Matter and Mathematics in Childhood and Adolescence

Bryce Geeraert, Kiara Kunimoto, Marc Lebel, Catherine Lebel

University of Calgary, Calgary, Alberta

Introduction: Mathematics is a complex skill requiring the coordination of distributed gray matter brain regions connected by white matter tracts. Diffusion imaging (dMRI) studies have revealed a network of white matter tracts that facilitate math processing, but it remains unclear how the microstructural features of these tracts support math. Additional modalities can provide higher specificity to white matter microstructure. The neurite density index (NDI) and orientation dispersion index (ODI) probe axon packing and coherence, myelin volume fraction (VFm) is sensitive to myelin content, while the g-ratio reports axon diameter to myelin thickness, which relates to communication efficiency in white matter. We combined dMRI with these more specific metrics to evaluate links between white matter microstructural development and math in a longitudinal cohort of adolescents.

Methods: 33 healthy children (16M/17F, 12.7 ± 2.4 years) were scanned on a GE 3T Discovery MR750w scanner, and again after two years (66 datasets total). DTI/NODDI: spin echo EPI, TR/TE = 12s/88ms, 2.2mm isotropic resolution, b=900 & 2000 s/mm², 30 directions and 5 b0 per shell. McDESPOT: multi-α SPGR, 18° max α, 1.72x0.86x1.7mm res.; IR-SPGR, 2.29x0.86x3.4mm res., 5° α; two bSSFP images with phase of 0° and 180°, 1.72x0.86x1.7 mm resolution, max α 60°, TR/TE = min+0.1ms/min for all. Participants completed WIAT-III CDN subtests for Mathematics and Math Fluency composite scores at both time points. Following preprocessing, four math-related tracts—the left superior longitudinal (SLF) and inferior longitudinal fasciculi (ILF), corticospinal tract (CST), and the splenium—were segmented in ExploreDTI. Fractional anisotropy (FA), mean diffusivity (MD), NDI, ODI, VFm, and g-ratio maps were produced. Partial correlations between time 1 and annual change in white matter metrics and math scores, controlling for age and gender, were computed per tract. Multiple comparisons were corrected via the false discovery rate (FDR) method.

Results: ODI of the SLF and CST correlated to Mathematics in cross-sectional analysis of time 1 data. Longitudinally, annual change in Mathematics correlated with change of NDI in the SLF, MD in the CST, and VFm in the splenium. Math Fluency correlated with VFm in the ILF and splenium, and with g-ratio in the ILF and CST. No significant correlations were observed between FA and math scores in any investigated region (Table 1, Figure 1). Correlations did not survive FDR correction. Follow-up analyses of math subtests suggested white matter microstructure was most closely related to rapid information processing, although some links to higher-order mathematical skills were observed.
Conclusions: We applied measures specific to white matter microstructure in a longitudinal cohort to show that links between DTI metrics and math skill are primarily driven by changes in axonal packing and myelin. Our findings suggest axonal packing in the math network supports sophisticated processing and problem solving, while myelin predominantly supports rapid information processing. Correlations were moderate to high magnitude and achieved high power, despite not surviving FDR correction. This, combined with the near absence of correlations between DTI metrics and math, highlights the strength of microstructurally-sensitive metrics to detect subtle relationships that may be missed by traditional methods. While most relationships were such that indications of more mature white matter were positively correlated to math, decreases in myelin content were linked to improvements in mathematics in adolescence. This suggests adolescence is a period of refinement to the already established structural network underlying mathematical processing. These findings shed light on the role of white matter tracts in complex cognitive tasks such as mathematical processing, and may be applied to better understand the biological underpinnings of learning disabilities.

References
Regional cortical thickness growth pattern during early fetal stage

Hyukjin Yun1, Sungmin You1, Seungyoon Jeong1, Pablo Jáquez Vergara1, Sian Wilson2, Ellen Grant1, Kiho Im1

1Boston Children's Hospital, Boston, MA, 2King’s College London, London, England

Introduction: Fetal brain magnetic resonance imaging (MRI) has been employed to visualize fetal brain growth during pregnancy. The cortical plate (CP) is one of distinguishable tissues in fetal brain MRI which is a transient tissue formed as a result of the migration of neuronal precursors from the germinal matrix and ganglionic eminence, giving rise to the developing cerebral cortex. In an ex vivo fetal MRI study, the CP thickness showed a small change (< 1 mm) between 15 and 40 weeks of gestational age (GA), however, it varied significantly across cortical regions. The regionally different growth of the CP thickness may be related to rapid growth and regional expansion of functional areas under genetic controls. Investigating regionally different growth pattern of the CP thickness in living fetuses may provide more regional information of functional development in human brain development. In this study, we measured the CP thickness using multi-site fetal brain MRI data and quantify regionally growth rates of the CP thickness.

Methods: The study was approved by the local Institutional Review Board at Boston Children’s Hospital (BCH) and by the Ethics Committee of Hospital Clinic Barcelona, Spain (HCB/2020/0267). A total of 28 typically developing (TD) fetuses (GA: 27.6 ± 3.5 [mean ± standard deviation]) were included in this study (twenty from BCH and eight from developing Human Connectome Project (dHCP, https://www.developingconnectome.org/project/)). Multiplanar MRI stacks of thick 2D slices from BCH and dHCP data were acquired using T2-weighted Half-Fourier Acquisition Single-Shot Turbo Spin-Echo and Single-shot fast spin-echo sequences, respectively. After motion correction of MRI stacks, we performed CP segmentation and extracted the inner CP surface using Marching cube algorithm. The outer CP surfaces was expanded from the inner surface using a topology-preserving deformation technique. Based on vertex-wise correspondence between the inner and outer surfaces we estimated cortical thickness by distance between the corresponding vertices. For inter-subject vertex correspondence, we aligned the surfaces to 29 GW template surface. On the template surface, we manually parcellated cortical regions (Figure 1A) based on the Freesurfer Desikan atlas. Then the regional linear growth rates were calculated by fitting a line to the average thickness and GA.

Results: All the regions showed small growth rates (< 0.1mm/week) but the rates were regionally diverse (Table 1). Among the regions, bilateral cingulate cortex and insular showed high growth rate (> 0.7 mm/week) (Figure 1B). Superior and inferior temporal cortices also showed relatively high growth rate (> 0.6mm/week). In contrast, the regions belonging to parietal and occipital lobes showed relatively low growth rate (< 0.45mm/week).
Conclusions: This study presented regional growth rates of the CP thickness in the TD fetuses. We observed high thickness growth rates in the central region compared to the peripheral regions. The age-related growth patterns of the CP thickness are similar to gyrification. In our previous studies, we found that early cortical folding emerged in the central regions and proceeded in the tempo-parieto-occipital lobes, and then the frontal lobe. This regional pattern of growth rates may reflect the phylogenetic and functional localization of the cerebral cortex. The phylogenetically older allocortex cortical regions such as the anterior insular cortex mature earlier than the newer cortical regions. Therefore, the diverse growth rates of CP thickness during early fetal life may agree with regionally relevant indices in functional development in the human brain. The findings in this study may be used in the future investigations to reveal the relationship between CP thickness and functional development with a large sample of fetal brain MRI in wide GA range.

References
2. L. Vasung (2016), Quantitative and Qualitative Analysis of Transient Fetal Compartments during Prenatal Human Brain Development, Frontiers in Neuroanatomy. 10 11.
11. S. Robbins (2004), Tuning and comparing spatial normalization methods, Med Image Anal. 8 311–323.
13. R.S. Desikan (2006), An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, NeuroImage. 31 968–980.
Preschool-age sensorimotor network segregation supports motor and cognitive maturation in childhood

Xing Qian¹, Marcus Qin Wen Ong¹, Jia Ming Lau¹, Shayne Siok Peng Yeo², Zhen Ming Ngo³, Ai Peng Tan³, Peter D. Gluckman⁴, Evelyn Chung Ning Law², Juan Helen Zhou¹

¹National University of Singapore, Singapore, Singapore, ²Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research in Singapore, Singapore, Singapore, ³National University Hospital, Singapore, Singapore, Singapore, ⁴Liggins Institute, University of Auckland, Auckland, New Zealand

Introduction: The human brain undergoes early maturation of primary sensorimotor regions and more protracted development of high-order association regions, generally paralleling motor and cognitive milestones. Research finds that preadolescent children with more physical activity (PA) show more efficient patterns of brain activity and superior cognitive performance, supporting Piaget’s postulation that sensorimotor system provides necessary foundations upon which higher-order cognition is built. In childhood, brain functional networks became increasingly segregated with increased age, which was suggested to support vast improvements in executive function (EF). However, little is known on the longitudinal changes of functional segregation and their associations with EF and PA, particularly in preschool children. We aimed to study this gap in children from 4.5 to 10.5 years old (YO) using longitudinal GUSTO dataset. We expected differential system-specific trajectories of the network segregation and hypothesized that earlier sensorimotor network segregation would play a dominant role in the behavioral prediction.

Methods: We studied 574 children who had at least one timepoint brain images of good quality, including 157, 211, 400 and 380 children at the visits of 4.5, 6, 7.5 and 10.5 YO respectively. The average daily time of moderate to vigorous physical activities (MVPA) was measured at 5.5, 8 and 10 YO. To assess EF, the BRIEF were administered at 4.5, 7 and 8.5 YO, and the D-KEFS was administered at 10.5 YO. To calculate functional connectivity (FC), region-of-interest (ROI) time series were extracted from resting state fMRI data using a 144-ROI parcellation. We performed a 2-stage consensus community detection on FC matrices to derive the individual- and group-level network community structures. To characterize the network segregation of each child at each visit, we calculated the modularity, and the global and system/module level system segregation (SS) and participation coefficient (PC). We examined the longitudinal changes of these measures using linear mixed effect model and the associations with EF, MVPA and future brain measures.

Results: We observed the sensorimotor modules (i.e., visual and somatomotor) were already detected at younger ages (i.e., 4.5 and 6 YO), while the higher-order cognitive modules (i.e., salience/ventral attention [S/VA] and control) were formed at older ages (i.e., 7.5 and 10.5 YO) (Fig 1A). Whole-brain functional network segregation was increased longitudinally represented by higher modularity/SS and lower PC (Fig 1B). When navigating at different system types, the SS of both sensorimotor and association systems was increased, indicating increased functional system differentiation across the sensorimotor-association axis (Fig 1C). At the module level, all the cortical modules showed declined PC over time. The default mode (DM) module showed increased SS over time, while the visual/dorsal attention A (VS+DAA) module showed decreased SS (Fig 1D), indicating more integration with other modules over time. Moreover, girls showed higher functional segregation, i.e., lower PC in the DM, control, S/VA-B and SC modules and higher SS in association system than boys. More segregation of sensorimotor systems at earlier ages dominantly predicted better EF and longer MVPA (both cross-sectionally and future) (Fig 2, A&B). In contrast, as the children grew up, this role was predominantly replaced by the association systems (Fig 2, C&D). Moreover, preschool children with more segregation in the sensorimotor system at early ages (i.e., 4.5 to 6 YO) had more segregation in the association system in middle or late childhood (i.e., 7.5 to 10.5 YO) (Fig 2, E&F).
Conclusions: Our study provides novel evidence characterizing the differential longitudinal maturation of brain sensorimotor and association network segregation, which underscore the important role of sensorimotor system to future motor and cognitive development across the childhood.
ABSTRACTS

Poster No 1300

Ultra-high field quantitative susceptibility mapping of the neonatal brain

Chiara Casella1,2, Katy Vecchiato1,2, Ayse Sila Dokumaci3, Philippa Bridgen4,5, Beya Bonse1,5, Pierluigi Di Cio4,5, Joseph Hajnal1,3,4, Sharon Giles3,4, Jucha Willers Moore1,6, Jan Sedlacik4,7,8, Wilkinson Thomas3, Raphael Tomi-Tricot3,9, David Carmichael3, Jonathan O’Muircheartaigh1,2,6, Tomoki Arichi1,5,6, Shaihan Malik1,3,4

1Centre for the Developing Brain, King’s College London, London, United Kingdom, 2Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom, 3Biomedical Engineering Department, King’s College London, London, United Kingdom, 4London Collaborative Ultra high field System (LoCUS), London, United Kingdom, 5Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom, 6MRC Centre for Neurodevelopmental Disorders, London, United Kingdom, 7Mansfield Centre for Innovation, Imaging Sciences, Institute of Clinical Sciences, Imperial College, London, United Kingdom, 8Robert Steiner MR Unit, MRC Laboratory of Medical Sciences, Hammersmith Hospital, London, United Kingdom, 9MR Research Collaborations, Siemens Healthcare Limited, London, United Kingdom

Introduction: Iron is essential for healthy brain development, but its non-invasive quantification in early life is extremely challenging. 7T MRI provides enhanced SNR, resolution, and susceptibility effects, which can greatly enhance the ability to image brain iron. Specifically, 7T quantitative susceptibility mapping (QSM) affords uniquely high sensitivity for detecting subtle variations in brain iron deposition, but has never been used to study the newborn brain. Here, we explore the feasibility and sensitivity of 7T QSM for assessing brain iron in the first weeks after birth.

Methods: Subjects and data acquisition: 5 neonates (median age: 39.7 weeks postmenstrual age (PMA), range: 37-41.28) were imaged in natural sleep at 7T (MAGNETOM Terra, Siemens Healthineers) with 2D T2w acquisitions for anatomical information (axial, sagittal, coronal: 0.6x0.6x1.2mm resolution, TR=8640ms, TE=156ms, flip angle=120°) and a 3D T2*w GRE sequence for QSM (0.7mm isotropic, TR=32.2ms, flip angle=15°, 6 TE, TE=2.92ms, echo spacing=5.19ms). For comparison, 11 children (mean age: 11.9 years, range: 8-14) were imaged on the same scanner with 3D MP2RAGE 3 (0.65mm isotropic, TE/TR=3.15/4000ms, TI=650/2280ms), 3D FLAIR (0.8mm isotropic, TE/TR=240/9000ms, TI=2600ms), and 3D T2*w GRE sequences (0.7mm isotropic, TR=29ms, flip angle=15.5°, 6 TE, TE=2.68ms, echo spacing=4.69ms). QSM reconstruction: Combination of complex data and QSM computation were carried out using the approaches outlined in4. Image registration and tissues segmentation: Neonates: T2w images were non-linearly registered to a 37 week PMA template6. Magnitude images were rigidly co-registered to the corresponding T2w volume. QSM normalization to the template was achieved through composition of the above transformations. Tissue segmentations and surfaces were generated in template space using the developing Human Connectome Project (HCP) pipeline6. Children: Magnitude images were rigidly co-registered to the corresponding MP2RAGE volume, and QSM normalization was achieved through the composition of the above transformations. FLAIR and T1w images were analyzed with the HCP pipeline7 to perform tissue segmentation and surface reconstruction in native space. Analysis: Susceptibility (χ) was examined in caudate, lentiform nucleus, corpus callosum (CC) and lateral ventricles. Additionally, χ was sampled along the grey/white matter (GM/WM) boundary.

References
Results: The susceptibility contrast between GM and WM in neonates is low. \(\chi \) in GM nuclei is negative in neonates and positive in children, where clearer structural boundaries are observed, reflecting greater iron deposition. \(\chi \) is negative in the CC of neonates, underscoring a significant effect of diamagnetic myelin on WM susceptibility even in the initial weeks after birth. In children, \(\chi \) in the CC is more negative, reflecting increased myelination. \(\chi \) in ventricles is higher in the neonatal brain. This finding is consistent with previous 3T evidence\(^8\) and is possibly due to the higher content of iron-containing neutrophils in the newborn brain\(^9\). Positive \(\chi \) values are observed in posterior auditory and visual cortical areas in neonates, while in children positive \(\chi \) values are more widespread, consistent with a high iron layer in the deeper cortex corresponding to underlying myeloarchitecture\(^10\), and with a posterior to anterior pattern of myelination in neurodevelopment.

Conclusions: We demonstrate the feasibility of QSM of the neonatal brain at 7T and show that it can detect regional variations in tissue composition through different stages of brain development. These findings implicate the huge potential of this approach for providing novel insights into neurodevelopment and for improving understanding of iron-related tissue damage in the initial months after birth, as well as its association with prognosis.
Cortical Thickness and Myelination in Preterm and Full-term Infant Brains

Fumitaka Homae¹, Daisuke Tsuzuki²

¹Tokyo Metropolitan University, Tokyo, ²Kochi University, Kochi

Introduction: The cerebral cortex exhibits a thicker profile at convex regions, such as the crown near the vertices of cortical gyri, compared to concave regions at the fundi of cortical sulci. This tendency has been observed in adults through structural magnetic resonance imaging (MRI) measurements (Fischl & Dale, 2000), neonates, and infants (Holland et al., 2020). The difference between convex and concave regions is also evident in their degree of myelination, as measured by quantitative relaxation rate mapping (Sereno et al., 2013) and in the ratio of T1-weighted (T1w) and T2-weighted (T2w) MRI images (Shafee et al., 2015). Since not all sulci and gyri are fully matured at term, we anticipate that cortical thickness and the degree of myelination will vary based on the morphological changes of the cortical surface during early infancy.

Methods: In this study, we parameterized the local shape of the cortical surface and examined the profiles of cortical thickness in convex and concave regions relative to gestational age. We analyzed infant MRI data from the second release of the Developing Human Connectome Project (Hughes et al., 2017). The dataset included brain images of preterm and full-term infants (N = 401; range of the scans: 37.0–44.7 gestational weeks). Each infant was classified into eight groups based on the scan week, ranging from 37 to 44 weeks. The database provided cortical mesh data reconstructed from structural MRIs. Cortical thickness was defined as the distance between the pial and white-matter surfaces (Bozek et al., 2018; Makropoulos et al., 2018). The values of T1w/T2w at each vertex of the surface mesh were also utilized in the analysis. We calculated the principal curvatures at each vertex and determined vertex-wise shape indexes (Koenderink & Van Doorn, 1992). Based on the shape index, vertices were categorized into one of seven morphological definitions: spherical cup, rut, saddle rut, saddle, saddle ridge, ridge, and dome (Vezzetti & Marcolin, 2012). The spherical cup and dome categories predominantly appeared in the sulcal fundi and gyrus crowns, respectively. For each infant, we obtained the mean values of cortical thickness and T1w/T2w across vertices within each morphological category.

Results: The cortical thickness and T1w/T2w values increased with gestational weeks. At 44 weeks, the cortical thickness increased gradually from the spherical cup regions (lowest) to the dome regions (highest thickness). However, in full-term infants younger than 39 gestational weeks at MRI scanning, the cortical thickness in the dome regions was lower than in the ridge and saddle ridge regions. Furthermore, at around 40 weeks, preterm infants had a thicker cortex than full-term infants. Conversely, the T1w/T2w values showed the opposite trend; the values were higher in full-term infants than in preterm infants. In both infant groups, the spherical cup regions exhibited the lowest T1w/T2w values.

Conclusions: These results suggest that the cortical thickness changes with the formation of cortical sulci and gyri and that its distribution depends on the gestational age at birth. Furthermore, the differences between the infant groups suggest that the cerebral cortex in preterm infants at approximately 40 gestational weeks contained relatively large amounts of astrocytes and extracellular matrix.

References
Resting-state neural activity and brain structure associations in infants and children

James Edgar¹, Heather Green¹, Kylie Mol¹, Marybeth McNamee¹, Mina Kim¹, Yuhan Chen¹

¹Children's Hospital of Philadelphia, Philadelphia, PA

Introduction: Many electrophysiology studies have reported on resting-state (RS) neural activity in humans. This research often focuses on RS alpha-band activity (8-12 Hz in adults), with RS alpha activity commonly interpreted as reflecting the brain’s readiness to process information (Klimesch et al., 2007), predicting task performance and processing speed (Klimesch, 1999), and being integral to local- and long-range functional connectivity (Osipova et al., 2008). Infant RS studies seek to understand the maturation of RS neural processes, with the first two years of life a period of rapid neural development. This line of research is constrained by difficulty obtaining prototypical high signal-to-noise ratio (SNR) eyes-closed RS electrophysiology measures in infants and toddlers, with almost all infant studies obtaining RS measures while infants view visual stimuli, and with an eyes-open condition not generating a robust infant ‘alpha’ response (here referred to as the ‘dominant oscillation’ response; (Edgar et al., 2023)). In the present study, a RS task optimized for infants was used to examine the maturation of RS activity from 0 to 28 months, with associations between RS neural activity and brain structure also examined.

Methods: Whole-head magnetoencephalography (MEG) data were obtained while infants underwent an eyes-open dark room (DR) RS task (Edgar et al., 2023). The infants rested with eyes open in total darkness for 30s, then viewed the Inscape video for 20 s (Vanderwal et al., 2015), alternating 6 times. 300s of DR data were collected to obtain 180s of video off and 120s of video on data. Following the MEG exam, MRI data were collected on a Siemens Prisma 3T: a T1-weighted magnetization-prepared rapid gradient-echo image, a T2-weighted image, and a diffusion-weighted spin-echo single-shot EPI sequence with opposed phase encoding direction pairs. RS DR activity was examined in brain space using distributed source modeling, with analyses examining periodic and aperiodic activity RS measures (Ostlund et al., 2022) in a parietal-occipital ROI. Parietal-occipital gray matter (cortical thickness) and local diffusion measures (e.g., fractional anisotropy) were obtained to assess associations between RS neural activity and brain structure.

Results: MEG data were obtained from 26 infants (0 to 18 months). As shown in Figure 1a, comparison of the total darkness (black line) and the video-on (red line) power spectrum shows that the infant dominant oscillation was easily identified in the infants/toddlers in the total darkness condition but not the video-on condition (x axis shows frequency and y axis RS power). Figure 1b shows the expected age-related increase in the infant dominant oscillation frequency in the total darkness condition. MEG, T1, and DTI data were obtained from 23 infants. As shown in Figure 2, more mature parietal-occipital gray matter (in infants, less gray-matter cortical thickness) as well as more mature parietal-occipital white matter (in infants, higher fractional anisotropy and lower mean diffusivity) predicted a more mature RS dominant oscillation frequency (higher frequency) as well as more mature aperiodic offset and exponent values (in infants, these values decreasing as a function of age).
Conclusions: The eyes-open DR task provides RS measures with a high-SNR dominant oscillation response in awake infants, with a periodic dominant oscillation (3 to 8 Hz) observed in all infants (and thus indicating the presence of a ‘dominant oscillation’ in even young infants), and with a higher frequency dominant oscillation observed in older than younger infants. Present findings build on and extend the few older child and adult studies examining RS neural activity and brain structure association (Edgar et al., 2015; Green et al., 2021; Valdes-Hernandez et al., 2010), with the maturation of parietal-occipital gray and white matter associated with the maturation of periodic as well as aperiodic RS neural activity.

References
Impacts of perinatal factors on white matter outcome at 8 to 10 years by diffusion tensor imaging

Injoong Kim¹², Omar Azrak², Mark Foster², Emil Cornea², Sang Kyoong Park², Martin Styner², John Gilmore²

¹Department of Radiology, Veterans Health Service Medical Center, Seoul, Republic of Korea, ²Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC, United States

Introduction: Postnatal brain development is a complex process that is under active investigation. Diffusion tensor imaging (DTI) can reveal altered white matter microstructure by using the orientation and integrity of white matter tracts. Here, we aimed to investigate how common neonatal indicators of health (birthweight [BW], gestational age [GA], head circumference at birth [HC]) and brain development are related to DTI-based measurement of white matter microstructure in 8 to 10 years old near-term-born children. Recent study (Nivins et al, 2023) showed how these indicators predict brain volume and white matter microstructure in the same age group, with only BW showing predictive power for white matter microstructure via a traditional tract-based spatial statistics (TBSS) analysis. Building on these results, the goal of the current study was to replicate their findings in a separate sample via an alternative, more sensitive DTI analysis framework.

Methods: From the University of North Carolina's Early Brain Development Study (EBDS) database, we selected participants with MRI scans collected within 8 to 10 years of age on a 3T Siemens Tim Trio (b=0¹³, 300⁸, 700 [32], 2000 [64 unique gradients]; 2x2x2mm resolution) and perinatal clinical information. Ninety-two children born at ≥ 30 weeks’ gestation age were included (male, 42 [45%]; median age, 10 [range 8-10.9 years]). A study-specific quality control protocol was applied to all raw DTI data using the dmriprep (Dubos et al, 2023) module in the DMRIPlayground toolkit (https://github.com/NIRALUser/DTIPlayground). A study-specific DTI atlas was created via the dmiratlas module in DMRIPlayground. Fifty-three major white matter tracts were determined in that DTI atlas space via propagation and automated tracking (Ngattai Lam et al, 2018) of the EBDS pediatric DTI atlas (Short et al, 2022). Diffusion tensor metrics (fractional anisotropy [FA], axial diffusivity [AD], radial diffusivity [RD]) were extracted at evenly spaced points (arc lengths) along each fiber tract. Statistical analysis was performed via FADTTS (Zhu et al, 2011), covarying for gender, yielding tract-wise global as well as local p-value maps. For each tract, a multivariate analysis was first performed combining all three DTI metrics, followed by a posthoc analysis for each FA, RD and AD separately.

Results: Among the three factors (BW, GA, HC), BW showed the most widespread significant associations (p<0.05) with white matter diffusion metrics globally (28 out of 53 white matter tracts) and locally (see Figure 1). GA (15 out of 53) and HC (16 out of 53) also showed significant associations though with a lower number of tracts affected. Gender was also highly associated with the diffusion metrics globally in most white matter tracts. In the posthoc analysis, we found surprisingly far more correlations for all three perinatal factors with AD and RD than with FA. AD and RD associations with BW, GA and HC were found in 18, 8, 9 and 17, 8, 9 out of 53 white matter tracts, respectively. For FA, 5, 4, 3 out of 53 white matter tracts showed significant associations.

Conclusions: In comparison with previous study (Nivins et al, 2023), we show that neonatal measures of birthweight, gestational age, and head circumference at birth are all significantly predictive of white matter microstructure at age 8-10 years across many fiber tracts, with a focus on central white matter locations. These findings might hold the potential to offer substantial insights into the intricate relationship between perinatal factors and the development of the brain's white matter.
during childhood. Please note that the presented analysis is based on a mid-size sample (n=92) scanned on a single 3T scanner. We are currently in the process to extend this study to include all EBDS subjects scanned at the ages of 8-10 years, increasing the sample size to over 300 subjects acquired on 3 different 3T Siemens scanners.

References

Poster No 1304
Subtle differences in attentional networks when contrasting very preterm with term-born infants
Florian Fischmeister¹, Nadine Pointer², Sophie Weinmüller¹, Alfredo Spagna², Galatea Reme¹, Vito Giordano¹, Karin Pichler¹, Gregor Kasprian¹, Kathrin Kolindorfer¹
¹Medical University of Vienna, Vienna, Austria, ²Columbia University, New York, NY

Introduction: Children who are born very preterm (before 33 weeks of gestation) are up to 4 times more likely to be diagnosed with attention deficits compared to their term-born peers. Attention is an essential neuropsychological component that is crucial for effective cognitive functioning. According to the neurocognitive model developed by Posner and Petersen in 1990, attention comprises three distinct neural networks: alerting, orienting, and executive control. These networks develop during infancy and are related to differences in an individual’s self-regulation. The efficiency of these attentional networks can be assessed using the Attentional Networks Test (ANT; Fan et al., 2002). In this study, we present initial data that examines these networks and evaluates their efficiency for both term-born and very preterm-born children.

Methods: Nineteen healthy children aged between 5 and 6 years old, consisting of 7 very preterm and 12 term-born controls, underwent a comprehensive assessment, which included clinical, behavioral, and socio-demographic evaluations. The assessment also featured a child-friendly version of the Attentional Network Test for Interaction (ANTI) called ANTI-Birds (Casagrande et al., 2021). The ANTI-Birds task was presented twice, once during the assessment and once while functional magnetic resonance images were acquired using a 3T Prisma MRI (Siemens, Erlangen, Deutschland). Task-based data were analyzed using fMRIPrep (Esteban et al., 2019) with age-specific templates created by Fonov et al. (2011). The first and second levels were modeled with fixed-effects models using FitLinS (Markiewicz et al., 2022).

Results: On a behavioral level, preterm and term-born children performed equally well, with only marginal differences in the Kaufmann Assessment Battery for Children (K-ABC). The results of the fMRI study indicate that all three attention networks can be found consistently across both groups. The alerting network, which represents a change in internal state, involves frontal and parietal regions, particularly of the right hemisphere. Activation associated with the orienting network, which is involved in the selection of information, was found within the frontal eye fields, interior parietal lobe, midbrain, and thalamic regions. The executive control network, representing more complex mental operations like monitoring conflicting information, can be aligned with activated regions along midline frontal areas such as the anterior cingulate cortex, lateral prefrontal cortex, and basal ganglia. Contrary to the behavioral data, a marked difference in a specific network within preterm-born children was observed. While the executive control network revealed increased activation in prefrontal regions, indicating a higher demand for cognitive resources within preterms, the alerting network showed the opposite pattern. Here, a global increase in activation across the whole network was observed.

Conclusions: There is ample evidence that the three aspects of attention - alerting, orienting, and executive control - are anatomically separable in adolescents and adults. However, it is discussed if this is also the case in the developing brain. This study is one of the first to investigate whether these three aspects of attention are independent and linked to separate brain regions in children, both term and preterm. Variations observed across the two groups may indicate differences in processing style and/or developmental levels within the subcomponents of the attention network.

References
Poster No 1305

Mapping infant brain functional regionalization with multiview functional cortical parcellation

Tianli Tao1, Jiawei Huang1, Xinyi Cai1, Feihong Liu1, Rui Zhou1, Zhuoyang Gu1, Lianghu Guo1, Lixuan Zhu2, Feng Shi2, Han Zhang1

1School of Biomedical Engineering, ShanghaiTech University, China, Shanghai, China, 2Shanghai United Imaging Intelligence Co., Ltd, Shanghai, China, Shanghai, China

Introduction: The human brain demonstrates higher spatial and functional heterogeneity during the first two postnatal years than any other period of life (Johnson, 2000). Understanding the changes in brain function and structure has profound implications for comprehending early brain development. While existing research has provided substantial insights into the development of brain structure, our understanding of the development of cortical functions remains limited. Using advanced infant cortical functional parcellation, we investigate the relationship between functional regionalization and cognitive development. This work aims to address two questions: First, what is the functional hierarchy of brain functional regionalization? Second, what is the relationship between longitudinal functional regionalization and cognitive development?

Methods: A total of 467 scans collected from the Baby Connectome Project (BCP) (Howell, et al., 2019) were included in the current study. These scans comprised paired T1-weighted (T1w) MRI and resting-state fMRI data from 221 infants aged between 2 weeks and 24 months. Infant-based preprocessing procedures were applied to the T1w MRI and resting-state fMRI data. (Li, et al., 2013) We utilized our previously developed multiview functional parcellation with 9 brain subnetworks (Tao, et al., 2023) as the infant brain functional atlas. Consistent with the methodology outlined in the prior study, we calculated the multiview fMRI fingerprint and projected the data onto the individual cortical surface using Freesurfer (Fischl, 2012). Each subject’s sphere has been registered to the fsaverage standard sphere, ensuring that corresponding vertices for each individual are aligned at the same location. First, we employed a dendrogram analysis to explore the hierarchical relationships among the 9 subnetworks. Specifically, we utilized the multiview fMRI fingerprint to calculate the pairwise correlations among 9 subnetworks for each scan. Based on these correlations, we constructed a dendrogram to depict the hierarchical organization among the regions. Then, we utilized a linear mixed model to model the correlations between these subnetworks and five standardized Mullen scores (Mullen, 1995), namely Gross Motor (GM), Fine Motor (FM), Visual Reception (VR), Receptive Language (RL), and Expressive Language (EL).

Results: Upon dendrogram analysis, we observed that the 9 subnetworks of the brain could be primarily categorized into three different clusters of functional development: 1) subnetwork 3 (Visual); 2) subnetworks 1, 7, 8 (Dorsal attention, Default mode, Parietal); and 3) subnetworks 2, 4, 5, 6, 9 (Limbic, Somatomotor, Superior temporal Frontal, Inferior temporal) (Fig. 1). This hierarchical organization suggests a prioritization in the functional development of different subnetworks, with a higher priority in the development of visual areas. This implies a more urgent need for visual capabilities during development in infancy. As shown in Fig. 2, we found a significantly negative correlation between the subnetworks 1, 5, 7, 8 and receptive language scores, as well as between subnetworks 3, 9 and visual reception scores. No significant correlation was observed between any other Mullen scores and other subnetworks. Such results suggest that lower regional homogeneity, or higher functional diversity, maybe associated with enhanced information acquisition abilities (such as receptive language and vision) in infants. This finding may reflect the notion that functional differentiation within these specific brain subnetworks contributes to heightened perceptual and language capabilities.
Conclusions: Our study reveals a hierarchical organization in the brain functional development and its significant association with receptive language and vision abilities during early development. This suggests that the heterogeneity in functional development may contribute to elevated cognitive levels in infants.

References
7. This work is partially supported by the STI 2030—Major Projects (2022ZD0209000 and 2021ZD0200516), Shanghai Pilot Program for Basic Research—Chinese Academy of Science, Shanghai Branch (JCYJ-SHFKY-2022-014), and Shenzhen Science and Technology Program (No. KCDXZ20211020163408012).

Poster No 1306
Developmental Shifts in Neurobehavioral Substrates of Attentional Networks:A Longitudinal fMRI Study
Siyang Peng1, Rui Ding1, Yuyao Zhao1, Lei Hao1, Shaozheng Qin1
1Beijing Normal University, Beijing, Beijing

Introduction: Human brain undergoes a prolonged maturation process to support nuanced cognitive functions, wherein developmental shifts may occur, giving rise to sensitive periods of development. However, hindered by small sample sizes,
cross-sectional designs, and limited age range distribution, the impact of age maturation on the neurobehavioral substrates of attention networks, and dynamic shifts in these substrates during development, still remain elusive. Utilizing longitudinal data to capture developmental changes in attention can contribute to early clinical detection.

Methods: This study is part of the Beijing Cohort of the Children School Functions and Brain Development Project. A total of 846 scans were completed, spanning over ages 6 to 16, at an interval of one year for three years, with 400, 281, and 165 scans per year. An additional fMRI dataset from 84 healthy young adults (final sample of 73) was used for comparative purposes. Based on the neural specialization perspective, we investigated changes in brain systems involved in three attentional components (i.e., alerting, orienting, and executive attention). The child-friendly version of the Attention Network Test (ANT) developed by Fan et al. (2002) was used. This version includes four cue-prompt conditions and two target-response flanker tasks to measure alerting, orienting, and executive attention processes. In order to investigate the developmental trajectories of behavioral indices for three attentional processes with age, we analyzed behavioral performance in the ANT by calculating the average reaction times (RTs) for different cue and target conditions, and fitted the developmental trajectories using linear mixed-effects (LME) models. In terms of neural activity, we used voxel-based linear mixed-effects models to analyze the interaction between age and behavior during attention using the 3dLMEr in AFNI. We also extracted regions of interest (ROIs) and studied the activation patterns of these regions. Finally, we performed a generalized psychophysiological interaction (gPPI) analysis to explore the functional connectivity patterns that support differences in attentional behaviors.

Results: Behaviorally, the three attention processes-alerting, orienting, and executive control-follow distinct age-related developmental paths, ultimately converging towards adult proficiency, indicative of attentional maturation. The alerting network's efficiency demonstrates an inverted U-shaped trajectory, while the orienting network’s efficiency marginally declines, and the executive control network’s efficiency consistently enhances with age. Neurally, there is a shifting point from 9 to 10 in age by performance interactions. Specifically, in alerting and orienting networks, an interaction between age and behavioral performance was observed in the activation of the frontal eye fields (FEF) and supplementary motor area (SMA). Younger children show better performance with higher activation, a trend that reverses in older children. Furthermore, children with poorer attention performance relied on functional connectivity between the SMA and other brain regions like the thalamus and precuneus to maintain attention efficiency, a dependency that diminishes with age. Similarly, stronger activation of the right rostrolateral prefrontal cortex (RLPFC) and temporoparietal junction (TPJ), along with higher levels of ventral striatum-dorsomedial prefrontal cortex (VS-dmPFC) functional connectivity, support the development of children with poorer executive attention performance.

Conclusions: Overall, brain regions that facilitate the transition of higher cognitive functions and their co-activation patterns with other cortical/subcortical regions play a central role throughout development. And children with lower executive attention performance demonstrate an increased reliance on the functional connectivity of prefrontal-striatal pathway, indicating impairments related to goal-directed processes.
References

Poster No 1307

Divergent Developmental Trajectories of Primary and Secondary Brain Sulci in Late Childhood

Yijin Shan¹, Yirong He², Debin Zeng³, Xiaoxi Dong², Lei Chu⁴, Shuyu Li⁵

¹Beihang University, Beijing, Beijing, ²Beijing Normal University, Beijing, Beijing, ³Beihang university, Beijing, Beijing, ⁴Beihang University, Beijing, Beijing, ⁵Beijing Normal University, Beijing, China

Introduction: The primary sulcus can be identified after 25th GW, followed by the emergence of the secondary sulcus at the 32nd GW and the tertiary sulcus at the 36th GW (Chi, Dooling, and Gilles 1977). As cortical morphology continues to change during late childhood, there have been relatively few studies of developmental changes in specific sulcal morphology. What are the differences between the developmental patterns of the primary and secondary sulci in late childhood, and are such differences associated with cognition. To explore these questions, we used a widely used sulcus recognition toolbox to investigate the developmental changes of different primary and secondary sulci separately in children aged 6-14 years.

Methods: Subjects The dataset consisted of 312 typically developing children aged 6.1-13.9 years (F/M = 145/167) from the Children School Functions and Brain Development project (CBD, Beijing Cohort). Specifically, 47 children had 3 scans available, 97 children had 2 scans and 168 children had 1 for a total of 490 MRI scans. MRI acquisition The MRI data was acquired utilizing a 3T SIEMENS Prisma scanner (Fan et al. 2021). For every subject, T1-weighted structural images were acquired with the following parameters: TR = 2530 ms, TE = 2.98 ms, inversion time = 1100 ms, FA = 7°, FOV = 256 × 224 mm², matrix size = 256 × 224, slice thickness = 1 mm, and scan time = 5 min and 58 s. Image analyses All T1w images were processed using FreeSurfer (v5.1), and the outputs were directly imported into the Morphologist toolbox in BrainVISA for sulcus classification and labeling according to predefined anatomical nomenclature (Borne et al. 2020). After filtering out the sulci with extraction success rate less than 75%, we retained the cortical thickness, sulcus width, surface area, maximum
depth, mean depth, and sulcus length in standardized talairach space of a total of 91 sulci in the left and right hemisphere (Fig. 1). Statistics The extracted morphological features were analyzed using a mixed-effects model (MEM), where effects affecting the dependent variable were categorized as either “fixed effects”, such as the effects of age and sex, or “random effects”, such as measurements of the same individual at different time points. After model fitting, the fitted models were selected by Bayesian Information Criterion (BIC). Cognitive Data Acquisition and Analysis Participants’ cognitive performance was assessed using the classic numerical N-back Working Memory Task (WM) and a child-friendly version of the Attention Network Task (ANT) (Hao et al. 2021). To assess the interaction between cognitive scores and sulcus morphology a partial least squares correlation analysis (PLSC) was performed (Krishnan et al. 2011).

Results: Similar to previous studies in late childhood, both primary and secondary sulci showed significant decreases in surface area, mean depth, and cortical thickness, with the primary sulcus showing the most significant changes (Fig. 2). Notably, sulcus width was significantly increased in the secondary sulcus but not in the primary. By plotting the t-values of the significant changes in each sulcus on a colormap at the sulcus level, it can be more intuitively found that the changes in sulcus morphology of the motor-sensory cortex are more obvious. The PLSC results showed that although the morphology of both primary and secondary sulci interacted significantly with cognition, they were associated with different kinds of cognitive abilities.

![Flowchart of data processing](image)

![BrainVISA Morphologist Pipeline](image)

![Colormap of sulcus level changes](image)

![Interaction between cognitive scores and sulcus morphology](image)
Conclusions: The present work uses a extensive sample size to longitudinally and systematically investigate the trajectory of developmental changes across primary and secondary brain sulci in late childhood, suggesting that developmental changes in brain morphology during this period may be associated with different cognitive functions.

References

Poster No 1308
Aperiodic and Hurst EEG exponents across early human brain development: a systematic review
Ryan Stanyard1, David Mason1, Claire Ellis1, Hannah Dickson1, Roxanna Short1, Dafnis Bataille1, Tomoki Arichi1
1King’s College London, London, United Kingdom

Introduction: Electrophysiological recordings of human brain activity are characterised by a negative power law relationship between frequency (Hz) and spectral power (μV^2). Frequency-power slope exponents (termed β or χ) have been proposed to be of physiological relevance as proxies of neural activity excitation:inhibition (E:I) balance. As alterations in E:I balance may contribute to the pathophysiology underlying neurodevelopmental conditions (e.g. autism), understanding how exponents (1/ f^β) evolve across childhood may have key implications for their early assessment and intervention. Common 1/f frequency-based measures include power law exponents (PLE), and aperiodic components (AE) which account for the influence of oscillations on the slope. We explore evidence surrounding the maturation of these exponents as well as their analogue in the temporal domain, the resting Hurst exponent (HE). To synergise the 1/f literature, we convert HE into AE, where AE=2*HE-1. This systematic review aims to characterise how and when 1/f measures change in early typical human development, thereby offering a more nuanced perspective of sensitive periods of neurodevelopment.

Methods: The systematic review was completed according to the PRISMA guidelines and pre-registered with PROSPERO (CRD42023363294). Relevant literature referred to the development/maturation of the 1/f^β signal including the maturation of AE, PLE or HE across the early human lifespan (from birth to young adulthood) as measured using EEG recorded during eyes open or closed rest (EOR, ECR) from typically developing individuals. Searches were performed across Ovid-Embase, Ovid-PsycInfo, Ovid-Medline, Scopus and Web of Science (with appropriate MESH headings and adjacency terms where possible), during March 2023. Risk of bias was assessed using the Quality Assessment for Diverse Studies tool; rater scores (91.07% agreement) were compared to ensure differences of <2 points (0.01%, 6/504 cases), with differing cases discussed, agreed and calibrated. As few studies reported age correlations or effect sizes (N=8) and raw AE effect size interpretation is ambiguous, with no comparison state uniform to all studies, a meta-analysis was not performed. Rather, we qualitatively synthesised findings from infancy-young adulthood across global and regional scales for each method and condition (ECR/EOR).

Results: Forty-two studies were identified containing one or more available 1/f measures (N=3478 participants). Risk of bias analysis showed the performance of included studies was generally strong across all items with scores >2 (scale 0-3). Studies were generally poorer at providing recruitment data, discussing study strengths and limitations and providing clearly defined research aims/hypotheses. Article synthesis revealed that HE consistently exceeded 0.50 throughout early development. Overall, age-related trends were complex (largely owing to large within- and between-study variance), with a rapid decrease in AE during infancy and heterogenous changes thereafter, consistent across methods of calculating AE. AE values in ECR consistently exceeded those in EOR. Regionally, AE maxima shifted topologically during development, from posterior to frontocentral.
Conclusions: Age-related AE changes in early development are complex, with significant gaps in the published literature preventing clear identification of directions of change and reliable AE ranges, particularly in infancy and toddlerhood. We identify consistent AE across methods, scales and in terms of AE being greater in ECR than EOR, as well as developmental changes in AE maxima. Topological shifts in AE maxima throughout development may potentially reflect known spatial changes in brain network hub maturation. Furthermore, characterising typical AE development provides a point of reference for exploring atypical development in neurodevelopmental conditions, and could act as a potential non-invasive biomarker.
ABSTRACTS

References

Poster No 1309

Tracing Motor Preparation and Activation in the Developing Brain

Julia Schmidgen¹, Stephan Bender¹, Kerstin Konrad²

¹University Hospital Cologne, Cologne, Germany, ²University Hospital Aachen; Forschungszentrum Jülich, Aachen; Jülich, Germany

Introduction: The motor system shows a prolonged development throughout childhood and adolescence. The analysis of the contingent negative variation (CNV) provides valuable insights into various cognitive and motor processes, underlying cortical sources, and their development across the lifespan. The negative CNV potential is generated between a warning stimulus and a behaviorally relevant imperative stimulus that requires a fast button press. It allows for temporal disentanglement of response selection and early response preparation processes (early CNV) from the pre-activation of motor networks (late CNV). Currently, it remains unclear which cortical sources contribute to response selection and early response preparation in young children. This study explores cortical sources of motor network preactivation and developmental disparities in individuals aged 5 to 16 years.

Methods: We recorded EEG activity of a sample of 46 healthy right-handed children and adolescents, aged 5 to 16 years, using a 64-electrode high density sensor array. Subjects performed a CNV task with a directional warning cue, indicating the response side of the button press. To assess age related developmental differences of cortical activation, analyses of slow cortical potentials, cortical source analysis and event-related desynchronization within the alpha band were applied.

Results: Children showed increased reaction times and performed significantly more errors compared to adolescent subjects. The orienting response (early CNV) of young children (5- to 8-year-olds) was dominated by sensory post-processing of the directional warning stimulus reflected as pronounced cortical activity over posterior areas and showed only small mid-frontocentral activity, allocated by source analysis to the supplementary motor area (SMA). With increasing age, SMA activity became more prevalent and was recruited with a reduced latency. Significant contralateral alpha band desynchronization was found to be present in all age groups. Alpha rhythm during motor pre-activation (late CNV) showed decreasing event-related synchronization over ipsilateral and increasing event-related desynchronization over contralateral central areas with age. In contrast to studies investigating adult subjects, our adolescent sample (13- to 16-year-olds) showed no contralateral cortical activity during motor pre-activation yet.

Conclusions: The investigated data indicate a prolonged development of motor control up to adulthood. Behavioral results indicated less-efficient action pre-processing and a lack of inhibitory control. Besides increasing efficiency in action control,
activation of mid-frontocentral areas related to the supplementary motor area becomes more prevalent during processes of motor preparation and response evaluation with increasing age. The results supported the hypothesis of a developmental shift from a reactive to a proactive control and an immaturity of supplementary-, pre- and primary motor areas until late adolescence or early adulthood.

References

Poster No 1310
Alteration in macro- and micro-structures of the adolescent hippocampus after the COVID-19 pandemic
Lin Cai¹, Norihide Maikusa¹, Yinghan Zhu¹, Atsushi Nishida², Shuntaro Ando¹, Naohiro Okada³, Kiyoto Kasai¹, Yuko Nakamura¹, Shinsuke Koike¹

¹The University of Tokyo, Tokyo, Japan, ²Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan, ³University of Tokyo Institutes for Advanced Study, Tokyo, Japan

Introduction: Although a SARS-CoV-2 infection has been revealed to result in changes in human brain structure¹, the impact of the COVID-19 pandemic on the brain among uninfected individuals is still underexplored. Since adolescence is a sensitive period for the development of mental illnesses caused by stressful life events², it is important to understand the effect of stressful experiences on the adolescent brain, particularly the hippocampus. Thus, the COVID-19 pandemic, as one of extremely stressful life events, enabled us to examine the impact of stress on the adolescent hippocampus.

Methods: We analyzed 1,149 longitudinal brain structural scans from 479 participants (mean ± SD = 14.5 ± 2.2 years; 214 girls) who were from a longitudinal population-neuroscience Tokyo TEEN Cohort study³. At the end of wave 3, due to the first state of emergency (SoE), data collection was suspended between the end of March 2020 and July 30, 2020. For the four waves of data collection, three acquisition procedures were performed. Only T1-weighted images were acquired for Procedure 1 and 2, while T1-weighted, T2-weighted, and diffusion images were acquired for Procedure 3. The HCP pipeline was utilized for image preprocessing⁴. Then, bilateral hippocampal volumes were extracted from the FreeSurfer’s aseg.stats file. For Procedure 3, 12 hippocampal subfield volumes were obtained using the hippocampal subfield segmentation algorithm in FreeSurfer v6.0.0⁵. After raw diffusion scans were preprocessed, the microstructural metrics were estimated using the diffusion kurtosis imaging (DKI) model⁶. The DKI model could produce 7 microstructural indices, namely fractional anisotropy (FA), mean diffusivity, axial diffusivity, radial diffusivity, mean kurtosis, axial kurtosis, and radial kurtosis. For each scan, volumetric estimates for the bilateral hippocampi and hippocampal subfields, and the 7 microstructural indices for the bilateral hippocampi were averaged across hemispheres as indices in the following statistical analysis. To examine whether the hippocampus during the COVID-19 pandemic differed from that collected in other dates, we set a one-year time interval from 2020/07/29 to 2021/07/29 after the first SoE (2020/04/07 ~ 2020/05/25). Relative to July 29, 2020, the date of MRI scans during this one-year interval was converted into relative values using the log transformations denoted as RV.log. Subsequently, RV.log entered the generalized additive mixed models (GAMMs) or generalized linear mixed models (GLMMs) to examine how the SoE impacted the hippocampal structures. We included age as a smooth term, sex, SES, IQ, and ICV as linear terms, as well as a tensor interaction term between age and sex in the GAMMs. Additionally, the participant ID was introduced as the random intercept. For hippocampal subfield volumes and DKI indices, we used GLMMs to examine the relationships between subfield volumes and SoE. False discovery rate correction was used to account for multiple comparisons.

Results: The GAMM showed that there was a significant main effect of SoE on the mean hippocampal volume (β = 102.19, 95% CI [0.61, 203.77], p = 0.049). The GLMMs showed main effects of SoE on mean volumes in the granule cell and molecular layer of the dentate gyrus (β = 18.19, 95% CI [2.97, 33.41], uncorrected p = 0.02), CA4 (β = 12.75, 95% CI [0.38, 25.12], uncorrected p = 0.04), and hippocampus-amygdala transition area (β = 5.67, 95% CI [1.18, 10.17], uncorrected p = 0.01). A main effect of SoE on the FA values in the mean hippocampus was found (β = 0.03, 95% CI [1.93e-03, 0.06], uncorrected p = 0.04).

Conclusions: Our findings revealed that the COVID-19 pandemic resulted in a transient increase in adolescent hippocampal volumes. Similar but less robust findings were observed for hippocampal subfields and microstructure. These findings provide new insight that a major life event might alter the adolescent hippocampal development.

References
How nutrition contributes to myelination and structural connectivity in school age

Diandra Brkic1, Fabio Mainardi2, Jonas Hauser3, Sean Deoni4
1Nestlé Institute of Health Sciences, Lausanne, Vaud, 2Nestlé Institute of Health Sciences, Lausanne, Switzerland, 3Brain Health Department, Nestlé Institute of Health Sciences, Lausanne, Switzerland, 4Department of Pediatrics, Warren Alpert Medical School at Brown University, Providence, RI

Introduction: School-age period, typically from 2 to 15 years old, is a critical phase in child development that significantly impacts cognition, learning, behaviour, and social-emotional development. This age is characterized by heightened sensitivity, making it a crucial time for shaping and nurturing a child’s overall growth and well-being. From a brain development perspective, it is also a pivotal period characterized by significant reorganization. For instance, there is a remarkable restructuring of synaptic plasticity, and notable changes in the structural and functional networks, associated with learning (Dean et al., 2015). Although numerous studies have investigated the impact of the environment, socioeconomic status (SES), and genes on neurodevelopment, there is a huge knowledge gap regarding the specific influence of nutrition on cortical changes, particularly in this age range (Saavedra & Prentice, 2023). In this study, we have assessed how nutrition shapes brain myelination and white matter network organisation, and how this affects cognition and learning skills in a large cohort of school-age children (Brown University RESONANCE cohort).

Methods: A large sample (N=282) of school-age children (mean age 7.5 y.o.), from the Brown University RESONANCE cohort, was included in this study. All participants had morphological and structural brain measures (Water fraction myelination and fractional anisotropy, FA), full cognitive (WPPSI, WASI) and learning (AAB) assessments, and dietary intake (ASA-24h recall questionnaire) completed. Specifically we investigated how dietary intake affects both myelination and structural connectivity, linked to learning and cognitive skills. In order to capture this relationship in a data driven fashion, we performed a series of mediation models (Rijnhart et al., 2021). This allowed us to assess the indirect effects and shed light on the underlying pathways between important nutrients for, cognition and learning, mediated by brain structure and morphology, while controlling for age and parental education.

Results: Four different mediation analyses were performed to explore the causal relationship between 64 nutrients and 35 food groups and cognitive and learning performance, with myelination and FA, as mediating factors. Mediation models identified the most significant nutrients contributing to cognitive and learning skills outcomes, via myelination and structural connectivity. Specifically, the models were: a) nutrition, myelination, cognition; b) nutrition, myelination, learning (reading); c) nutrition, FA (DTI), cognition; d) nutrition, FA (DTI), learning. Each of the models provided a set of most important essential nutrients (e.g. iron, vit B) affecting both learning and cognition, in different related brain networks and ROIs. Importantly we found consistency across all models, defining how dietary intake affects both learning and cognition, via correlated brain measures

Conclusions: To the best of our knowledge this is the first study offering a deeper understanding of the intricate interplay between nutrition, brain development and structural changes, and cognitive and learning outcomes. Our results provide a unique perspective on which nutrients may support learning and cognition in school age children. In addition, it assesses how this relationship is mediated by myelination rate and structural efficiency in learning-related brain areas. In short, this study emphasizes the significance of considering the impact of nutrition on child development. It highlights the need to incorporate nutrition as a crucial factor when studying key determinants influencing brain development, learning, and cognitive abilities in school age. By recognizing the role of nutrition in shaping these domains, we can better understand the multifaceted factors that contribute to optimal brain development and promote effective strategies for fostering learning and cognition in children.
References

Poster No 1312
Systematic shift of cortical thickness distribution within newborns between two dHCP releases
Daisuke Tsuzuki¹, Fumitaka Homae²
¹Kochi University, Kochi, Japan, ²Tokyo Metropolitan University, Tokyo, Japan

Introduction: The Developing Human Connectome Project (dHCP) is a study to map the growth of the baby’s brain and has made major scientific progress by creating a 4-dimensional connectome for early human life (Hughes et al. 2017). In 2019, they began providing 558 neonatal scans, including structural imaging, structural connectivity and functional connectivity data as the second release of data. In 2021, the third dHCP data release was announced, and scans from 783 infants, of whom 583 were healthy infants born at term, are currently available (Edwards et al. 2022). Many studies have been conducted, and a large number of studies have been published using dHCP data. In contrast, we observed significant and systematic differences in the cortical thickness calculated on identical individual structural MRIs between the second and third releases of the dHCP. However, these differences have not been fully estimated or reported.

Methods: We used two structural datasets, “dHCP second data release” (https://www.developingconnectome.org/data-release/second-data-release/) and “dHCP third data release” (https://www.developingconnectome.org/data-release/third-data-release/) to investigate the characteristics of cortical thickness in newborns. More precisely, we chose the 556 neonatal scans (222 girls and 281 boys, including multiple sessions; 40.0 ± 3.0 post-menstrual age in weeks) contained in both the second and third data releases of dHCP and analyzed their cortical thickness (Makropoulos et al. 2018). A two-sample Kolmogorov-Smirnov test was performed to test for differences between the two distributions of cortical thickness for each newborn. The same test was then applied to the mean curvature of the white matter surface to compare the tendencies.

Results: In this study, we examined the differences in the cortical thickness distributions calculated on identical individual structural MRIs between dHCP releases 2 and 3. The extracted pial surfaces included in dHCP release 3 show a relatively large and expanded gyrus compared to those of release 2 (Fig. 1). The results of the statistical test suggest that the cortical thickness of dHCP release 3 increased systematically (Fig. 2) via the dHCP structural pipeline process (Makropoulos et al. 2018). In contrast, differences in the mean curvature of the white matter surface calculated for both dHCP releases were rarely shown (Fig. 2). In the cortical thickness analysis, the distributions of dHCP release 2 and release 3 differed significantly for every 556 measurements (all p-values <0.0001, Bonferroni adjusted, by two-tailed, two-sample Kolmogorov-Smirnov test). The distributions of cortical thickness for dHCP release 3 were fully shifted to the larger side compared with those for release 2. In the mean curvature of the white matter surface analysis, the distributions between dHCP release 2 and release 3 showed partly significant differences (12 of 556 p-values <0.0001, Bonferroni adjusted, by two-tailed, two-sample Kolmogorov-Smirnov test).
Conclusions: This result implies that the shapes of the white matter surfaces extracted from the structural MRIs of the two dHCP releases do not differ morphologically, as shown by the cortical thickness. Further work is needed to clarify which part of the dHCP structural pipeline affects the differences in cortical thickness between the two dHCP releases.

References

Poster No 1313
The relationship between GABA levels and spectral oscillatory dynamics in the neonatal brain
Alice Thomson1, Juliette Champaud2, Jucha Willers Moore1, Ines Tomazinho1, Beya Bonse1, Kathleen Colford1, Parvaneh Adibpour1, Lorenzo Fabrizi2, Nicolaas Puts1, Tomoki Arichi1

1King’s College London, London, UK, 2University College London, London, UK

Introduction: In the adult brain, GABA levels positively correlate with the power of beta and gamma band oscillations in multiple brain regions including the visual cortex1-4. This is driven by GABAergic interneuron activity within cortical circuits which in turn shapes neural synchrony1-4. During early brain development this relationship may differ because of changes in GABA function5. Here, we probe the relationship between magnetic resonance spectroscopy (MRS) measures of brain GABA levels and resting state electroencephalography (EEG) power spectral densities in the occipital lobe of healthy term neonates. We hypothesise that the relationship between GABA levels and neuronal oscillations is not present in the developing brain.
Methods: Data were acquired from 8 term neonates. Three datasets were excluded following post-acquisition data quality checks. Data is thus reported from 5 neonates with a median age of 39.7 (range: 37.28 - 43.29) weeks postmenstrual age and 3 (range: 1-27) post-natal days at scan, 2 females. All infants were healthy at the time of scanning and had normal brain appearances. Both and EEG and MRS recordings were performed during natural sleep. Studies were performed with NHS ethics committee approval and written parental consent. A Philips Achieva 3T at St. Thomas' Hospital London (32-channel neonatal head coil) was used to acquire MRS data from a 27ml voxel placed over the occipital lobe (OCC), centered on the midline (Figure 1). MRS was performed using GABA editing MEGA-PRESS; 320 transients, 2048 data points, TE/TR:68/2000ms, VAPOR water suppression. MRS data were processed in Osprey. T2-weighted anatomical images were segmented using the developing Human Connectome Project pipeline for alpha tissue correction of GABA concentrations. Concentrations are reported in institutional units (i.u) and reported as GABA+ (GABA plus macromolecule contribution).

Resting-state EEG data were acquired same day prior to the MRI for 10-15 mins using a 32- or 25-channel cap (EasyCap GMbH) and a BrainProducts EEG system. Pre-processing steps were performed in MATLAB (2021a) and EEGLAB. Raw data were filtered with a notch (48-52 Hz) and second-order bidirectional Butterworth bandpass (0.1 and 70Hz). Data were then epoched into 60-150s sections and denoised using ICA (0-5 components rejected; Figure 1C). Power spectral densities estimated with the Welch's method for each channel/subject and averaged across O1, O2, Oz, POz channels spanning the occipital area (Figure 1D). Spearman's rho correlation coefficients were first calculated between GABA+ and frequency power in 1Hz-intervals from 0-70Hz before averaging across frequency bands (1-4Hz for delta, 4 – 8Hz for theta, 8-12Hz for alpha, 13-30Hz for beta and 30-40Hz for gamma).

Results: Occipital GABA+ levels was positively correlated with beta (rho = 0.90, p < 0.05) and gamma power (rho = 0.90, p < 0.05; Figure 2). There was no significant relationship between GABA+ levels and other frequency bands; delta (1-4Hz): rho = 0.10, p = 0.87, theta (4-8Hz): rho = 0.60, p = 0.28, alpha (8 – 12Hz): rho = 0.6, p = 0.228.
Conclusions: Our findings show a positive correlation between GABA+ levels and EEG beta and gamma frequency powers in the neonatal brain. This suggests that GABAergic activity may have a similar role in influencing neuronal oscillations in the early post-natal period, as has been observed in the adult brain\(^1-4\). This can provide new insight into the development of the relationship between neurochemistry and synchronous neuronal activity in the human brain, which can be further complemented by exploring relationships with emerging patterns of functional connectivity.

References

Poster No 1314

Early-life Human Milk Oligosaccharides and their effect on cortical thickness at 6 years of age

Jonatan Ottino-Gonzalez\(^1\), Shana Adise\(^1\), Christopher Machle\(^1\), Lars Bode\(^2\), Ravi Bansal\(^3\), Bradley Peterson\(^3\), Michael Goran\(^1\)

\(^1\)CHLA, Los Angeles, CA, \(^2\)University of California San Diego, La Jolla, CA, \(^3\)Children’s Hospital Los Angeles, Los Angeles, CA

Introduction: Neurodevelopment starts in conception and extends into adulthood yet most of its critical processes take place during gestation and the first postnatal years\(^1\). The optimal growth of brain structures work as foundation for cognitive activity and both relate to better psychosocial adjustment later in life\(^2\). Breastfeeding overlaps with a period of rapid brain
growth during the first year of life and it thus constitutes an important factor to consider in neurodevelopment. Despite evidence showing that breastfeeding is positively related to grey and white matter volumes, very few studies have studied what compounds in human milk are involved. Human milk oligosaccharides (HMOs) are non-digestible sugars involved in neurodevelopmental processes such as myelination, neuronal outgrowth and migration, or microglia maturation. In previous work, we showed that exposure to 2’fucosylactose (2’FL), 3-fucosylactose (3FL) and 3’-sialylactose (3’SIL) was associated with variations in brain microstructure in newborns. For this study, we examine the extent to which the accumulated exposure to 2’FL, 3FL and 3’SIL during the first 6 months of life is related to variations in brain cortical thickness at 6 years of age.

Methods: Forty mother-infant dyads from the Mother’s Milk and El Sendero cohorts with data available at 1-month, 6-month and 72-month were included in the study. Inclusion criteria was being a first-time mother of a singleton healthy pregnancy, active breastfeeding, and enrollment by 1-month postpartum. Exclusion criteria involved medical disease or use of medication, tobacco or drug use, pre-term/low-birth weight, and/or fetal malformations. Family history and physical examinations were taken at the 1-month visit. Human milk sample was collected during the 1 and 6-month visits. Mothers were told to fast and refrain from feeding or pumping milk for 1.5h before collection. HMOs were isolated with high-throughput solid-phase extraction, fluorescently labeled, and measured with High-Performance Liquid Chromatography. HMO concentrations are expressed in nanomoles per milliliter (nmol/ml) and aggregated from 1 and 6-month visits. Scores were checked for skewness and box-cox transformed as needed. At the 72-month visit, child MRI data was collected with a 3 Tesla Phillips Achieva. T1-weighted scans were processed in FreeSurfer (v.7.3.2) and the thicknesses of 68 Desikan-labeled cortical regions were bilaterally averaged and regressed against age, sex and the total euler number for further adjustment. The main analysis involved multiple linear regression models with each region as the dependent variable. Separate models were run for each HMO. Mother’s age at delivery, delivery type (i.e., C-section or Vaginal) and average human milk proportion from 1 to 6-months (0 to 1, values closer to 0 indicate mostly formula-fed) were used as nuisance covariates. All reported p-values are uncorrected. The study was performed with the approval of the IRB of the Children’s Hospital of Los Angeles (CHLA-18-00576) and the participants’ written consent.

Results: No significant associations were found with regard to 2’FL exposure. The exposure to 3FL was positively related to the frontal pole (b = 0.48 [0.17, 0.80], p = 0.004) and paracentral (b = 0.46 [0.14, 0.78], p = 0.006) thickness. The exposure to 3’SIL was positively associated with the thickness in the rostral middle frontal (b = 0.35, [0.27, 0.67], p = 0.034).

Conclusions: In previous work, we showed that the exposure to 2’FL, 3FL and 3’SIL was related to brain microstructure in newborns. In the current work, we showed that the exposure to 3FL and 3’SIL may have positive long-lasting effects on grey matter structure at 6 years of age. Future work will be able to help to determine causalities and the underlying mechanisms (i.e., increases in neuronal and/or dendritic density, underlying white matter changes, etc.).

References
Untangling microstructural development: insights from soma, neurite, and myelin imaging on macaques

Ting Gong1, Evan Dann1, Chiara Maffei1, Hong-Hsi Lee2, Hansol Lee1, Jocelyne Bachevalierb2, Susie Huang1, Suzanne Haber3,4, Anastasia Yendiki1

1Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, 2Emory National Primate Research Center, Emory University, Atlanta, GA, 3Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 4McLean Hospital, Belmont, MA

Introduction: Early brain development involves dynamic biological processes, such as synaptogenesis and myelination, that shape cellular organization and are essential for normal brain function. Current methods used in developmental studies lack specificity to cellular microstructure. Thus, their findings are hard to interpret, especially in the gray matter (GM). In this study, we use advanced biophysical models to measure changes of cell soma density, neurite density and myelin concentration in developmental brains. Our goal is to validate biomarkers of major biological processes that are relevant to studies of healthy and disordered brain development.

Methods: Five fixed macaque brains, three developmental (3-week, 3-month, and 1-year old) and two adult, were scanned in a small-bore 4.7 T Bruker BioSpin MRI system. Quantification of cell soma and neurites. Soma and neurite density imaging (SANDI)1 models diffusion weighted (DW) signals in a voxel from within the soma (cell bodies of neurons and neuroglia), the neurite (dendritic processes and axons) and the extra-cellular water. This provides histology-correlated estimates of apparent soma density, soma size and neurite density2. For SANDI analysis, DW images were collected using a two-shot, 3D echo-planar imaging sequence at 0.5 mm isotropic resolution; DW gradient directions were uniformly sampled over the hemisphere for each of 8 shells: 12 directions for b=1, 2.5, 5, 7.5 and 32 directions for b=11.1, 18.1, 25, 43 ms/μm2. The diffusion gradient pulse duration and separation was 11 and 15 ms. We also use a subset of the DWI datasets to estimate FA and MD from conventional DTI3 and neurite density index (NDI) and orientation dispersion index (ODI) from NODDI model4, which has been widely studied in mainly white matter (WM) development5–7. Quantification of myelin and R2. Commonly used myelin measures include T1w/T2w ratio8, R19,10, R2 and more specific myelin water fraction (MWF)11. For our ex vivo data, we collected multi-slice multi-echo images for quantitative R2 mapping and MWF estimation (20 spin echo images with echo times from 8-160 ms and an equal echo spacing of 8 ms; TR = 3000 ms). The data were fitted for voxel-wise R2 values as well as a spectrum of T2 to extract the MWF.

Results: Figure 1 illustrates that SANDI can provide more specific interpretation of DW signal changes in GM during development. Compared to adult brains, the developmental brains generally show higher soma density, lower neurite density and smaller soma size. This agrees with histological evidence of similar or even higher number of neurons in infants than adults12, but much less complex neuronal projections in the former. A smaller average soma size could reflect microglia proliferation in developmental brains as glia have smaller soma than neurons. Compared to SANDI findings in the same GM ROIs, DTI shows somewhat lower MD in developmental brains than adult but no clear trend in FA. Furthermore NODDI-derived NDI could not differentiate developmental stages, and ODI showed similar information to FA. Descriptions of developmental trends and major processes are provided in Fig1A. In measuring myelination, MWF estimation is sensitive to SNR, thus less robust in GM of developmental brains due to low concentration. R2 is used as a measure of myelination in some developmental studies because myelin has higher R2 than other tissue components. We show in Figure 2 that R2 is confounded by soma density when there is little myelination, due to higher R2 in soma than neurites and extra-cellular space13. This suggests that, while R2 (and other relaxation-based measures14) can measure maturation, it cannot be interpreted specifically as a myelin measure in the developing brain.
Figure 1. Mean microstructure measures showing different developmental trends in GM ROIs with different tissue properties. In caudate and putamen, the increased neurite density and decreased MD and soma size could reflect synaptogenesis and membrane proliferation associated with gliogenesis. In regions with higher fiber content, the increased neurite density and FA likely reflect axonal growth and myelination; changes in soma size could be related to changes of oligodendrocytes for myelin production. As in a previous study [15], the T2 spectrum failed to show a peak for myelin water in most regions of the developmental brains (thus MWF not shown) likely due to very low SNR of myelin signal.

Figure 2. R2 as measure of maturation. (A) Voxel-wise R2 contains contributions from all tissue compartments, including myelin, soma, and neurites. In adult brain, because of higher myelination, R2 is positively correlated with MWF and negatively correlated with soma density; this is because higher myelination introduces higher neurite density (positive correlation not shown), thus lower soma density. In developing brain, R2 is positively correlated with soma density due to low myelination. This suggests that R2 in the cortex reflects both myelin and soma (B; middle cortical layer) while it reflects mostly myelin in the adult WM (C; 0.5 mm below WM surface).
Conclusions: We show the promise of combining SANDI and myelin imaging to disentangle biological processes in brain development. Future work will include histological staining to validate MRI findings.

References

Poster No 1316

Automated fetal ICV annotation in 3D-ultrasound: sex-specific brain development and outcome at age 3

Sonja de Zwarte1, Jalmar Teeuw2, Mireille Bekker3, Ruud van Sloun4, Hilleke Hulshoff Pol5
1Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht, Netherlands, 2Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands, 3Department of Obstetrics, University Medical Center Utrecht, Utrecht, Netherlands, 4Lab of Biomedical Diagnostics, Department of Electrical Engineering, Eindhoven, Netherlands

Introduction: The human brain undergoes major developmental changes during pregnancy. Three-dimensional (3D) ultrasound images provide the opportunity to investigate prenatal brain development in detail on a large scale. Prenatal brain development can be linked to mental and other health outcomes later in life (Clifford et al., 2016; Davies et al., 2020; Gao et al., 2019; Hulshoff Pol et al., 2000); however, it remains largely unknown to what extent typical brain development can be linked to behavioral outcome early in life.

Methods: We developed a convolutional neural network model for automated segmentation of fetal intracranial volume (ICV) from 3D ultrasound. In addition, we developed an automated quality control procedure to deal with many within-subject images. We applied the trained model in a large longitudinal population sample from the YOUth Baby and Child cohort (www.uu.nl/youthcohort) measured at 20- and 30-week of gestational age to investigate biological sex differences in fetal ICV (N=2,235 individuals with 43,492 ultrasounds) (de Zwarte et al., 2022). To link prenatal brain development to postnatal outcome, behavioral and emotional problems were assessed at age 3 using the Child Behavior Check List (CBCL: 1.5–5 years). In total, N=630 children were included (296 boys, 334 girls) with at least one good-quality ultrasound and completed CBCL.

Results: Our trained model estimated ICV and ICV growth in 7,672 ultrasounds of 1,762 participants that passed the automatic quality control procedure. This was 18% of the available ultrasound scans and 72% of the participants. Most unsuccessful predictions were due to non-brain ultrasound, low-quality ultrasound (e.g., due to motion of fetus or high maternal BMI), or incomplete coverage of the entire fetal brain. Boys had significantly larger ICV at 20- (B=2.86; p=5.7e-14) and 30-weeks (B=12.35; p=8.2e-27) of pregnancy, and more pronounced ICV growth than girls (0.12ml/day; p=1.8e-5) (Figure 1). Lower ICV20weeks was associated with higher scores on anxious/depressed, somatic complaints, internalizing-, other-, total-, stress- and attention deficit hyperactivity-problems scales (standardized beta coefficients=[-0.091; -0.123], p<0.05). There was significant interaction effect between sex and ICV20weeks in the anxious/depressed scale; with no relationship between...
ICV and behavior in boys and a negative relationship in girls (respectively standardized beta coefficients -0.001 and -0.237; picvXsex<0.05). There were also significant interaction effects between sex and ICV growth (ml/day) in the anxious/depressed, somatic complaints and internalizing behavior scales (picvXsex<0.05). In boys, less ICV growth per day was associated with more problems (standardized beta coefficients=[-0.083;0.108]) and in girls more ICV growth per day was associated with more problems (standardized beta coefficients=[0.116;0.133]). See Figure 2 for an example of these interaction effects in the anxious/depressed syndrome scale.

Figure 1. Growth curve and sex effects for fetal intracranial volume (ICV) in boys and girls.

Figure 2. Relationship prenatal intracranial volume (ICV) and Child Behavior Check List (CBCL) anxious/depressed syndrome scale and age 3.
Conclusions: We report sex-specific prenatal brain development, which might have different implications for behavior in children at age 3. In particular, brain structure and growth in mid-gestation seemed linked to behavioral outcome, rather than ICV in the third trimester. These findings are potentially in line with findings in the Born in Bradford cohort, where positive associations between fetal size and growth in early and mid-gestation and academic attainment in childhood rather than in the third trimester (Norris et al., 2018). However, more longitudinal research is needed. Automated artificial intelligence approaches provide an opportunity to investigate fetal brain development on a much larger scale and to answer fundamental questions related to prenatal brain development (Namburete et al., 2023).

References

Poster No 1317

A simultaneous EEG-fMRI protocol for exploring the development of hierarchical sensory processing

Parvaneh Adibpour1, Vyacheslav Karolisi1, Ines Tomazinho2, Beya Bonse2, Kamilah St Clair2, Wendy Norman2, Kathleen Colford2, Massimo Marienazana2, Fraser Attken3, Claire Kabdebon4, Jonathan O'Muircheartaigh5, Tomoki Arichi6,7

1Centre for the Developing Brain, Department of Perinatal Imaging and Health, King’s College London, London, United Kingdom, 2Guys and St Thomas’ NHS Foundation Trust, London, United Kingdom, 3School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom, 4Laboratoire de Sciences Cognitives et Psycholinguistique, Département d’études cognitives, ENS, CNRS, Paris, France, 5Department of Forensic and Neurodevelopmental Sciences, King’s College London, London, United Kingdom, 6Department of Bioengineering, Imperial College London, London, United Kingdom, 7Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom

Introduction: According to the predictive coding framework, sensory information is processed along a hierarchy, where higher-level processing areas generate predictions that are compared against incoming sensory evidence, and when not matched (i.e., deviance), a prediction error is generated, and the brain revises its model of the world1. Little is known about how the neural substrates of predictive processing emerge in the developing brain, which is of particular relevance for neurodevelopmental conditions such as Autism Spectrum Condition where atypical sensory network profiles2 and predictive abilities3 are reported. We aimed to establish a protocol for investigating the hierarchy of auditory predictive processing across development that can disentangle the different components of predictive processing in time and space by combining EEG and fMRI.

Methods: The paradigm consists of blocks of sounds with 6 repetitions of a sequence composed of four speech syllables. Blocks consisted of either repetition of the same sound sequence (standard blocks) or occasional violation of regularities with sequences involving a deviant or a missing sound (deviant or omission blocks-Figure.1). To test the paradigm, simultaneous EEG-fMRI data were acquired from 8 adults and a pilot dataset of 4 neonates (birth age =39.8 [37.6-40.9] gestational weeks, scan age = 41.3 [40-44.1] weeks). BOLD fMRI data were acquired on a Philips Achieva 3T MRI scanner with a 32-channel head coil, using an echo-planar imaging sequence with TR (infant 2001/adult 2500) ms, resolution (infant 2.08x2.08x2.9; adult 3.5x3.5x4.5 mm3). Preprocessing and GLM analysis were performed in FSL4 to define subject-level activation maps. For adult group analysis, z-statistical maps from each subject were aligned to the subject’s T1-weighted image and warped to the MNI152 space using ANTs5, and group average effects were identified using nonparametric permutation testing. EEG data was acquired using a 32-channel MR-compatible Brain Products system. MR gradient and pulse artefacts were removed from recorded data using Analyzer II software. Recordings were filtered (0.5-30 Hz), cleaned for motion artifacts using

References

APICE preprocessing pipeline, interpolated for noisy channels, re-referenced with respect to average-reference, and then segmented into epochs relative to the onset of the last sound in the sequence. Auditory evoked responses were obtained by averaging the trials corresponding to each experimental condition. Average activity over fronto-central channels were compared between conditions using a paired t-test.

Results: Preliminary analyses indicated EEG auditory evoked responses to the sequence of 4 sounds with a decrease in amplitude from the 1st to the 3rd sound consistent with habituation (Figure 2.a). For the last (4th) sound, a mismatch response to deviance (deviant/omission vs standard) was elicited in both adults and neonates (Figure 2.b). Mismatch responses had a frontocentral scalp distribution, with a negative polarity in adults and a positive polarity in neonates; and were slower in neonates. FMRI analyses identified significant clusters of functional activity in response to sound blocks within the primary auditory cortices, planum temporal as well as superior temporal and frontal gyri (Figure 2.c).
Conclusions: We have established an experimental procedure for simultaneous EEG-fMRI studies to explore the neural correlates of detecting violations of regularity during sound sequence processing. In-scanner EEG mismatch responses were consistent with previous reports, confirming that although less mature in their responses than adults, neonates are sensitive to the statistics of auditory sequences. This will enable detailed investigation of the link between EEG and fMRI activations such as the spatial correlates of individual components of the EEG responses involved in predictive processing.

References

Poster No 1318

Estimation of iron levels via T2* mapping increases with age in the fetal brain

Mark Duffy1, Amyn Majbri2, Ellyn Kennelly3, Tanya Bhatia2, Lanxin Ji4, Moriah Thomason4

1 NYU Langone Health, New York, NY, 2 New York University Medical Center, New York, NY, 3 Wayne State University, Detroit, MI, 4 NYU Langone Medical Center, New York, NY

Introduction: Iron is highly expressed in the brain, playing an essential role in neurodevelopmental processes including DNA and neurotransmitter synthesis, myelination and mitochondrial function. Studies in children and adults have shown iron deficiency to have a significant effect on neurological mechanisms. Recent studies have shown brain iron in subcortical regions, such as the thalamus, caudate, putamen and striatum, to be linked with cognitive function. T2* mapping is an established method for attaining an indirect measure of brain iron levels. Approximation of infant brain iron levels using T2* mapping has shown iron to increase across the entire brain directly after birth. However, the study of brain iron levels in the fetus and their implications is an area relatively unexplored. This study aims to assess the relationship between fetal brain iron levels in subcortical regions and age via a T2*-based measure.

Methods: Multi-echo (ME) fMRIs for 41 fetuses gestational aged 30.69 ± 4.26 weeks were attained from the Perinatal Imaging of Neural Connectivity (PINC) project. Imaging data was obtained on a Siemens Magnetom Verio syngo MRI system with a 550g abdominal 4-channel Siemens Flex Coil. Two sets of ME-fMRI data were attained via 12-min ME-fMRI (360 volumes), with the following scanning parameters: dataset a) TR = 2000ms; TE = 18, 31.07, 44.14ms (3 echoes); flip angle: 83 degrees; voxel size: 3.5 x 3.5 x 3.5 mm3; N=10 runs, dataset b) TR = 2000ms; TE = 18, 34, 50ms (3 echoes); flip-angle: 83 degrees; voxel-size: 3.487 x 3.487 x 3.5 mm3, N=130 runs. Pre-processing of fMRI data was performed using SPM and FSL software. A measure for motion, DVARS, was estimated for each volume. Ten consecutive volumes with the lowest DVARS were identified and averaged for T2* estimation. T2* maps were generated through the fitting of a logarithmic curve across echoes for each voxel. Voxels of T2* value outside the accepted range (0-200ms) were replaced by zero in FSL. T2* maps were then normalized to a 32-week template, by applying the transformation matrix estimated from the fMRI data using SPM. The reciprocal of T2*, R2*, was then estimated in 12 bilateral sub-cortical regions of interest (ROIs); anterior and posterior thalamus, putamen and caudate. The ROIs are defined by a data-driven parcellation approach. Mean values of the non-zero voxels within ROIs were calculated in FSL. Pearson’s correlation analysis was performed via Python and SciPy/Pandas libraries to assess the relationship between T2* voxel values for ROIs and fetal age (weeks).

Results: Significant positive correlations were observed between mean voxel values in specific ROIs and increase in age. The left thalamic regions, caudate and putamen increased significantly with age (caudate: R=0.3965 p=0.0084; putamen: R=0.5886 p=0.00005; anterior thalamus: R=0.4485 p=0.0033; posterior thalamus: R=0.4063 p=0.0084). Similar trends were also seen in the right anterior thalamus and right putamen (thalamus: R=0.1431; putamen: R=0.1511).
Conclusions: This study is the first to demonstrate the simulation of iron in brain development before birth. Our results indicate that fetal brain iron levels increase with age in subcortical regions that are high in iron concentration and key in cognitive processes. Although significance was not determined in all ROIs, positive trends across almost all regions support positive correlation. T2* mapping from multi-echo fMRI data represents a valid method for iron estimation in fetal brains. Future studies with larger datasets are required to further establish the relationship between iron and fetal brain development. To expand analysis, iron may be estimated across the whole brain over longer age ranges, and be linked with behavioral development after birth.

References
ABSTRACTS

Poster No 1319
The dlPFC mediates the association between psychological control and externalizing behavior in youth
Jalmar Teeuw¹, Sahasra Vijayanand², Hilleke Huishoff Pol²
¹Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands, ²Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands

Introduction: Harsh and abusive parenting can have detrimental effects on a child’s wellbeing and mental health (Mehta et al., 2023), and can have long-lasting effects on brain development (Teicher et al., 2016). The reciprocal relationship between parenting and externalizing behavior in children is well-established (Pinquart, 2017). Brain structures have been implicated in externalizing behaviors (Teeuw et al., 2022). Recent reports indicate that normal variations of parenting can also impact brain development (Cortes Hidalgo, et al., 2022). This raises the question if brain structures mediate the relationship between parenting and externalizing behavior.

Methods: We analyzed data from the longitudinal YOUth Child & Adolescent cohort at ‘Around 9 years’ (N=1,303) and ‘Around 12 years’ (N=385) (Onland-Moret et al., 2020). Externalizing behavior was assessed by the Child Behavior Checklist. Dimensions of parenting behavior were extracted from the Child’s Report of Parent Behavior Inventory and the Parental Control questionnaire. Gray matter volumes were extracted from MRI scans using FreeSurfer (Fischl, 2012) (Figure 1). Partial correlation analysis was used to confirm associations of brain structures with parenting and externalizing behaviors, controlling for sex and age. The mediating role of brain structures on the relationship between parenting and externalizing behavior was investigated with the PROCESS Macro (Hayes, 2017). In a post-hoc analysis, results were controlled for the household environment.

Results: The factor analysis of the parenting questionnaires revealed two dimensions: (1) psychological control (accounting for 19% of the total variance) and (2) parental strictness (12% of total variance). Higher psychological control (p_9y=+0.16, p=2.03E−06; p_12y=+0.34, p=6.20E−05) and less strict parenting (p_9y=−0.08, p=1.28E−02) was associated with higher...
levels of externalizing behavior (Figure 2A). In addition, higher psychological control at 9 years was predictive of externalizing behavior at 12 years ($p_{9y\rightarrow12y}=+0.21$, $p=4.28\times10^{-4}$). These effects remained significant after controlling for the household environment ($p<0.034$). Higher psychological control at age 9 years was associated with lower gray matter volume of the AMY, dIPFC, OFC, and TBV (range $p_{9y}=[-0.11,-0.08]$, $p_{\min}=1.84\times10^{-3}$; Figure 2B). Higher levels of externalizing behavior was also negatively associated with lower gray matter volume of AMY, dmPFC, dIPFC, and TBV at age 9 years (range $p_{9y}=[-0.10,-0.07]$, $p_{\min}=3.17\times10^{-3}$), and for vmPFC ($p_{12y}=-0.31$, $p=7.37\times10^{-3}$) and ACC ($p_{12y}=-0.27$, $p=2.50\times10^{-2}$) at age 12 years. Moreover, except for the AMY and the vmPFC, lower gray matter volume of brain structures at age 9 years was predictive of externalizing behavior at 12 years (range $p_{9y\rightarrow12y}=[-0.17,-0.11]$, $p_{\min}=1.89\times10^{-3}$), but not reversed. Only the associations for the AMY, dIPFC, and OFC at age 9 years remained significantly associated with psychological control and externalizing behavior at ages 9 and 12 years after controlling for the household environment. Based on these findings, the dIPFC, OFC and TBV were selected as prime candidates for the main mediation analysis. There was significant mediation of the association between psychological control of parents at age 9 years and externalizing behavior of children at age 12 years by the dIPFC (indirect effect: $+0.035$, 95%CI $[+0.007; +0.072]$; 14.7% of total effect), but was not significant for OFC (indirect effect: $+0.013$, 95%CI $[-0.006; +0.037]$, 6.1% of total effect) or TBV (indirect effect: $+0.007$, 95%CI $[-0.006; +0.028]$, 3.0% of total effect) (Figure 2C).

Conclusions: Psychological control of parents and externalizing behavior of children are associated with gray matter volumes, and the relationship between the two is mediated by the dIPFC. These findings suggest that normal variation in parenting can influence brain development of children with implications for their behavior, such as externalizing behavior, in adolescence.
ANNUAL MEETING OF THE ORGANIZATION FOR HUMAN BRAIN MAPPING • SEOUL • 2095

References

Poster No 1320

CentileBrain Normative Models of Brain Morphometry Can Generalize to Diverse Ethnoracial Groups
Ruiyang Ge1, Yuetong Yu1, Guoyuan Yang2, Jia-hong Gao3, Ryota Hashimoto4, Masaki Fukunaga4, Junya Matsumoto4, Kiyotaka Nemoto5, Neda Jahanshad2, Paul Thompson8, Sophia Frangou1

1University of British Columbia, Vancouver, British Columbia, 2Beijing University of Technology, Beijing, China, 3Peking University, Beijing, Beijing, 4National Center of Neurology and Psychiatry, Kodaira, Japan, 5National Institute for Physiological Sciences, Okazaki, Aichi, 6Department of Psychiatry, University of Tsukuba, Ibaraki, Japan, 7Imaging Genetics Center, Keck School of Medicine of University of Southern California, Los Angeles, California, 8Imaging Genetics Center, Keck School of Medicine of University of Southern California, Los Angeles, CA

Introduction: Application of the normative modeling to brain morphometry data has the potential to inform about the significance of normative deviation in brain morphometry for health and disease1-2. However, the majority of data collected are from individuals of European ancestry or those who may self-identify as non-Hispanic Whites3, and the generalization of the fit of established brain morphological norms to a broad range of ethnoracial groups remains largely unexamined.

Methods: We have developed robust age- and sex-specific CentileBrain normative models (https://centilebrain.org/)4 of regional measures of cortical thickness, cortical surface area, and subcortical volumes using structural brain scans from a pooled sample of 37,407 healthy individuals (53.33% female; aged 3 to 90 years) with diverse but mostly European background. In the present report, model parameters computed in the model development sample were tested for their generalizability to independent samples, each comprising healthy individuals either self-identifying as Black (n=284), South Asian (n=376), East Asian Chinese (n=1,136), and East Asian Japanese (n=970) or using genetic data to label ancestry as African (n=104), Admixed American (n=57), East Asian (n=415), and European (n=428). Mean-absolute-error (MAE) and root-mean-square-error (RMSE) served as the main measure of model performance.

Results: Regardless of the definition of the ethnoracial groupings, the correlation coefficient between the MAE and RMSE values of regional morphometric measures obtained from the model development sample and the MAE and RMSE values of the corresponding morphometric measures obtained in each ethnoracial sample were all greater than 0.96 for all ethnoracial groups (Figure 1 and Figure 2).
Conclusions: This study provides evidence that our pre-trained CentileBrain normative models for brain morphometric measures can be applied to samples of diverse ethnoracial backgrounds across the human lifespan.

References
The overgrowth of structure-function coupling level in premature brain during infancy

Rong Wang1, Jing Yu1, Tianyu Fang1, Yue Zhang1, Qiuyun Fan1, Yuanyuan Chen1

1Academy of Medical Engineering and Translational Medicine, Medical School of Tianjin University, Tianjin, China

Introduction: There are plenty of literatures about the two parallel development of infant brain during infancy, brain structure and brain function, but not about their coupling together with development, which also have been indicated to be very coupled in adult brain. In this study, we explore the concurrent development of brain structure and function in infants, a process known to be closely interlinked in adults. We are aimed to explore how the brain structure function couple during infancy, develop with age and alter with prematurity.

Methods: All data were acquired from the Developing Human Connectome Project(Hughes, Winchman et al. 2017). This study included 436 full-term infants (202 females; mean gestational age at birth: 39.9±1.27 weeks; mean PMA at scan:41.14±1.71 weeks) and 174 preterm infants (78 females, mean gestational age at birth: 32.2±3.44 weeks), out of which 63 preterm infants underwent two scans (PMA of 1th scan at birth: 34.49±1.77 weeks; PMA at 2th scan at term-equivalent age: 40.96±2.10 weeks). Cognitive assessments were collected at approximately 18 months of age using the Bayley Scale of Infant Development third edition (BSID-III). Image preprocessing was done including distortion correction, motion correction, scrubbing, interpolation, filtering, nuisance regression of spectrally matched motion parameters plus signals within CSF, white-matter, and grey-matter tissues. The UNC neonatal brain template as well as the AAL-aligned brain parcellation with 90 nodes were used to define the final space, and to construct the structural and functional connectome. Functional connectivity matrixes were calculated based on Fisher-Z transformed correlation. Structural connectivity matrixes were obtained from the fiber bundle density between two regions. The structural and functional connectivity coupling index was calculated for each brain regions individually, based on a multilinear regression model. The regression model incorporated multiple cortical connectivity including Euclidean distance, shortest path length and communicability, which were obtained from the sparse structural connectivity matrix and used to predict functional connectivity for the connectivity profile at each region. And the R-square value of the regression model was considered as the coupling index between regional structure and function.

Results: The brain structure-function coupling at the whole brain level showed significant group difference between the preterm at birth, the preterm at TEA and the full-term group (see Figure 1a). The preterm group showed a lower coupling level at birth and followed with a great growth at TEA, which was even higher than the coupling level of full-term group and consistent across all sub systems (Figure 1b). However, the spatial pattern of coupling index for two groups showed quite similar, with higher level for unimodal cortex and lower level for transmodal cortex. The developmental dynamics with PMA showed a rapid increase for both whole brain and reginal coupling index in full-term group but not in preterm at TEA group (Figure 2a and 2b). Highlighted regions were located within unimodal networks (Figure 2c). Finally, the coupling index for both groups showed significant association with cognitive outcomes at 19 months age, controlling covariables like gestational age at birth, PMA at scan, gender and motion parameters (Figure 2d and e). Noteworothy, negative association for preterm and positive association for full-term between coupling index and cognitive score were identified.
Conclusions: The immaturity of brain is very sensitive and vulnerable to the explosive environment inputs. The preterm infant brain possesses low level of structure-function coupling at birth and goes through an overgrowth to the term equivalent age. This overgrowth of brain structure-function coupling for preterm infants was verified to be negative correlated with the 19-month-old cognition outcome.

References
Neural development of language and speech in infants and toddlers

Kelly Hiersche¹, Zeynep Saygin¹

¹The Ohio State University, Columbus, OH

Introduction: Children acquire language without formal instruction. The “language-ready” brain hypothesis suggests infant brains are prewired for language acquisition due to the asymmetries in anatomical regions associated with language processing (Boeckx, 2014; Dehaene-Lambertz, 2006). Testing this hypothesis requires using both structural and functional MRI in the same infant, ideally using similar rigor as neuroimaging in adults; however, because children are notoriously difficult to scan with task fMRI during these early years of language acquisition, this hypothesis has not yet been explored. How early in human development can we observe selectivity within the language network to linguistically meaningful stimuli vs. human-produced speech sounds that are not linguistically meaningful? Are the early structural asymmetries actually precursors to this neural tuning for language or speech? In this study, we leverage novel neuroimaging and analysis methods to examine the response of the infant brain (ages 2-35 months) in native space to language and speech and their association with structural asymmetries both in anatomical regions (sROIs) and subject-specific functional regions (fROIs).

Methods: All infants completed at least one high-resolution T1-weighted MPRAGE scan (TR=2300ms, TE=2.9ms, voxel size=1.00 isotropic). We repeated structural scans until data quality was high enough for subsequent processing based on visual inspection during data acquisition. Structural data was processed using FreeSurfer’s infant_recon_all (Zollei, 2020), visually checked for correctness. The outputs were used to examine height/depth of brain folds and curvature. Additionally, each infant completed at least two runs of a language localizer task (all TR=1000ms, TE=28ms, vox size=2x2x3mm) where they listened to audio recordings of male and female experimenters reading a children’s book, with 3 conditions commonly used in language fMRI studies in adults: sentences (Sn), reverse sentences (Rv, Sn played in reverse; controls length, prosody and tone, but speech is meaningless), and a texturized sound condition (Tx, auditorily degraded Sn, unrecognizable as speech, low-level auditory control). All functional data was preprocessed with a similar protocol and exclusion criteria as prior fMRI work in infants (Deen 2017, Kosakowski, 2022). Functional to anatomical registration was completed using FSL’s linear registration tool, FLIRT (Jenkinson 2001 & 2002) (affine, 12 dof; best registration method across all infants), and all registrations were visually examined for accuracy. Resulting GLM contrast were applied to an individualized-subject approach, mirroring rigor applied to adult neuroimaging, for creating fROIs (top 5% most responsive voxels in search spaces (Fedorenko, 2010); language Sn>Rv; speech SnRv>Tx). Anatomical parcellations in native space generated sROIs.

Results: We found no evidence of language (Sn-Rv) or speech (SnRv-Tx) selectivity in the sROIs (except RH orbital inferior frontal), perhaps due to functional heterogeneity within anatomical regions. Additionally, we do not see clear anatomical asymmetries. However, when using fROIs we found evidence of speech selectivity in RH superior temporal and LH inferior frontal fROIs, and quite surprisingly some initial sensitivity to linguistic stimuli as compared to reverse speech in the LH inferior frontal fROI (Fig. 1B). Interestingly, we also see greater LH inferior frontal fROI sulcal depth than RH (Fig. 1C).

![Image of brain scan and data](image-url)
Conclusions: These results highlight the importance of individually-defining fROIs even in infants, and show novel evidence in support of the early emergence (and developmental timecourse) of language selectivity and laterality in frontal cortex. We also identify a possible anatomical substrate for the development of this uniquely human skill. Future investigations will explore longitudinal development of this structure-function relationship, connectivity asymmetries, and extended language network (e.g. cerebellum, Fig.1A).

References

Poster No 1323
Higher critical statistics for fMRI: a secondary analysis of NARPS team results
Benedikt Sundermann1,2, Anke McLeod3, Christian Mathys3,2
1Evangelisches Krankenhaus Oldenburg, Medical Campus University of Oldenburg, Oldenburg, Lower Saxony, 2Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany, 3Evangelisches Krankenhaus Oldenburg, Medical Campus University of Oldenburg, Oldenburg, Germany

Introduction: The Neuroimaging Analysis Replication and Prediction Study (NARPS) (Botvinik-Nezer et al. 2020) highlighted the heterogeneity of results obtained by different teams analyzing the same task-fMRI dataset (Botvinik-Nezer et al. 2019) and thus potential problems associated with analytical variability. Most NARPS-teams used mass-univariate testing, combined with cluster-based thresholding for multiple comparison (MC) correction. This raises the question, to what extent the variability of conclusions by different NARPS-teams was triggered by the limited capability of identifying consistent effects within areas of interest using mass-univariate approaches across the different original analyses. In this secondary analysis of NARPS data we used an alternative statistical approach, higher criticism (HC) to search for at least rare or weak effects in intermediate team results (unthresholded result maps). HC is a statistical approach for testing a global hypothesis that such effects are present within a large number of primary statistical tests by quantifying an excess of low p-values (Donoho and Jin 2015). HC has been introduced to assess subthreshold effects in fMRI avoiding limitations of conventional mass-univariate testing (Gerlach et al. 2021, Sundermann et al. 2023). Purpose of this analysis was: to assess whether HC-based global hypothesis testing for rare/weak effects based on result maps from different teams reduces the variability of results.

Methods: Analysis of publicly available intermediate results (unthresholded result maps; aggregate data, not individual subjects) from 64 teams in NARPS. Calculation of z-value maps with original published NARPS code and conversion to p-value maps representing equivalents of two-sided tests as a prerequisite for the rationale of p-value histogram interpretation underlying HC (different from original one-sided NARPS hypothesis tests). Extraction of p-values of all covered voxels from the regions of interests (ventro-medial prefrontal cortex, ventral striatum, and amygdala) from the NARPS common thresholding analysis. Visualization of p-value histograms and global hypothesis tests using the classical HC statistic. Comparison of HC-based global hypothesis test results and original team decisions for the 9 ROI/hypothesis-combinations.

Results: Most p-value histograms exhibited typical distributions as a prerequisite for an HC-based analysis. The global null hypothesis was rejected more frequently in HC-based analyses (82.1 % of tests) compared with rejected null hypotheses in the original NARPS team results (26.9 %), see Figure. For 5 out of 9 hypotheses with ambiguous results (null hypothesis rejected in 29.1 %) in the original analysis, HC rejected the global null hypothesis in a majority of teams (87.8 %). For 3 out of 9 hypotheses (amygdala) with originally negative results (null hypothesis rejected in 4.1 %), HC-based results were ambiguous (null hypothesis rejected in 68.2 % of tests). Secondary analyses revealed a small association of smoothness estimates from team maps with the HC decisions.
Conclusions: HC-based analyses revealed at least rare or weak effects within ROIs despite negative or ambiguous findings in conventional mass-univariate analyses of task-based fMRI data of mixed gambles reported in NARPS. It thus reduced variability of conclusions in a subset of NARPS hypotheses. HC-based findings also include effects in the amygdala, discussed as a negative result in the original fMRI study (Tom et al. 2007). Thus, HC-based analyses appear to have a higher probability of positive results than conventional thresholding of mass-univariate tests. They could not solve the problem with heterogeneous results across NARPS teams in general. HC rather shifted ambiguity towards hypotheses with negative results in the original analyses. While there is small effect of spatial map smoothness, smoothness does not appear to be the main driver of differences of HC-based results.

Figure - Comparison of original conclusions by 64 teams in NARPS vs. conclusions based on HC global hypothesis testing

References

Poster No 1324
An Electrophysiology-Silent fMRI Study to Inform the Neurofunctional Basis of Startle Habituation
Laura Naysmith¹, Owen O’Daly¹, Ana Beatriz Solana², Florian Wiesinger², Simon Hill¹, Steven Williams¹, Veena Kumari³
¹King’s College London, London, England, ²GE Healthcare, Munich, Germany, ³Brunel University, London, England

Introduction: The acoustic startle reflex provides an important model system for exploring information processing mechanisms and stem from acoustic-focused rodent models, translating to human neuroimaging findings. The startle reflex is subject to modulation, such as habituation which leads to attenuation of the reflex response, and is thought to reflect
attentional filtering of redundant information (Thompson & Spencer, 1966). Indeed, startle habituation impairments have been observed in disorders such as Parkinson’s disease, schizophrenia, post-traumatic stress disorder, and Huntington’s disease (review, McDiarmid, Bernandos & Rankin, 2017). To better understand information processing in healthy populations and, subsequently, dysfunction in clinical populations, the current study aimed to explore the neurofunctional basis of startle habituation, which remains poorly understood. In a mixed-sex, healthy young adult sample, the study combined simultaneous electromyography (EMG) to measure the startle reflex as an eyeblink, and fMRI to provide a closer coupling of stimulus, behaviour, and BOLD MR signal and hence, greater inference of the association of regional brain activation with startle behaviour and startle stimulus processing. Secondly, we present a major advancement in this work with the application of a silent fMRI sequence, Looping Star (Wiesinger, Menini, & Solana, 2019), which allowed for the continuous presentation of acoustic stimuli by minimising gradient-related acoustic noise. Neural circuitry underpinning startle habituation was hypothesised in the brainstem (Kuhn et al., 2020) and thalamus (McDowell et al., 2006) and when EMG-assessed measures of startle habituation were modelled as a covariate at the group-level fMRI analysis, neural activity was expected to decrease with more startle habituation.

Methods: Forty-two participants (M= 23.71 years) were presented with a passive auditory startle paradigm in the 3T MRI scanner, which consisted of loud auditory clicks to elicit startle. EMG measures of startle were acquired in real-time using AcqKnowledge (BIOPAC Systems Inc.) and required online band-pass filtering and offline filtering, of which an innovative pipeline was developed to suit the frequency spectrum of Looping Star. We used a silent functional MRI multi-echo sequence called Looping Star (TE1/ TE2/ TE3/ TR= 0ms/ 17.9ms/ 35.8ms/ 2.62s). Imaging data were pre-processed and analysed in SPM12. An optimal combination of the gradient echoes (TE= 17.9ms and 35.8ms) was used (Fig 1). At the group-level, a linear regression was conducted. EMG data, analysed in SPSS Statistics, calculated startle habituation as a regression slope per participant and these regression slope values were included as a covariate of interest at group-level. We conducted a regions of interest (ROI) approach (thalamus, McDowell et al., 2006; brainstem, Kuhn et al., 2020). We also tentatively conducted a whole brain analysis, as Hermann et al. (2020) highlighted the Default Mode Network (DMN) during startle habituation.

Results: BOLD fMRI activity in the thalamus, brainstem, and a cluster surmising the right putamen and extending to the right insula was observed (Fig 2). BOLD response in these regions correlated significantly positive with startle habituation slope values, thus indicating a decrease in BOLD MR response with more startle habituation (negative startle habituation slope value).

Conclusions: Simultaneous EMG data enriched fMRI findings of the neural basis of startle habituation by identifying a positive relationship between acoustic startle habituation and sub/cortical regions. The direction of relationship between fMRI BOLD and startle habituation can be used to further examine how the acoustic primary startle circuit is mediated, such as through reticular activating system (McDowell et al., 2006) or cortical networks such as the DMN (Hermann et al., 2020) and encourage further fMRI investigations in clinical populations which show aberrations in startle habituation.

Fig. Sagittal, coronal, and axial slices of free induction decay (FID), gradient echoes (GRE) (1 and 2), and optimal combination of gradient echoes of one participant.
Fig. ROI BOLD activity (bilateral thalamus and brainstem) and a BOLD activity in a cluster surmising right putamen to ig. right insula showed a decrease in MR response with more startle habituation.

References

Poster No 1325
BayesfMRI: User-friendly spatial Bayesian modeling for task fMRI
Damon Pham1, David Bolin2, Martin Lindquist3, Thomas Nichols4, Amanda Mejia1
1Indiana University, Bloomington, IN, 2King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 3Johns Hopkins University, Baltimore, MD, 4University of Oxford, Oxford, United Kingdom

Introduction: Spatial Bayesian models are a powerful way to account for spatial dependencies in fMRI analysis3. While massive univariate modeling treats each voxel or vertex as a separate entity, spatial Bayesian models place a multivariate prior distribution on the underlying maps of activation, which encodes the spatial dependence and implicitly smooths the activation estimates. This avoids ad-hoc data smoothing, which induces spatially dependent noise and can lead to false positive clusters2. In addition, spatial Bayesian models can use the joint posterior distribution across brain locations to identify areas of activation. This dramatically increases power to detect activations and facilitates the use of meaningful minimum effect sizes, even in individual-level analysis5. The open-source BayesfMRI R package provides a user-friendly interface for spatial Bayesian models for task fMRI analysis. Importantly, the spatial Bayesian models implemented in BayesfMRI are surface-based and subcortical parcel-constrained. These grayordinates-based models leverage spatial dependencies in a neurobiologically appropriate way and avoid the mixing of signals known to occur with whole-brain volumetric smoothing or spatial modeling1.
Methods: Fig. 1 illustrates the main functions of the BayesfMRI package. The BayesGLM function fits a spatial Bayesian model for subject-level task fMRI analysis. Wrapper functions provide direct compatibility with CIFTI, GIFTI and NIFTI-format data. The id_activations function identifies areas of significant activation above a specified minimum effect size, using the joint posterior distribution across locations. This substantially increases power to detect activations while controlling the family-wise error rate (FWER). Second-level analysis relies on the BayesGLM2 function, which uses group-average spatial Bayesian modeling. Alternatively, the function act_prevalence produces group prevalence maps based on the subject-level activation maps. The plot function can be used to produce user-friendly visualizations of all results. BayesfMRI also includes fast prewhitening using spatially variable high-order AR modeling to effectively mitigate autocorrelation. Planned future functionality includes Bayesian estimation and inference of hemodynamic response function (HRF) shape (e.g. height, width, onset) and data-driven individualized HRF estimation.

![BayesfMRI R Package](image)

Results: Fig. 2 provides a demo of BayesfMRI, with pseudo-code and sample results based on an analysis of the HCP working memory task (n=20). First- and second-level spatial Bayesian models are illustrated. Example visualizations based on the real data are shown on the right. These show smooth estimates and robust areas of activation at both the individual and group level. As an alternative to group averages, group prevalence maps show the proportion of subjects exhibiting activation at each location. This shows similar patterns as the group-average activations but provide greater nuance and extent. These robust prevalence maps are possible due to high power at the first level provided by spatial Bayesian modeling.
Conclusions: BayesfMRI is a user-friendly, open-source R package that facilitates spatial Bayesian modeling for task fMRI analysis. The spatial models are based on grayordinates data to leverage spatial dependencies along the cortical surface and within subcortical structures, which avoids blurring anatomically distinct areas. BayesfMRI implements single- and multi-session/longitudinal subject-level analysis, second-level group analysis, prewhitening, and powerful joint posterior inference to identify areas of activation above a specified minimum effect size. Convenient visualizations are also provided. BayesfMRI is available through both CRAN and GitHub.

References
Poster No 1326

Assessing motion-associated tSNR of brainstem and spinal cord fMRI in a post-stroke cohort

Neha Reddy1, Kimberly Hemmerling1, Julius Dewald1, Molly Bright1

1Northwestern University, Chicago, IL

Introduction: Motor-task fMRI is a critical modality to study neural changes after a stroke. Although current work has focused on cortical activity patterns in post-stroke cohorts, brainstem and spinal cord fMRI will be equally important to understanding overall adaptation within the central nervous system. However, one challenge of motor-task fMRI in a cohort with stroke is that participants exhibit higher head motion, which can decrease data quality. This problem is compounded in the brainstem and spinal cord, which already have lower data quality. Therefore, we aimed to (1) anticipate the degree of head motion in post-stroke participants before an MRI scan, and (2) assess how head motion affects fMRI data quality in the brain, brainstem, and spinal cord.

Methods: Data collection: 6 individuals (62±7y, 6M) with chronic hemiparetic stroke and a paretic upper limb underwent 3 study sessions: 1 outside the scanner and 2 MRI scans in a Siemens 3T Prisma with a 64-channel head/neck coil. Participants performed a hand-grasp task at 40% maximum force: 10-s ‘squeeze’, 15-s ‘relax’, 11 trials/hand. During the first visit, participants lay on an exam table in an out-of-use head coil to simulate the MRI environment, while grip force and head motion data were collected (Fig1). During MRI sessions, participants performed the hand-grasp task during a cortical-brainstem GRE EPI scan (TR=2.2s, TE=13.4/39.5/65.6ms, FA=90°, MB factor=2, voxel size=1.731x1.731x4.0mm³) and a spinal cord (~C4-C7) GRE EPI scan with ZOOMit selective excitation (TR=2.13s, TE=30ms, FA=90°, voxel size=1x1x3mm³). Axial slices were aligned perpendicular to the base of the 4th ventricle or longitudinal cord axis, respectively. Structural scans were also acquired. Lab session analysis: Motion data were downsampled to 0.5Hz to approximate the fMRI TR, and Framewise Displacement (FD) was calculated as the sum of the difference in head motion between samples. Cortical-brainstem fMRI analysis: The first 10 fMRI volumes were removed to allow for steady-state magnetization, then scans were distortion-corrected. Head-motion realignment parameters were computed for the first echo with respect to the Single Band reference image, then applied to all echoes. An optimally combined image was calculated. The hand-grasp task and motion parameters were modeled out before mean tSNR was calculated in two ROIs transformed to functional space: gray matter segmented from the T1-w scan, thresholded at 75%; and brainstem, using the Harvard-Oxford subcortical structural atlas brainstem thresholded at 50%. FD was calculated using parameters from volume realignment. Spinal cord fMRI analysis: 2D slicewise motion correction was performed and FD calculated using X and Y motion parameters. The spinal cord was manually segmented. Mean cord tSNR was calculated after task and motion regressors were modeled out.

Results: Head motion in the lab was significantly correlated with both head and spinal cord motion (FD) during fMRI (Fig2A). Head and spinal cord motion was significantly negatively correlated with mean tSNR in cortical, brainstem, and spinal cord ROIs (Fig2D).
Conclusions: In cohorts with increased movement during motor-task fMRI, motion can be evaluated in a mock-MRI environment before scanning. However, while the lab session is designed to simulate the MRI session, minor differences in setup still exist, causing variability in the lab vs. MRI motion relationship. Even after motion correction and denoising, spinal cord tSNR was lower in this stroke cohort compared to a similar spinal cord dataset in younger controls, indicating the importance of other physiological denoising techniques for brainstem and spinal cord fMRI. We anticipate that multi-echo independent component analysis for cortical-brainstem scans will improve tSNR. Overall, our findings demonstrate that a motion-capture lab session can help anticipate and plan for potential decreases in tSNR throughout the CNS in a clinical population.

References

Poster No 1327

Effects of NORDIC denoising on population receptive field maps

David Linhardt¹, Garikoitz Lerma-Usabiaga², Michael Woletz¹, Christian Windischberger¹

¹High Field MR Center, Medical University of Vienna, Austria, ²Basque Center On Cognition, Brain and Language, BCBL, San Sebastian, Spain

Introduction: In fMRI studies it is a common goal to achieve higher spatial resolution. However, measuring smaller voxels reduces the signal-to-noise ratio (SNR). NORDIC¹,² is a noise reduction method aiming to tackle this issue. Based on a patchwise principal component analysis (PCA), NORDIC identifies and removes components that are similar to thermal noise. This SNR increase goes hand in hand with an increase in image smoothness, however it was found that the increase is less than with other denoising methods³. In the special fMRI application of population receptive field (pRF) mapping, Gaussian smoothing of the image is directly corresponding to an increase in pRF size parameter estimation⁴. Within this work, we investigated the effects of NORDIC denoising on the resulting pRF parameter estimations.

Methods: We acquired fMRI data in three participants (two female, age: 20.3±0.9) on a SIEMENS PrismaFit 3T scanner using the lower part of a 64-channel head coil. Subjects were scanned for one 5-minute functional run (TE/TR=1000/38 ms, 1.5mm isotropic) while being presented a bar aperture (width=1.2°) moving through the visual field in eight different directions, revealing reversing checkerboards. The stimulated field of view was 9° radius. NORDIC denoising was applied on the NIFTI files after standard scanner reconstruction (NIFTI_NORDIC, github.com/SteenMoeller/NORDIC_Raw). Both the original and noise-reduced versions were minimally preprocessed using fMRIPrep v23.0.1 (fmriprep.org). The pRF mapping analysis was conducted on both conditions using the containerized solution prfprepare v1.3.5 (github.com/dlinhardt/prfprepare) and prfanalyze-vista v2.2.2_3.1.1 (github.com/vistalab/PRFmodel). Only voxels in V1-3 (Benson atlas⁵) and above the 20% variance explained threshold were used for the comparison. Assessment of NORDIC effects were performed in a voxel-by-voxel comparison.

Results: The pRF position eccentricity and polar angle estimations did not show any systematic differences between the two conditions (Fig 1A and B), but including NORDIC in the preprocessing pipeline substantially increased the pRF size (Fig 1C). As expected for a noise-reduction method, NORDIC-processed results show higher variance-explained values (Fig 1D). To quantify the differences, we calculated Cohen’s d effect sizes⁶ for the different comparisons. These effect sizes confirm the quantitative results and yield no effects for the pRF center position (eccentricity 0.06; polar angle 0.01), a small effect in the pRF size (0.33) and a large effect for the variance explained (1.66). Further quantification was conducted to assess the magnitude of pRF size increase. For that, we computed the ratio of pRF sizes estimation with and without NORDIC correction. As illustrated in Figure 2, a histogram of this ratio reveals a predilection for values greater than 1, substantiating an amplification in pRF size. The median of this distribution is positioned at 1.22, signifying a 22% increase in pRF size attributable to the removal of noise using NORDIC.
Conclusions: The application of NORDIC denoising in pRF mapping, results in a median 22% increase in pRF size estimations. These increases in pRF size estimation can not directly be linked to overall image smoothness (AFNI 3dFWHMx). Instead, we argue it arises from the integration of information from adjacent voxels with differing pRF characteristics, leading to peak broadening. This phenomenon is based on the inherent retinotopic organization of neighboring voxels. Previous studies have demonstrated that standard Gaussian spatial smoothing impacts pRF size\(^4\), showing the described effect. Even though image smoothness is hardly increased using NORDIC\(^3\), the effect of neighboring voxel integration most probably leads to the measured pRF size increases. Therefore, the use of NORDIC in preprocessing, despite its benefits in noise reduction, requires cautious interpretation due to its influence on pRF size estimations.

![Figure 1: pRF parameter comparison](image)

Figure 1: pRF parameter comparison

2D histograms showing direct voxel-to-voxel comparisons of the resulting pRF parameter between the two conditions with and without prior NORDIC denoising. Values around the identity line (red line) represent similar results of the two conditions. The pRF center position is not effectively changed by the denoising (A & B) while the pRF size (C) as well as the variance explained (D) shows a bias towards higher values for the denoised condition.

Figure 2: Histogram showing the ratio of pRF sizes from analyses with and without prior NORDIC denoising. Values around 1 (red line) correspond to equal sizes. Mean of this distribution is 1.37, indicating an average 37% increase of pRF size.
References

Poster No 1328
Corticospinal pain processing and modulation in fibromyalgia: a combined brain-cord fMRI study
Dario Pfyffer1, Merve Kaptan1, Christine Law1, Kenneth Weber1, Valeria Oliva1, Sandrine Bédard1, Tara Maronesy1, Gary Glover1, Sean Mackey1

1Stanford University, Palo Alto, CA

Introduction: Chronic widespread pain represents the cardinal symptom of fibromyalgia (FM)1. While physical therapy was found to relieve pain2, its modulatory mechanisms in the central nervous system remain understudied. Brain and more recently spinal cord (SC) functional magnetic resonance imaging (fMRI) have advanced knowledge of neural correlates of pain processing3,4. Regions showing increased pain-related activity in FM include the thalamus, insula, somatosensory cortices, and SC dorsal horn5. Moreover, dysfunctions in cerebral pain-modulatory systems were reported6, but their link to the SC is missing. We currently lack understanding of the intricate interplay between spinal and supraspinal networks during pain perception as brain and SC fMRI are conventionally performed separately. Here, we characterize corticospinal mechanisms of aberrant nociceptive processing in FM, by means of combined brain-SC fMRI, and explore descending pain-modulatory effects related to physical activity.

Methods: This preliminary study includes 6 female FM patients (age range: 22-62) and 4 female healthy volunteers (HV, age range: 33-62 years). The imaging protocol consisted of the combined brain-SC sequence7 (EPI pulse sequence, dynamic per slice shimming; 3T GE SIGNA 750 scanner; 16-channel neurovascular array coil; TR=2.5s, TE=30ms, GRAPPA=2), 30 brain slices (3.4x3.4x5.0mm3) and 13 cervical SC slices (1.25x1.25x5.0mm3) centered at C5 vertebral level, axial (FOV=22cm, matrix size=128x128, ΔTE=1ms) and sagittal (FOV=30cm, matrix size=256x64, ΔTE=1ms) field maps for shimming, and anatomical scans (brain: T1w 3DFSPGR (1.0x1.0x1.0mm3); SC: T2w reduced-FOV 3D turbo spin-echo (0.7x0.5x0.5mm3)). The experimental design included four conditions (8x each, 13s) in randomized order: stimulation ON/OFF paired with motor task ON/OFF. Thermal stimuli were applied at the right volar forearm (C6 dermatome) at individual temperatures producing a 6 on the Numeric Rating Scale (0-10), using an ATS thermode (Medoc, 3x3cm2 surface). The motor task consisted of repetitive isometric right-hand gripping with visual feedback (60% of maximal voluntary contraction) using a Dynamometer (BIOPAC). Blocks were followed by 5s pain rating and 6s rest periods. SC and brain images were processed (slice-time correction, motion correction, spatial normalization, smoothing) using FSL and Spinal Cord Toolbox. Preprocessing included RETROICOR8 correction and cerebrospinal fluid regression to account for the physiological noise. Activation maps (fixed effects) were cluster-corrected (z>2.3) for the brain and uncorrected for the SC, with a threshold of p=0.05.

Results: While average pain ratings decreased by 0.6 points for stimulations during motor task vs. stimulations at rest for HV, they only dropped by 0.2 points for FM. Upon stimulation during motor task, greater activity was found within regions implicated in sensory pain aspects (SI, ACC, insula) in FM compared to HV (Fig. 1, red). Enhanced activity was demonstrated in regions implicated in pain regulation (PFC, PAG, pgACC, PCC, motor cortices) in HV compared to FM (Fig. 1, green). SC dorsal horns exhibited higher and more widespread activity at the level corresponding to the site of stimulation (C6) in FM (red) than HV (green) during the motor task (Fig. 2A). This is supported by the greater activity observed in the same region when contrasting FM > HV (Fig. 2B, red).

Conclusions: Our findings expand previous work detecting elevated activity in pain-related brain regions upon noxious thermal stimulation by showing the same pattern in the SC. Crucially, executing a motor task during stimulation reduced pain ratings and engaged brain regions implicated in descending pain modulation in HV9, FM, in contrast, exhibited greater activity
in brain regions processing sensory pain and SC dorsal horns. Using combined brain-SC fMRI, we identified neural correlates of aberrant pain modulation in FM which can advance development of objective biomarkers of chronic pain.

References
The Impact of TMS Intensity and Location on Neural Activation: An iTBS-fMRI Study

Kai-Yen Chang¹, Martin Tik², Yuki Mizutani-Tiebel³, Lucia Bulubas¹, Frank Padberg¹, Daniel Keeser¹

¹Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany, ²Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria

Introduction: The determination of intermittent theta burst stimulation (iTBS) intensity relies on motor threshold (MT) measured in the primary motor cortex (M1). Despite the common practice of using 80% to 120% of M1 resting MT for prefrontal cortex stimulation, the transferability and adequacy of this approach remain unclear. Utilizing concurrent TMS-fMRI, we investigate the impact of subthreshold intensities (80% rMT) and low stimulation intensity (40% rMT) on the left DLPFC. We also include 80% rMT over the left M1 as a reference. By comparing these conditions within the same subjects, we seek to understand how varying TMS intensities influence neural activation in the prefrontal region and whether left M1 intensity induces similar patterns in the left DLPFC. This exploration is crucial for establishing the appropriate stimulation intensity for clinical treatment, shedding light on the differentiated relationship between stimulation intensity and neuronal activation in the prefrontal brain region.

Methods: All participants signed informed consent approved by the local LMU ethical committee. 18 healthy participants (10 males, mean age = 26.4, SD = 3.1) were included. We randomized three conditions for each participant: 80% or 40% rMT intensity over the left DLPFC (-38, 44, 26)¹ and 80% rMT over the left M1. In these sessions, we acquired a structural and interleaved iTBS-fMRI sequence. Apart from the standard MRI data preprocessing², we used independent component analysis (ICA) to remove general noise such as ventricular and motion artifacts in addition to potential coil artifacts in the fMRI data as suggested in³. To establish a correlation between simulated electric field (E-field) and fMRI BOLD activation in each subject under the conditions of 80% rMT in the DLPFC and M1, we adopted predefined targets for the left DLPFC and M1 (-37, -21, 58)⁴, and calculated the mean E-field magnitude on SimNIBS 4.0 and the mean beta value from fMRI data within a 10mm radius of region of interest.

Results: At 80% rMT over left DLPFC, significantly increased BOLD was observed under the stimulated location, M1, anterior cingulate gyrus (ACC), anterior insula, and bilateral auditory cortices. It is noteworthy that the activation of the bilateral ACC and anterior insula represents a classic marker for the so-called salience network. While lower iTBS intensity resulted only in the presence of BOLD activity on the contralateral right DLPFC, bilateral auditory cortices and ACC. In M1 condition, activations were observed in the bilateral primary motor cortices, right DLPFC, auditory cortex, and primary somatosensory cortex. In the subcortical regions, the BOLD activations were found in putamen region and left caudate region. The correlation analysis examined E-field magnitude and fMRI beta values in two conditions: DLPFC 80% rMT and M1 80% rMT. A weak positive correlation (r = 0.31) was found in the DLPFC condition, while the M1 condition showed a strong positive correlation (r = 0.65).

Figure 1. (A) Immediate BOLD during 80% rMT left DLPFC. (B) Immediate BOLD during 40% rMT left DLPFC. (C) Immediate BOLD during 80% rMT left M1.
Figure 2. Correlation analysis of E-Field magnitude and fMRI beta values in DLPFC and M1 80% rMT conditions.

Conclusions: The results of our study revealed that focal BOLD activations were found under stimulated region in the left DLPFC after ICA denoising was applied. This observation suggests that artifacts from the TMS coil or TMS-MRI hardware coupling were removed. Moreover, it revealed activation in the salience network, containing the anterior insula and anterior cingulate gyrus, aligning with Hawco et al.'s findings. Conversely, the 40% rMT DLPFC condition did not exhibit this specific pattern; only the right DLPFC showed activity, potentially indicating interhemispheric compensation. The correlation analysis suggests that higher E-field magnitudes in the cortex generally correlate with higher BOLD signals in fMRI. Due to the higher complexity of the DLPFC, the prediction of simulation results becomes more difficult, highlighting the challenge in predicting outcomes under the same TMS intensity for DLPFC and M1.

References

Poster No 1330
Reducing individual differences in task fMRI with OGRE preprocessing for FSL
Mark McAvoy¹, Lei Liu¹, Ruiwen Zhou¹, Mark McAvoy¹
¹Washington University School of Medicine, St. Louis, MO

Introduction: Volumetric preprocessing methods continue to enjoy great popularity in the analysis of functional MRI (fMRI) data. Among these methods, the software packages FSL (Jenkinson et al., 2012) and FreeSurfer (Fischl et al., 2004) are omnipresent throughout the field. However, it remains unknown what advantages an integrated FSL+FreeSurfer preprocessing approach might provide over FSL alone. Here we developed the One-step General Registration and Extraction (OGRE) pipeline to combine FreeSurfer and FSL tools for brain extraction and registration of fMRI data for FSL volumetric analysis.

Methods: OGRE preprocessing included coarse registration with FSL tools followed by fine registration with FreeSurfer (Glasser et al., 2013), then formatted for integration with FSL. OGRE preprocessing was compared to traditional FSL preprocessing with a dataset of adult volunteers (N=26) performing a precision drawing task with a MRI-compatible tablet during fMRI scanning. The task followed a blocked design with 15.2s draw/rest, TR = 662 ms, 6×5.4min runs alternating between runs with right hand (RH) drawing and left hand (LH) drawing. Data were preprocessed with FSL or OGRE, and then analyzed with the FSL FEAT general linear model which included explanatory variables for Task (i.e. drawing) and its temporal derivative, each formed by convolving the hemodynamic response with a double-gamma function. Additional variables addressed volumes with excess head motion (framewise displacement > 75th percentile + 1.5* interquartile range). The contrast, Task > rest, was averaged across runs for each participant, and then an across-participants mixed effects
analysis was performed to identify a whole-brain voxel-wise effect of Method (OGRE vs. FSL-only) with cluster threshold $Z > 3.1$ ($p < 0.05$ corrected). In addition, participant-level data were quantified via a region of interest (ROI) analysis. 42 ROIs were defined from: primary motor representations of hand, lip and foot (Smith & Frey, 2011); the Yeo-7 atlas (Yeo et al., 2011); and the whole brain. For direct statistical comparison of mean signal magnitude and inter-individual standard deviation, these ROIs were entered into a $2 \times 10 \times 2 \times 2$ repeated measures ANOVA with participants as the random factor.

Results: OGRE preprocessing, compared to traditional FSL preprocessing, led to consistently lower inter-individual variability of task-related BOLD activation (Task > Rest) with a decrease of $44 \pm 12\%$, as shown in Figure 1. This decrease in inter-individual variability was found in all 42 ROIs, and statistically significant ($p < 0.001$) in 37/42 ROIs (88%). Signal magnitude did not differ systematically between OGRE and FSL: magnitude increased numerically in 28/42 ROIs (67%), and this difference was significant in only 6/42 ROIs (14%). Nevertheless, in a whole-brain analysis, OGRE showed significantly more activation than FSL preprocessing in 5-7 clusters including sensorimotor areas contralateral to movement, while no areas showed more activation for FSL preprocessing than OGRE preprocessing.

Conclusions: The integration of FreeSurfer tools via OGRE preprocessing can improve fMRI data analysis in the context of FSL's volumetric approach. Specifically, OGRE preprocessing led to decreased inter-individual variability, which in turn led to increased detection of task-relevant BOLD activity (sensorimotor areas contralateral to movement). The OGRE pipeline provides a turnkey method to integrate FreeSurfer-based brain extraction and registration with FSL analysis of task fMRI data.

References

4. Smith JC, Frey SH. Use of independent component analysis to define regions of interest for fMRI studies. International Society for Magnetic Resonance in Medicine (ISMRM); Feb 09; Montreal, Canada2011.
Meditation attenuates activity of a trans-diagnostic brain network: 3T and 7T fMRI evidence

Saampras Ganesan1, Bradford Moffat2, Nicholas Van Dam3, Valentina Lorenzetti4, Andrew Zalesky1,5

1Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, 2Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, Victoria, 3Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, 4Faculty of Health, Australian Catholic University, Melbourne, Victoria, 5Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia

Introduction: Burgeoning fMRI research in meditation alongside advancements in ultra-high field fMRI and real-time neuroimaging uniquely enable multi-faceted investigations into the neurobiology of meditation. Meditation encompasses mind-body attentional training7, that can alleviate core psychopathological symptoms, such as dysfunctional self-referential thinking and mood1,5,6, prevalent across multiple internalizing psychiatric disorders including depression, anxiety, schizophrenia, etc. Elucidating the most robust neurobiological underpinnings of meditation can help objectively inform and develop the therapeutic value of meditation in treating prevalent psychiatric disorders6.

Methods: Here, we present and distil fMRI-measured brain activations reported across 3 independent studies of task-fMRI meditation research (Figure 1), comprising N=210 healthy individuals that either: i) mediated by paying attention to breathing sensations (meditation condition) or; ii) engaged in a non-meditative control condition (e.g., let their minds wander freely) inside the MRI scanner. The first study (N=174) involves whole-brain random-effects activation likelihood estimation (ALE) meta-analysis of significant brain activation coordinates reported in PRISMA-eligible 3T meditation task-fMRI studies3. The second study (N=10) involves group-level whole-brain general linear modelling (GLM) inferences from first-of-a-kind ultra-high field 7T meditation task-fMRI following stringent artefact modelling4. The final study (N=26) involves group-level inferences from a real-time 7T fMRI neurofeedback paradigm (2-day fMRI sessions) that aimed to train participant self-regulation of BOLD activation within a target brain region via meditation.

Results: Key nodes of the default-mode network (DMN) were implicated commonly across all 3 independent studies, demonstrating significantly reduced activation during meditation compared to control condition (Figure 2). Specifically, the coordinate-based meta-analysis revealed significantly reduced activation (FWE-corrected p<0.05, 1000 permutations) during meditation vs. control condition in the medial prefrontal cortex (mPFC). Group-level GLM of the 7T meditation task-fMRI, adjusted for head-motion, physiological (RETROICOR) and arousal (self-report) variables, found significantly reduced activation (FWE-corrected p<0.05, z>3.1, 1024 permutations) during meditation vs. rest in precuneus, posterior cingulate cortex (PCC) and mPFC. Finally, mean BOLD percent-signal change within PCC (neurofeedback target region) estimated in real-time during neurofeedback self-regulation, after real-time adjustment for physiological confounds, was found to be significantly negative (T(25) = -4.0, p = 0.0005) at the group-level for meditation vs. rest.
Conclusions: The distillation of multifaceted brain activation findings from 3T task-fMRI meta-analysis, 7T task-fMRI and 7T fMRI neurofeedback conclusively demonstrates that meditation attenuates activation within the DMN, a brain network predominantly associated with self-referential processing. Notably, given the trans-diagnostic implication of dysfunctional self-referential processing and DMN in psychiatric conditions\(^2\), our findings highlight the potential utility of meditation-based therapeutics in alleviating excessive and aberrant self-referential processing characteristic of several internalizing psychiatric disorders. This work also highlights the value of synthesising multifaceted findings across 3T and 7T MRI to illuminate putative neurobiological mechanisms underlying complex subjective states of awareness (i.e., meditation).

References

Poster No 1332
Bounded contribution of human early visual cortex to topographic bias in spatial extent perception
Juhyoung Ryu\(^1\), Sang-Hun Lee\(^1\)
\(^1\)Seoul National University, Seoul, South Korea

Introduction: Accurate perception of object’s spatial extent, an enclosed region they occupy in space, is crucial for successful interaction with the environment. The topographic representation of space in the early visual cortex (EVC) has been favored as a neural correlate of spatial extent perception. However, it remains mostly unexplored whether and how the topographic anisotropies in EVC relate to those in perceived spatial extent. In this study, we examined the topographic representations of the EVC and individuals’ perception, focusing on the influence of orientation (co-axiality) and radial position (radiality) of stimuli: radial when elongated along the radial axis on which the RF is positioned in retinotopic space, and co-axial when elongated along the axis aligned to the stimulus orientation in visual space. We conducted fMRI and psychophysics experiments to examine the dominant factor in topographic bias of the pRF and perceived anisotropy and the relationships of anisotropies between the pRF and perception at the individual level. The results revealed a mismatch in bias, with EVC showing a radial bias and perception showing a co-axial bias. Despite of this mismatch, inter-individual variabilities in EVC’s anisotropy were correlated with that in perception. The results suggest the involvement of additional mechanisms beyond EVC in transforming information to match perceived spatial extent.
Methods: we estimated the pRFs of individual voxels in EVC using visual stimuli with two types of gratings with different orientations in the retinotopic polar space: radially and tangentially oriented gratings (Fig. 1c, 2a-1). Due to the correlation between preferred orientations and polar-angle positions of neurons (Fig. 1a,b), how the two anisotropy factors affect the pRF anisotropy is inconclusive. To overcome this, we used radially and tangentially oriented gratings, decorrelating orientation and polar-angle position. By inspecting elongation axes in tangential orientation condition, the study distinguishes whether co-axiality or radiality dominates. Furthermore, comparing degrees of elongation between stimulus orientations reveals the modulatory influence of the non-governing factor (Fig. 1e,f).

Results: We quantified the degree of radial elongation with the radial bias index, RI_pRF, derived from the subtractive contrast between the radial and tangential spatial extents of the pRFs. We found that radiality is the dominant factor governing the pRF anisotropy, with pRFs extending farther along the radial axis than the tangential axis, regardless of the stimulus orientation conditions (Fig. 2b). RI_pRF tended to be smaller in the tangential orientation condition than in the radial orientation condition for all three areas of EVC, indicating that the pRF spatial extent is radially biased, with a weak modulation by co-axiality, albeit statistically insignificant. Next, we acquired psychophysical data and estimated radial bias index of the perceived anisotropy, RI_perc, from the observers whose pRF anisotropy was estimated. The perceptual anisotropy is co-axially biased with radial modulation (Fig. 2c). Despite of the mismatch in anisotropy between EVC and perception, there were the substantial interindividual correlations in the influence of radiality and co-axiality on both the pRF and perceptual anisotropies (Fig. 2c,e).
Conclusions: Our study highlights a mismatch in bias between the pRF of EVC and perceived anisotropies, with inter-individual correlation between them, suggesting a limited role for EVC in spatial extent perception. The findings implicate that spatial extent perception builds on EVC's spatial representation but requires an additional mechanism to transform its topographic bias.

References

Poster No 1333

Stable degenerate brain systems that underlie visual short-term memory across the adult lifespan

Michelle Jansen1, Alireza Salami2, Fernando Martínez1, Daniel Mitchell3, . Cam-CAN1, Linda Geerligs1

1Donders Institute, Radboud University, Nijmegen, Gelderland, 2Karolinska Institutet & Umeå University, Stockholm, Stockholm, 3MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, Cambridgeshire

Introduction: Cognitive task performance may be supported through multiple neural pathways, a concept referred to as “brain degeneracy”. We used a novel approach to consider brain degeneracy during a visual short-term memory (VSTM) task across the adult lifespan. Here, we identified groups of participants whose VSTM performance was characterized by different brain activation patterns and investigated whether these groups differed in age, task performance, grey matter (GM), and white matter (WM) integrity.

Methods: We analyzed data of 113 participants from the Cam-CAN cohort (47.8% female, mean age 52.66, SD = 17.99). Participants engaged in a VSTM fMRI paradigm. Our effect of interest was the activation difference between the highest and the lowest memory load during the maintenance period. To identify modules of brain regions that responded similarly to VSTM load across different participants, we applied consensus partitioning based on the Louvain modularity algorithm.
We chose the partition with the highest resemblance to earlier detected age-representative networks. To find groups of participants who showed differential recruitment patterns of the resulting brain modules, latent profile analysis was applied using the residual activity in each brain module and overall network responsivity. Group differences in age, task performance, GM volumes, and mean kurtosis were examined using Welch’s ANOVA and pairwise t-tests, corrected for age, total GM, and total intracranial volume (ICV) where appropriate. Within group associations between brain activity and task performance were investigated with Pearson correlations, controlling for age and mean responsivity across all ROIs.

Results: We identified seven distinct brain modules that resembled earlier identified functional networks. A model with 4 latent groups resulted in the most optimal fit (n=35, n=24, n=42, n=12 in groups 1-4). Group differences were most evident for the frontal control module (FCM), visual module (VM), and default mode module (DMM; Fig 1). Group 4 tended to be younger (group 1, p<0.01; group 2, p=0.03; group 3, p=0.06). Significant group differences were observed in mean kurtosis for the left uncinate fasciculus and the left inferior longitudinal fasciculus, after correcting for ICV (all p<0.001). Group 2, the subgroup with low FCM and high VM recruitment, showed reduced WM integrity in these tracts. We observed negative associations between FCM activation and memory precision in group 1 and 2 (r=-0.46, p=0.006; r=-0.41, p=0.055). Notably, these groups also showed lower levels of FCM recruitment during the task. Further, we noted a negative association between activity in the DMN and the number of items in memory in group 1 (r=-0.35, p=0.045), suggesting that the reduced DMN suppression in this group was negatively affecting performance.

Conclusions: We identified groups of participants that were characterized by different brain activation patterns. These groups did not differ in task performance, but were characterized by differential associations between brain activity and performance, particularly in the FCM. We also observed age-independent differences in WM integrity between groups, particularly in the uncinate fasciculus. This suggests that differences in brain activity during task performance might have been shaped by individual differences in brain structure. Individuals can use different cognitive strategies to complete the VSTM task (e.g., verbalizing the memory representation or visualizing the items). Notably, the uncinate fasciculus has been implicated in semantic language processing, associative learning, and working memory. We could speculate that group 2 relied more on maintaining visual representations by recruiting the VM due to the reduced integrity in the left uncinate fasciculus. Altogether, our novel analysis approach may help to further understand how multiple neural pathways could underlie cognitive performance.
References

Poster No 1334
Dissection of tectal feedback connections in the rat visual system using MRI
Rita Gil1, Mafalda Valente1, Noam Shemesh1
1Champalimaud Research, Champalimaud Foundation, Lisbon, Lisbon

Introduction: Previous work from the lab has shown positive to negative BOLD transitions in the rat superior colliculus (SC) when moving from low to high frequency visual stimulation. Such modulations have been associated with high visual frequency stimulation-induced neuronal suppression and the entrance in the continuity illusion regime: individual light flashes discriminated in the low frequency static vision mode become fused in the high frequency dynamic vision mode and animals report seeing an illusory continuous light. Since retinal evoked potentials can still track individual light flashes at very high frequencies, SC's response modulation could result from feedback arriving to the region, namely from the primary visual cortex (V1) - corticotectal connections and between SCs –tectotectal connections. In this work we investigate the effect of such feedback connections on the SC response modulations using fMRI.

Methods: Study in Long-Evans rats under medetomidine sedation in accordance with European Directive 2010/63. Stimulation: Binocular/monocular stimulation at 1Hz and 25Hz (flash duration=10 ms) was performed with an optic fibre connected to a blue LED (λ = 470nm). Ibotenic Acid Lesions: Injections of 1% ibotenic solution diluted in a 0.1M NaOH solution were performed along the left SC and/or both V1s. Animals were imaged one week after surgery to avoid inflammation. fMRI: Spin-echo echo planar imaging (SE-EPI) sequence in a 9.4T scanner: TR/TE=1500/40ms; resolution=268x268/1.5mm. Pre-processing: Outlier, motion and slice-timing correction, isotropic smoothing. Runs were detrended with a polynomial fit to rest periods.

Results: The visual pathway is shown in Fig.1A. BOLD t-maps for the controls (Fig.1B) and V1 lesion group (Fig.1C), with reduced cortical feedback, show SC response modulation as a function of frequency: monocular stimulation at high frequency reveals positive/negative responses in the ipsilateral/contralateral SC (iSC/cSC), respectively. V1 lesioning reduces response amplitudes in both stimulation frequencies and modalities suggesting a general cortical gain effect (Fig.1D). To investigate the tectotectal connections, monocular stimulation (Fig.2A) is used, along with iSC and/or V1 lesions (Fig.2B). While for the 1Hz regime iSC lesions have little effect on the cSC responses, for the 25Hz regime the cSC responses are driven towards stronger negative values (Fig.2C). High frequency regimes lead to iSC positive responses that appear to counterbalance the negative cSC responses. Once such positive responses are abolished (through iSC lesions) the cSC responses are amplified. In Fig.2D we propose a mechanism for the tectotectal interactions in the different frequency stimulation regimes.
Conclusions: While cortical feedback serves as general gain control of the SC responses, the interaction between the SCs appears to depend on the operating vision mode. During the static vision mode, tectotectal feedback does not play a big role; however, at high frequency stimulation regime (when animals enter the dynamic vision mode) tectotectal feedback appears to exert a push-pull effect where the iSC counterbalances the neuronal suppression in the visually stimulated SC (cSC). Future studies are needed to better understand the behavioural relevance of these measured opposite responses in SCs at high frequency regimes.
ABSTRACTS

Poster No 1335
Nonlinear kernel-based fMRI activation detection
Chendi Han¹, Zhengshi Yang¹, Xiaowei Zhuang¹, Dietmar Cordes¹
¹Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV

Introduction: Kernel Canonical Correlation Analysis (KCCA) is an efficient way to detect brain activation globally with less computational complexity. However, the current KCCA is limited to the linear kernel, and the performance for other more general types of kernels is not completely understood due to a lack of inverse mapping i.e. Back Construction (BC) methods. This study aims to expand the current KCCA method to arbitrary nonlinear kernels. The general linear model (GLM) is commonly used in task fMRI data analysis. Several related methods such as an isotropic GLM with Gaussian Smoothing (GS), Canonical Correlation Analysis (CCA) and Linear KCCA have been used to obtain activation maps. Beyond linear methods, nonlinear kernel-based methods, such as the Support Vector Machine (SVM), are very powerful in data classification and prediction, but there is no method available to define an inverse mapping from the feature space to the original space for obtaining an activation map. In this study, we proposed a general type of BC technique which allows us to get the activation pattern for any type of linear or nonlinear kernel mapping. The new method was applied to real fMRI data for activation analysis.

Methods: Structural and functional MRI data were obtained from the Human Connectome Project (HCP) database, which contains 3T MRI imaging data from 87 males aged 26-30 old. We focus on the working memory task fMRI study. fMRI data were acquired with 405 timeframes with multiband factor 8, TR/TE=720/33.1ms; FA=52 degrees; 72 slices; spatial resolution=2mm³ with size=104 × 90. The data were minimally preprocessed (realignment, slice-timing correction, normalization to MNI, linear detrending). No spatial smoothing was performed. The task itself represents an event-related task design consisting of targets, non-targets, and lures contrasts. Figure 1 shows a flow chart of our data analysis. fMRI signal Y is transformed to feature space Y by Y = Y AeR^(q×p), AeR^(q×p) where A is the spatial transformation matrix, then map to the kernel space K by an arbitrary kernel function. For the design matrix X, we define the contrast vector c=[1, -1, 0] and map X to X_eff. Then, map the X_eff to kernel space by K_eff. Using KCCA, the solution vectors v_X and v_Y are found to maximize the canonical correlation corr(K_X v_X, K_Y v_Y) in the feature space with penalty term y to avoid overfitting. To transform back to the ordinary space, we propose a BC method by r= |(K_X v_X, K_Y v_Y)|/(|v_X| |v_Y|) where the (voxel-specific) correlation vector r measures the importance of each voxel's contributing to the signal in kernel space.

Results: In Figure 2 (a1)-(e1), we show the activation pattern for one selected subject, with the color indicating the top 10% of voxels with high r value. In Figure 2 (a2)-(e2), we plot the same results using Gray Matter (GM) as a background. The GM is computed using spm package with segmentation probability p=0.5. The Hyperbolic tangent kernel avoids most activations arising outside the GM. To further characterize the overlapping, we treat the GM as the ground truth, using different thresholds to compute the true positive (activation appears on the GM) and false positive (activation not on the GM), with the ROC curve as shown in Figure 2 (f). Then using the 5mm GS as the reference, we define the subject-specific parameter α=(AUC)_Kernel/(AUC)_GS as a ratio measuring how many increasements compared with the GS. The distribution of a among all subjects are shown in Figure 2 (a3)-(e3), with the mean and average shown in Figure 2 (g). On average the Hyperbolic tangent kernel has highest α value among all other kernels.

Conclusions: The key findings of this study are: 1) BC is an efficient method to compute activation maps for general types of kernel representations. 2) Hyperbolic tangent kernel can get activation in an optimum location compared with other kernels.

References
5. Goodale, M. A., (1973), ‘Cortico-tectal and intertectal modulation of visual responses in the rat’s superior colliculus.’, Experimental Brain Research 17.1, 75-86.
Figure 1: A schematic diagram of regularized kernel canonical correlation analysis for task fMRI activation analysis.

References

Acknowledgements
This study was funded by NIH-RF1AG071566.
Poster No 1336

Tedana: multi-echo fMRI noise removal software and resources

Daniel Handwerker1, Peter Bandettini1, Logan Dowdle2, Elizabeth DuPre3, Javier Gonzalez-Castillo1, Christopher Markiewicz2, Stefano Moia4, Peter Molfese5, Neha Reddy6, Taylor Salo6, Joshua Teves1, Eneko Uruñuela7

1National Institute of Mental Health, Bethesda, MD, 2Center for Magnetic Resonance Research, Minneapolis, MN, 3Stanford University, Stanford, CA, 4Maastricht University, Maastricht, Netherlands, 5Northwestern University, Chicago, IL, 6University of Pennsylvania, Philadelphia, PA, 7Basque Center on Cognition, Brain and Language, Gipuzkoa, Spain

Introduction: Multi-echo fMRI involves the collection of data at multiple echo times for each excitation pulse. Three or more volumes of fMRI data can be collected at every time point with minimal acquisition cost. These additional data can be used to reduce acquisition noise and better estimate and remove signals that are not blood oxygen level dependent [Kundu 2012, Posse 1999]. Tedana [DuPre, Salo 2021] is an open source software that provides ways to apply multi-echo noise removal methods. Tedana also includes educational resources to help researchers better understand and use multi-echo fMRI data, whether or not they use tedana’s software.

Methods: Tedana uses modern software techniques combined with an accessible community of developers and users to continue to improve the software (github.com/ME-ICA/tedana) and resources (tedana.readthedocs.io). Tedana is integrated into the AFNI [Cox 1996] and fMRIPrep [Esteban et al 2018] preprocessing pipelines. We also monitor and respond to questions at neurostars.org using the “multi-echo” and “tedana” tags to better support our software and have built a welcoming community of multi-echo fMRI users.

Results: A major software update over the past year was modularization of the ICA classification “decision tree.” The central multi-echo fMRI denoising method in tedana applies ICA to the data and then selects which components should be classified as noise and removed [Kundu 2012]. In the modularized code, each step in the decision tree can be defined in a text file, and all classifications that change in each step are fully tracked. With this new system, it is now possible to alter the decision process to address study-specific needs. The new process and how to design a new decision tree are fully documented to make new innovations within tedana accessible to more researchers. We have additionally improved our methods for tracking and automatically enforcing code style consistency and removed unnecessary dependencies that limited the integration of tedana with other software packages. In responding to user questions, we have also identified and fixed several issues with the code or documentation.

Conclusions: The changes during the past year make it easier for new contributors to join and will support planned improvements to denoising methods. A key planned improvement is to allow external information, such as motion regressors, into the decision process so that multi-echo methods can be combined with other ICA-based denoising methods, like AROMA [Pruim et al 2015].

References

Poster No 1337

Combined Transcranial Magnetic Stimulation with Spinal Cord fMRI to Probe Spinal Motor Circuitry

Ekansh Sareen1,2, Nawal Kinany1,2, Estelle Raffin1, Rebecca Jones1, Loan Mattera3, Roberto Martuzzi3, Friedhelm Hummel1, Dimitri Van De Ville1,2

1École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland, 3Fondation Campus Biotech Geneva, Geneva

ABSTRACTS
Introduction: The spinal cord, a pivotal neurological center within the central nervous system, houses intricate neural pathways facilitating and modulating sensorimotor activity for diverse human functions. Despite its significance, the exploration of its functional intricacies, particularly the independent characterization of underlying motor mechanisms, remains an evolving area of research. To tackle this challenge, our ongoing investigation employs a multimodal approach that combines transcranial magnetic stimulation (TMS) for targeted motor cortex stimulation with functional magnetic resonance imaging (fMRI) of subsequent spinal cord activity. This holds the potential for a systematic and comprehensive delineation of the motor aspect of spinal circuitry.

Methods: Ten healthy volunteers were included in this study. The experiments were performed on a Siemens 3T Prisma scanner using a concurrent TMS-fMRI acquisition protocol, previously used in1. Single-pulse TMS was applied over the right primary motor cortex, targeted over first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscle groups on the left hand, using the MagPro XP stimulator system. EMG electrodes were placed over the targeted muscle groups to record motor evoked potential (MEP) responses to the applied TMS. The study included two sessions of acquisitions (S1 and S2), with identical protocols separated by a week (Fig. 1A). The TMS pulse was applied with three varying intensities of pre-estimated subject-specific resting motor threshold (rMT), i.e., sub-threshold (0.8% rMT), threshold, (rMT), and supra-threshold (1.2% rMT). The functional images of the spinal cord were acquired using a gradient-echo EPI sequence with inner field-of-view (TR = 2500 ms, TE = 34 ms, resolution = 1x1x3 mm³), spanning over C2 to C8 spinal levels. The acquired data were preprocessed using the pipeline introduced in² as implemented in the Spinal Cord Toolbox³. Preprocessed images were then analyzed using the GLM to extract spinal activation maps. We used an event-based design matrix with two explanatory variables: non-modulated (NM) and modulated (M, orthogonal to NM, derived from recorded MEP responses) (Fig. 1B). Average group-level activation maps were computed using fixed effects analysis (n=9 for S1, n=10 for S2).

Results: Fig. 1C illustrates the average peak-to-peak MEP amplitude across subjects for three intensity modulation conditions. Fig. 1D illustrates the average group activation maps for S1 and S2 for NM and M regressors. In S1, activation maps for the NM condition present localized activity at C5 within descending white matter tracts and right ventral horns. For the M condition, a left-dominant bilateral activity was observed in the ventral horns at C7. In S2, NM condition activity localizes primarily at C7-C8 within descending white matter tracts, with additional activity observed in the right intermediate zone of ventral horn. For the M condition, no significant activity was found. Applied TMS (NM regressor) in both sessions predominantly induces activity in descending white matter tracts carrying motor information from the cortex. Conversely, TMS intensity modulation (M regressor) in S1 induces stimulation-side dominated bilateral activity in the ventral gray matter horns, housing motor neurons. We only observed the modulation effect in S1, which is coherent with our observation from the recorded MEP responses (Fig 1C).
Conclusions: This investigation demonstrates the viability of our proposed multimodal setup for simultaneous stimulation and imaging of corticospinal circuits, specifically the spinal motor circuitry. Our findings underscore the involvement of spinal motor neurons in response to modulating TMS intensity. Nevertheless, notable inter-subject and inter-session variability necessitates further exploration with an expanded subject pool.

References

Poster No 1338
Effects of Caffeine Intake as a Sympathetic Stimulant on Brain Dynamics during Cognitive Tasks
Cem Karakuzu, Kübra Eren, Elif Can, Belal Tavashi, Kadri Yildirim, Lina Alqam, Alp Dincer, Pinar S Ozbay
1Bogazici University, Istanbul, Turkey, 2Acibadem University, Istanbul, Turkey

Introduction: This study explores the impact of caffeine, a sympathetic stimulant, on cognitive brain dynamics, leveraging the power of functional magnetic resonance imaging (fMRI) and independent component analysis (ICA), which is a data-driven clustering method to construct statistically independent spatial maps of fMRI data. This integrative approach promises a more nuanced perspective on the effects of caffeine on cognitive functions.

Methods: Data were obtained at 3T with GRE-EPI (FA = 90, TR = 3 s, TE = 36 ms, in-place resolution = 2.5 mm, number of TRs = 135). The participant was asked to find the unknown while seeing the equation (see Figure 1A). Preprocessing of fMRI data followed the suggested ‘afni_proc’ pipeline, including removal of signal drifts, slice-timing correction, realignment of consecutive volumes, registration to MNI template, smoothing (3 mm FWHM), and regression of motion parameters while removing outliers (threshold = 0.2) (Taylor et al., 2018; Cox 1996). PPG and respiratory signals were collected with a pulse oximeter attached to the fingertip and respiratory bellows, respectively. We used RETROICOR to reduce the effects of their cycles in the fMRI. There were four participants who attended the experiment. Repeated scans were performed following immediate intake of caffeine pills, first scan 10 minutes and second scan 30 minutes following intake. The subjects were not informed if the pill was caffeine or placebo. Firstly, ICA performed for all subjects by FSL's MELODIC (Jenkinson et al., 2012). Thus, task-related components and RVT related components were determined by examining the association between components’ time-courses and experimental design. RVT related components were identified by cross-correlation analysis between the time-course and RVT in MATLAB (MathWorks, 2023). Secondly, those components were investigated to describe how spatial maps changed when RETROICOR was not performed. Finally, we applied group-ICA on three participants' first sessions and second sessions.

Results: Controlling physiological signals with RETROICOR might make the components take the early places if the physiological signals are controlled. The relationship between RVT and time-course was explored. Cross-correlations between the RVT and the signal in sessions gave contrary results. Moreover, in session 2 of the participant 2, the task-related component 1 has also the highest cross-correlation with RVT. Group-ICA: component 16 shows distinct patterns of the effect of increased activity of cerebral arteries, unlike the other group (see figure 2A). Also, explained variance of insula activation is higher in the 30-minutes after group and the spatial map is more particular for the insula regions. Besides, task related IPS region is visible earliest in the component 6 in the 10-minutes after group. On the other hand, it can be seen at the component 2 in the 30-minutes after group. Finally, Component 18 in caffeine has a particular map covering thalamus (see figure 2B).
A) The experimental design. It shows 90 TR experiments. Our study is designed as 135 TR with an extra block.

B) BOLD signal time-course from the task-related components through all TRs. The orange line represents the task’s on/off times.

C) The spatial maps of task-related components for each session which was applied RETROICOR.
Conclusions: Controlling physiological signals is highly substantial because single subject ICAs shows that provided networks and explained variances could be changed by physiological signals. Also, RVT could be correlated with the task-related networks, which means that cardiac and respiratory activity could interfere with fMRI signals of the brain. When considering the how cerebral arteries affect the fMRI signals, the importance of this cross-correlation must be considered. Because it is also the most task-related component, the effect of caffeine trough the sympathetic activity increase and its chemical effects on the direct neuronal level requires research to distinguish impact pathways.
Autonomic Regression in fMRI: Insights from Respiration, Pupil Size and PPG Amplitude

Belal Tavashi1, Kübra Eren1, Kadir Yildirim1, Elif Can1, Cem Karakuzu1, Lina Alqam1, Alp Dincer2, Pinar S. Ozbay1
1Bogazici University, Istanbul, Turkey; 2Acibadem University, Istanbul, Turkey

Introduction: To understand the impact of autonomic correction on spatiotemporal patterns in the fMRI-systemic signals relationship, we used PPG amplitude and pupil size. Stress-induced hormonal responses, affecting alertness and pulse rate, prompted our examination of removing autonomic and behavioral effects from fMRI data. We hypothesized that eliminating these components, due to their strong co-variation with fMRI data, would influence outcomes. This research aims to assess the contribution of autonomic processes to spatiotemporal correlations and active brain regions during a cognitive task.

Methods: fMRI data were obtained at 3 T with GRE-EPI (FA = 90, TR = 3 s, TE = 36 ms, in-place resolution = 2.5 mm, number of TRs = 135). The cognitive task involved solving arithmetic equations with one unknown, displayed against a grey background with a fixation dot in a block design (6 blocks, each: 45 s OFF, 9 s ON and 36 s OFF). Preprocessing of fMRI data followed the suggested ‘afni_proc’ pipeline (AFNI®), including removal of signal drifts, slice-timing correction, realignment of consecutive volumes, registration to MNI template, smoothing (3 mm fwhm), and regression of motion parameters while removing outliers (threshold = 0.2). PPG and respiratory signals were collected with a pulse oximeter attached to the fingertip and respiratory bellows, respectively. PPG amplitude (PPG-AMP), as an index of peripheral vascular volume, and respiratory volumes per time (RVT) were calculated. An MRI-compatible camera was used to track a subject’s eye movement. Pupil diameters were recorded automatically as a secondary measure of sympathetic activity. So far we acquired 4 subjects data, and performed the following analysis: We averaged event-locked physiological signals (based on cardiac, respiratory and pupil size variations) and fMRI responses within grey matter, task (e.g., Visual, IPS) and non-task (e.g., DMN, Insula) related regions. We performed voxel-wise correlations of PPG-AMP and pupil diameter with fMRI across subjects. Each preprocessed fMRI data set were subjected to General Linear Modelling (GLM). This part includes all timing information regarding mental task according to the experiment. The modeling step was combined with regression of motion parameters and their derivatives (3dDeconvolve) in ‘afni_proc’. To incorporate further regressors of no interest, as described below, we included each time-series. Various methods developed to reduce the effects of cardiac and respiratory cycles in the fMRI data. Among them, we used one of the most common approaches: RETROICOR®, and included in the GLM as nuisance regressors, as implemented in AFNI’s “RetroTS.m”. To evaluate the contribution of better captured autonomic processes, we performed a regression analysis employing RETROICOR + RVT, PPG-AMP, and pupil diameter time-series (and combinations), adding time-shifted versions. To our knowledge, this will be the first study incorporating PPG-AMP or pupil diameter as regressors in such detail during wake conditions in humans.

Results: The study found task-related increases in fMRI signal, particularly in areas like IPS and visual regions, peaking at 6-9 seconds. Pupil size increased with a 6-second lag, peaking around 12 seconds, showing a time-dependent relationship with the fMRI signal. Negative correlations between pupil and fMRI in negative lags were attributed to sympathetic activity. Cross-correlation maps illustrated sympathetic-driven patterns around ventricular regions for negative lags and task-driven patterns around IPS and visual regions for positive lags. Removing time-shifted autonomic regressors reduced activity, especially in DMN and insular regions, as well as negative activations in ventricular regions.

References
Figure 1: (A, B, C) Event-locked average signal changes of autonomic regressors and fMRI data across six task events for subjects A, B, and C, respectively. (D) Cross-correlation plots of IPS-masked fMRI signal and autonomic regressors (left), pupil size and other autonomic regressors (right). (E) Subject level voxel wise correlations of pupil size and fMRI (RETROICOR version) at the -3TR lag (left) and at the +3TR lag (middle) and GLM activation map (RETROICOR version) exhibiting the task-related regions (PS right).
Conclusions: Our results showed that contributions of the sympathetic activity to fMRI signal which could not be revealed with RVT, can be explained with other autonomic signals like PPG-AMP and pupil size, which could be complementary to each other.

References

Poster No 1340

Higher body weight-dependent neural activation during reward processing

Maike Richter¹, Janik Goltermann², Lavinia Steinmann¹, Anna Kraus², Susanne Meinert², Jonathan Repple³, Udo Dannlowski², Nils Opel¹

¹Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany, ²Institute for Translational Psychiatry, University of Münster, Münster, Germany, ³Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, Goethe University Frankfurt, Frankfurt am Main, Germany

Introduction: Obesity is associated with alterations in brain structure and function, particularly in areas related to reward processing (García-García et. al, 2014; Opel et. al, 2015). Although brain structural investigations have demonstrated a continuous association between higher body weight and reduced gray matter in well-powered samples (Opel et. al, 2017; Shaw et. al, 2018), functional neuroimaging studies have typically only contrasted individuals from the normal weight and obese body mass index (BMI) ranges with modest sample sizes (García-García et. al, 2014; Han et. al, 2021). It remains unclear, whether the commonly found hyperresponsiveness of the reward circuit can (a) be replicated in well-powered studies and (b) be found as a function of higher body weight even below the threshold of clinical obesity.

Methods: 383 adults across the weight spectrum underwent functional magnetic resonance imaging during a common card-guessing paradigm simulating monetary reward. Multiple regression was used to investigate the association of BMI and neural activation in the reward circuit. In addition, a one-way ANOVA model comparing three weight groups (normal weight, overweight, obese) was calculated.

Results: Higher BMI was associated with higher reward response in the right (x=36, y=18, z = -14; t(379)=4.66; k=9; pFWE = 0.007) and left (x = -28, y=18, z = -4; t(379)=4.30; k=3; pFWE = 0.029) insula. This association could no longer be found when participants with obesity were excluded from the analysis. The ANOVA revealed higher activation in the right (x=34, y=18, z = -14; t(378)=4.78; k=10; pFWE = 0.005) and left (x = -28, y=20, z = -4; t(378)=4.29; k=6; pFWE = 0.033) insula in obese vs. lean individuals, but no difference between lean and overweight participants.
Conclusions: The overactivation of reward-related brain areas in obesity is a consistent finding that can be replicated in large samples. In contrast to brain structural aberrations associated with higher body weight, the neurofunctional underpinnings of reward processing in the insula appear to be more pronounced in the higher body weight range.

References

Poster No 1341
Brain responses to vehicles predict individual interest and forecast changes in aggregate demand
Dylan Christiano1,2, Cynthia Wu1, Tara Srirangarajan1, Shabnam Hakimi3, Matthew Klenk3, Charlene Wu3, Brian Knutson1
1Stanford University, Stanford, CA, 2University of Michigan, Ann Arbor, MI, 3Toyota Research Institute, Palo Alto, CA

Introduction: Demand for vehicles using alternative fuel sources is increasing, leading to the introduction of new vehicle models and types. Little is known, however, about market demand for these new vehicles. We sought to examine whether brain activity could predict individuals’ desire to purchase and learn more about vehicles (Erk et al., 2002), as well as forecast changes in demand for vehicles out-of-sample in the US market (Knutson & Genevsky, 2018). Drawing from the AIM (Affect, Integration, Motivation) framework, we hypothesized that activity in the Nucleus Accumbens (NAcc), associated with dopaminergic signaling and positive arousal to stimuli, should predict choice (Samanez-Larkin & Knutson, 2015) and might forecast changes in demand for new vehicles.
Methods: 13 subjects who reported being interested in purchasing a vehicle in the next two years participated in a vehicle rating task as their brain activity was monitored using Functional Magnetic Resonance Imaging (FMRI). Participants viewed 48 trials per task, each lasting an average of 16 seconds. A mixed set of 12 Electric Vehicles (EV) and 12 Internal Combustion Engine (ICE) vehicles from various brands. Each vehicle appeared twice, in black or white colors, at a ¾ angle, and in a pseudorandom order. During each vehicle rating task trial, subjects initially saw a centrally presented image of the vehicle and its’ model name (2 sec), followed by its fuel source (2 sec), followed by rating prompts querying interest in learning more and desire to purchase the vehicle (4 sec each). To assess changes in aggregate United States market demand, we collected publicly available data indicating units of each model sold for each quarter of 2022 (from goodcarbadcar.net). We then calculated the average and slope of units sold over quarters of 2022 to estimate average demand and change in demand. For individual prediction analyses, activity was averaged prior to choice and extracted from predicted Volumes Of Interest (VOIs) in the NAcc, Medial PreFrontal Cortex (MPFC), and Anterior Insula (AIns) and regressed against rated desire to know more and to purchase on each trial (Samanez-Larkin and Knutson, 2015). For aggregate market forecasts, activity in these VOIs was averaged by model and regressed against the slope of sales for 2022.

Results: Within individuals, both VOI and whole brain analyses revealed that subjects’ initial NAcc response to vehicles predicted rated desire to know more about and purchase those vehicles. A main effect of fuel type indicated that subjects preferred electric to gas vehicles (beta=15.21±0.07, p < 0.001) and NAcc activity also predicted vehicle preference (beta=2.63±0.11, p < 0.01). At the aggregate level, average NAcc response to vehicles also forecast the slope in market demand for units sold (p<.006), but not the average of units sold during 2022. In combination with NAcc activity, averaged behavior (i.e., desire to know and purchase ratings), however, did not forecast the slope or average units sold.

Fig. Whole brain maps confirm that NAcc activity predicts individual desire to know more and to purchase different vehicle models.

Pairwise plot indicating that NAcc response to vehicles forecasts aggregate change in U.S. demand for different models over 2022.
Conclusions: Brain responses to vehicles, specifically early responses in the NAcc, predict individuals’ desire learn more about and to purchase them. Further, average group NAcc activity forecast changes in demand for cars, beyond behavioral forecasts. These findings suggest that brain activity might add value to conventional measures for forecasting market demand for new vehicles.

References

Poster No 1342

Precision functional mapping of therapeutic response in task-specific focal dystonia

Vie Nguyen1, Ashley Meyer2, Jessica Hudson3, Scott Norris3, Evan Gordon4

1Washington University in St Louis, St Louis, MO, 2Washington University in St Louis, St Louis, MO, 3Washington University in St Louis School of Medicine, St Louis, MO, 4Washington University, St. Louis, MO

Introduction: Adductor laryngeal dystonia (ADLD) is a task-specific focal dystonia that involves excessive laryngeal muscle contraction during speech. Focal dystonia like ADLD is associated with dysfunction of the basal ganglia, primary motor cortex (M1), thalamus, and cerebellum146. ADLD-related vocal disability improves with recurring, invasive application of botox into laryngeal muscles. A deeper understanding of central neural mechanisms related to this transient therapeutic response may improve understanding of pathophysiological mechanisms and therapeutic potential (i.e. advance engagement targets for central acting neuromodulation approaches). Prior work suggested alterations in resting-state functional magnetic resonance imaging (rs-fMRI) functional connectivity (FC) in dystonia patients after successful botox therapy5. However, this work collected low amounts of per-patient data, and thus could not detect individual-specific therapeutic alterations. Here, we employed precision functional mapping (PFM), which collects large quantities of per-patient data to precisely characterize individual-specific brain networks without averaging across patients23. We aimed to determine the vocalization-related functional motor network in ADLD subjects and assess how this vocalization network FC was altered in each individual patient by applying therapeutic botox injections.

Methods: We conducted a treatment response of PFM in 4 ADLD patients. In each patient, both before and after successful injections, we collected up to 5 scanning sessions totaling 125 minutes of rs-fMRI and 40 minutes of task fMRI collected while performing vocalization impairment-specific motor task. FMRI images were corrected for motion, slice-time, distortion, and registered to an MNI template. We applied nuisance regression, bundle-pass filtering, and motion censoring7 to rs-MRI data. All fMRI data were sampled to the cortical surface and subcortical structures and smoothed at 4mm FWHM. To identify individual-specific vocalization-related brain regions, we fit each patient’s task fMRI data to a general linear model and entered vocalization beta weights into a one-sample t-test across sessions. To determine whether vocalization-related fMRI activity differed after injection in each patient, a paired t-test compared vocalization-related beta weights between pre and post-injection timepoints. Finally, in each subject, vocalization-related regions of interest were delineated within M1 as cortical seeds for FC. FC was calculated as correlations between the ROI signal time course and every time course in the brain. A paired t-test between the pre- and post-injection timepoints determined whether FC differed after injection in each patient.

Results: Vocalization-related brain regions were identified in every subject and consisted of a dual representation in M1. Within each subject, vocalization-related activation within subcortical structures was reduced post-compared to pre-injection, most consistently in the posterior putamen and motor cerebellum, and less in the thalamus. Similarly, resting-state FC seeded from vocalization-related M1 regions was consistently reduced in motor cerebellum and posterior putamen and less in thalamus in post-compared to pre-injection.

Conclusions: Application of PFM in task-specific dystonia pinpoints a more precise patient-specific cortical and subcortical mapping of the functional motor. Further, it identifies patient-specific alterations in this network’s function and connectivity resulting from therapeutic botulinum toxin injection. The identified locations of these alterations suggest potential target engagement sites for future therapeutic trials. These alterations were partially consistent across subjects, but also exhibited some degree of individual specificity, highlighting the potential for patient-specific PFM when considering pathophysiological mechanisms and advancing therapeutic potential in dystonia.
Juvenile Fibromyalgia (JFM) is a chronic pain condition characterized by persistent widespread musculoskeletal pain, fatigue, and sleep disturbances which predominantly affects adolescent girls (Yunus and Masi, 1985,akashikar-zuck, et al., 2016). JFM patients often report heightened unpleasantness to non-painful sensory stimuli (Ting et al. 2016, Bennett et al. 2014). In the same line, studies in adults with fibromyalgia (FM) (López-Solà et al., 2014; 2017; Wilbarger and Cook, 2011; Wang and Frey-Law, 2022) have shown that patients show greater unpleasantness to these stimuli. Furthermore, when compared to healthy peers, FM patients showed reduced responses in primary sensory cortices during multisensory stimulation, which correlated with multisensory hypersensitivities in daily life and FM symptoms. Conversely, they showed hyperactivation of the right insula and the right anterior lingual gyrus. The understanding of multisensory sensitivities may help improve our knowledge of the pathophysiological components of fibromyalgia and guide treatment selection on an individualized basis (Wang and Frey-Law, 2022). Here, we investigate whether patients with JFM exhibit reduced tolerance during a multisensory fMRI task and study the relationship between brain activity and core JFM symptoms and multisensory hypersensitivity in daily life.

Methods: Forty-six adolescent girls (16.56 ± 1.01 years) diagnosed with JFM and forty-four healthy girls (16.09 ± 1.06 years) completed validated self-reported measures of multisensory hypersensitivity in daily life and core JFM symptoms. They also underwent a multisensory task inside the fMRI scanner that involved four trials of alternating 30 seconds of simultaneous multisensory stimulation (visual, auditory, and tactile-motor finger opposition task) and rest periods ranging from 20-30 seconds. The functional images were preprocessed using CONN Toolbox running on MATLAB. At the subject level, we used a conventional general lineal model approach (GLM) implemented in SPM12 software to identify voxels that show significant changes in activity during the multisensory blocks compared to the baseline condition. The results from the first level analysis for all participants were used in a two-sample t-test model to assess the differences between groups in brain functional activity. We also performed regression model analysis in JFM patients group using the scores of the self-reported measures to assess the association between brain functional activity and these measures.

Results: Compared to healthy participants, JFM patients reported higher levels of unpleasantness during the multisensory task, which positively correlated with sensory hypersensitivities in daily life and core JFM symptoms in patients. Nevertheless, there were no significant differences between groups in brain functional activity (pFWE<0.05 at cluster level and p<0.001 at voxel level). Among the JFM group, patients with greater hypersensitivities in daily life and JFM core symptoms (widespread pain index, functional disability, symptom severity and PROMIS fatigue) showed increased activation of sensory-motor, prefrontal and temporal cortex areas (pFWE<0.05 at cluster level and p<0.001 at voxel level).
Conclusions: The findings in JFM patients parallel the symptom findings observed in adult patients with FM. Moreover, JFM patients reporting greater sensory hypersensitivities showed extensive hyperactivation of cortical prefrontal, sensory-motor and visual regions. The findings suggest that juvenile patients with fibromyalgia reporting less tolerance to non-painful sensory stimuli and exacerbated core clinical symptoms show amplified cortical responses in sensory integration and response-related brain regions during a multisensory task. These findings are partly different from what was observed in adult FM patients. Future studies should directly compare adult and juvenile patients to further elucidate these neurophysiological changes across the lifespan.

References

Poster No 1344

Functional and structural characterization of Human hypothalamic nuclei in eating disorders

Coleen Roger1,2, Adèle Lasbleiz1, Maxime Guye1, Anezka Kovarova3, Hugo Dary1, Yu Fu6, Patrick Cozzone2, Anne Dutour4, Bénédicte Gaborit5, Jean-Philippe Ranjeva2

1CEMEREM, Marseille, France, 2CNRS, Marseille, France, 3IMCB, Astar, Singapore, Singapore, 4AP-HM, Marseille, France, 5Masaryk University, Brno, Czech Republic, 6Astar, Singapore, singapore

Introduction: Energy expenditure appears as a continuous process, while energy refilling through food intake is by nature discontinuous. To keep the body fat mass stable, a system in which the hypothalamus (HT) is one of the key structures provides efficient balance between energy expenditure and energy intake. However, non-invasive exploration of such a small structure in the context of food intake networks remains challenging in humans.

Methods: We used ultra-high field (7T) MRI to study morphometry and activation pattern of hypothalamic nuclei associated to food-cue paradigm in eating disorders and healthy controls. The activation task performed after a 15h fasting period consisted in showing high-calorie and low-calorie content food as well non-food images from a standardized database, and images related to food contexts, to 13 HC (18.5<BMI <25 kg/m2), as well as 8 diagnosed Obese and 7 diagnosed Anorexic patients (all female, 26±4 years). After the experiment, each participants were asked to rate (score=0-3) how appealing the food images they just saw were (palatability score).

The Neudorfer Atlas registered to the average spatially normalized T1 volumes from all subjects (AntsRegistration SyN) (Fig 1A), was used to locate activation clusters as well as evaluate the modulation of morphometry/microstructure of HT nuclei in Anorexic patients or Obese patients and its potential association with BMI.

Results: Structurally, no significant difference between groups were observed in the global HT volumes (normalized by whole brain volume (WBV)), with only a trend increase of HT volumes in the Obese group (p=0.15) (Fig 1B). Obese patients relative to Controls, showed significant volume increases in the right and the left fornix (Fig 1B), as well as increase in T1 values in the right and the left Arcuate Nuclei (Fig 1C), (p<0.05, Kruskall-Wallis tests, corrected for multiple comparisons). Anorexic patients relative to Controls, showed increased T1 values in the left Paraventricular nucleus (p=0.05, corrected for MC) (Fig 1C). BMI scores of the whole cohort were associated to the volume of the Left Lateral HT Area (rho=0.502, p=0.007) (Fig 1D). The Food-NonFood contrast (modulated by palatability score) showed significant activation in Controls within the Right Arcuate Nucleus, the Right Ventromedial Nucleus and the Left Paraventricular nucleus (Fig 2A). Relative to Controls, Anorexic patients showed less activation within the left Paraventricular nucleus (Fig 2A). The Context-NonFood contrast (modulated by palatability score) showed in Controls, activation of the left Paraventricular nucleus (Fig 2B). Relative to Controls, Anorexic patients showed higher activation in the right Lateral HT Area, the Right Paraventricular nucleus, the right Periventricular nucleus and bilateral
Posterior HT nucleus (Fig 2B) while Obese patients showed higher activation in the right Paraventricular nucleus, right medial preoptic nucleus, and the right posterior HT nucleus (Fig 2B).

Conclusions: In a cohort of 28 subjects carefully selected according to age, sex, and condition (15h fasting), high resolution quantitative T1 MRI at 7T was sensitive enough to show morpho-structural changes of specific HT nuclei in Obesity and Anorexia in line with results obtained in large cohorts (>1000 participants) explored at 3T. The significant increase in T1 in bilateral arcuate nuclei in the Obese group may reflect HT inflammation of this region. During food cue stimuli, altered activation of HT nuclei involved in food networks were observed in Anorexic and Obese groups. Finally, higher activation of the right Lateral HT Area in the Anorexic group during the context condition may reflect abnormal processing of response to contextual feeding conditioning. The combined study of the functional and morpho-structural characteristics of HT nuclei will allow for a better understanding and monitoring of eating disorders.

References
Quantitative Analysis of Longitudinal Memory fMRI in Temporal Lobe Epilepsy Using ICN_Atlas

Azka Sohail1, Marine Fleury1, Meneka Sidhu1, Lajos Kozák2, Louis Lemieux1

1UCL Queen Square Institute of Neurology, London, United Kingdom, 2Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary

Introduction: The impact of surgery on memory function in severe epilepsy patients and its prediction have been investigated using functional magnetic resonance imaging (fMRI). Notably, strong associations between fMRI lateralisation and postoperative verbal memory decline were observed (Sidhu et al., 2015). In a related study, Sidhu et al. (2016) assessed surgical success by examining pre- and postoperative memory reorganisation following anterior temporal resection. Traditionally, these investigations frame findings based on anatomical localisation, describing activated regions and selecting seed regions for functional connectivity analyses. Recent research has highlighted how Intrinsic Connectivity Networks (ICNs) capture fundamental aspects of the brain’s functional connectivity, offering a universal framework for fMRI interpretation and quantification of activation patterns as a basis of fMRI map regional quantification. We have implemented this approach in the form of the ICN_Atlas (Kozák et al. (2017)) to quantify the degree of engagement of ICNs in fMRI maps (figure 1).

Methods: In this study, we aimed to quantify changes in memory encoding activation patterns pre and post-surgery using ICN_Atlas, introducing an objective approach to supplement previous investigations. 41 patients with temporal lobe epilepsy (20 left TLE, 21 right TLE) were scanned pre-operatively and post-operatively at 4 months. 20 healthy controls underwent the same fMRI protocol. ICN engagement was quantified using two metrics: Spatial Involvement (IRi) and Normalised Mean Activation (MAN,i) for 20 ICNs (Laird et al., 2011). We assessed the ICN-wise engagement changes using repeated measures ANOVA.

Results: A representative pattern of change is illustrated in Figure 2. In the healthy controls, the following patterns were observed for both tasks: no significant change in IRi and with an initial modest increase in MAN,i followed by a decline at 10 years. In the patient groups, the most prominent changes following surgery were observed in the motor/visual-spatial and visual ICNs. Notably, at 3 months’ post-surgery, motor ICNs exhibited increased spatial engagement while visual ICNs showed little to no change in both patient sub-groups. At 10 years post-surgery, spatial engagement of the motor ICNs declined markedly, contrasting with a substantial increase in visual ICNs. The patterns for MAN,i show a pronounced change in ICN engagement, particularly for word encoding, in contrast to IRi. This indicates there are substantial changes in activation strength across different rescans. Overall, the engagement changes were more significant in the patients than in the healthy controls and greater in LTLE compared to RTLE.

Conclusions: The observed variations in ICN engagement are in line with expectations for memory encoding tasks, signifying the reorganisation of memory encoding networks. Utilising ICN_Atlas, we were able to quantify longitudinal fMRI data objectively in a whole-brain, regionally specific and functionally meaningful manner. The quantitative perspective offered here complements the anatomical focus of previous investigations (Sidhu et al., 2013, 2015, 2016) and, therefore, could lead to a better, more complete understanding of the impact of surgery and, potentially, improved prediction of functional sequela. This work is supported by the UCLH BRC and MRC grant ID MR/X031039/1 who also support MKS.
Predicting lateralization of human language processing with non-language functional activity

Haokun Li¹, Gaolang Gong²

¹State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing, China, ²State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing, Beijing

Introduction: While leftward lateralization of human language processing has been well documented at the population level, determining the direction and degree of language lateralization at the individual level is still a challenge. Previous empirical studies on language lateralization largely confined to functional activity of specific component of language processing per se. To date, it remains unclear how the functional lateralization of other non-language functions relates to language lateralization. In this study, we applied machine learning approaches to explore whether and how the language lateralization could be individually predicted by functional lateralization of a set of non-language functions, using fMRI data from over 1000 healthy adults.

Methods: A total of 1005 subjects (female/male: 534/471; age: 28.72±3.7 years) from the ‘HCP1200’ dataset were included in our analysis. All the subjects completed functional MRI scanning for language, emotion, gambling, relational, social, and working memory tasks. The structural and functional images was pre-processed using the HCP pipelines. A group-average activation map of the main contrast of language task (i.e., ‘story VS. baseline’) was used to locate the ROIs (Fig. 1A). The mean of positive Cohen’s d values across the vertices of the entire cortex was calculated as the threshold, and the core language areas were then identified as the HCP-MMP parcels above the threshold (Fig. 1B). For each individual, the laterality effect of language was defined as (left-right) of the mean Z values across the vertices within all core language areas in each hemisphere. For the main contrasts (i.e., ‘exploratory variable of interest VS. baseline’) of the other 5 non-language tasks, the functional asymmetry values were calculated as above for each pair of HCP-MMP parcel (180 in total). Therefore, each individual ended up with an asymmetry feature vector of non-language tasks with a length of 180*5. A ridge regression with a nested 5-fold cross-validation approach (5F-CV) was then applied to predict the language laterality effect with the asymmetry feature vector of non-language tasks (Fig. 1C). A nonparametric permutation method was used to assess the significance of the Pearson correlation coefficient, mean absolute error (MAE), and feature weight.
Results: As shown in Fig. 2A, the whole-brain functional lateralization of non-language functions could significantly predict language lateralization at the individual level (mean prediction accuracies \(r=0.543, p<0.0005, \text{MAE}=0.556, p<0.0005 \)). In Fig. 2B, the absolute value of the weight represents the importance of corresponding feature in the prediction model, and the positive or negative feature value indicates whether the asymmetry feature changes in a similar way with language lateralization or the opposite. The significant or highly contributing non-language asymmetry features are always located within the core language areas across all non-language functions (the same trend for uncorrected gambling). Notably, the selected contrasts of these non-language tasks did not involve language processing, and therefore did not showed significant activation in these identified core language areas. Intriguingly, the significant asymmetry features are largely positive for the relational and working memory tasks, but negative for the other three non-language functions.

Conclusions: The present study demonstrated that the language lateralization could be individually predicted by multivariate machine learning approach together with non-language functional lateralization features. This suggested a complex relationship of functional lateralization between language and non-language functions through core language areas.
ABSTRACTS

References

Poster No 1347
Cerebellar meta-analytic maps: describing bias to construct domain-specific functional topographies

Neville Magielse1,2,3, Amin Saberi1, Aikaterina Manoli2, Simon Eickhoff1, Sofie Valk2

1INM-7, Research Center Jülich, Jülich, Germany, 2Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, 3Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

Introduction: The cerebellum, apart from its canonical motor functions, plays important roles in most human behaviors, including language, theory of mind, working memory, and executive functioning (King et al. 2019). Cerebellar activations associated with these diverse behavioral domains have been reported in the literature (Kruithof, Klaus, and Schutter 2023; Van Overwalle, D’aes, and Mariën 2015; Stoodley 2012; Stoodley and Schmahmann 2009). However, a full cerebellar functional topography based on the accumulation of neuroimaging studies is still missing. Here, we aimed to construct such meta-analytic maps of cerebellar activity in a cross-domain manner, leveraging the BrainMap database. Together, we show both promise and challenge in consolidating cerebellar functional imaging data into cross-domain meta-analytic maps.

Methods: We used the BrainMap annotated database of the neuroimaging literature to identify task-based functional imaging experiments on healthy subjects that reported cerebellar activations (Laird et al. 2009; Fox et al. 2005). We categorized the experiments based on the five main behavioral domains (BDs) in the BrainMap including action, cognition, emotion, interoception, and perception. In each domain we performed activation likelihood estimation (ALE) to investigate convergence of findings within the cerebellar mask (Eickhoff et al. 2012). Additionally, we performed a domain-general ALE to assess whether there is spatial bias in the reported findings within the cerebellum. In this analysis we included 100 randomly selected experiments from each BD to ensure even participation of the domains. Subsequently, we reported the ALE maps and evaluated their spatial cross-correlation. Last, we studied the co-alignment of the ALE maps with an openly available atlas of cerebellar activations associated with the multi-domain task battery (King et al. 2019).

Results: We found a total of 1679 experiments reporting cerebellar task-associated activations. The ALE maps of the cognition, emotion and perception BDs were highly similar, while the ALE map of action was most similar to perception, and the ALE map of interoception showed the least similarity to the other domains (Fig. 1A, B). There was a domain-general convergence of cerebellar activations in primarily the antero-superior cerebellum, potentially indicating a spatial bias in the reported findings. Accordingly, we found that the distribution of findings across axial slices was unequal across the cerebellar volume (Fig. 1C). Zooming in, we observed positive correlations between the maps of 2-back and math tasks with the cognitive BD ALE, and finger sequence task with the action BD ALE map, while the correlation of resting-state and movie watching tasks with the BD ALE maps were generally negative (Fig. 2).
Conclusions: Together, our study shows a meta-analytic mapping of task activations in the cerebellum which extends previous studies done at the level of individuals (King et al. 2019). We observed a bias of reported findings in the anterior-superior cerebellum. Common challenges of cerebellar neuroimaging, including BOLD-bleeding of visual cortical signal, heterogeneous signal-to-noise, and primarily a severe sampling bias, should be addressed in future neuroimaging and meta-analytic studies.

References
ABSTRACTS

Poster No 1348

Ultrafast fMRI Reveals Laminar Specificity of Hemodynamic Profiles in Primary Somatosensory Cortex

Xiangnan Tian1, Nadia Bouraoud2, Stephen Dodd2, Alan Koretsky2, Zhiwei Ma1

1ShanghaiTech University, Shanghai, China, 2National Institutes of Health, Bethesda, MD, USA

Introduction: Recent advancements in ultra-high-field MRI have significantly improved fMRI, enabling detailed studies of individual cortical layers. This has provided insights into the timing of brain activity. Different layers of the cortex have unique connections and interactions between neurons and blood vessels. This complex relationship reflects how neuronal activity is linked to the BOLD signal, with each layer having its specific temporal profile. The fMRI activation initiates in mid-cortical layers and subsequently extends to other layers1,2. Despite the strides in studying laminar-specific fMRI onset, other laminar temporal features of hemodynamic profiles, such as fMRI signal offset, are yet to be understood. Here we utilized ultrafast fMRI to capture the temporal variations of the BOLD signal across different cortical depths in rat primary somatosensory cortex to reveal laminar-specific hemodynamic profiles.

Methods: Four alpha-chloralose anesthetized Sprague-Dawley rat were imaged using an 11.7 T MRI scanner to examine fMRI responses to forepaw stimulation. For each rat, a BOLD fMRI run with a TR of 1500 ms (voxel size = 0.17 mm × 0.17 mm × 0.4 mm, slice number = 14) was acquired to localize S1FP based on its activation map. This guided subsequent fMRI runs with a TR of 200 ms (voxel size = 0.17 mm × 0.17 mm × 1.2 mm, slice number = 1) positioned on the slice in the center of the S1FP. Each of these fMRI runs included 60 blocks and the stimulation was on for 2 s within each block. In the preprocessing, NORDIC denoising was applied3. The MATLAB function ‘imregister’ was used for motion correction. The cortical depth of each voxel in the S1FP was derived using Laplace’s equation4-7. The voxels were grouped into 10 geometric layers based on their cortical depths. A high-pass filtering of 0.0179 Hz was performed. Outlier blocks were excluded using autoencoders. The BOLD percent change data of the remaining blocks were averaged and then fitted using the double gamma function. The response height, full-width-at-half-maximum (FWHM), time-to-peak, and time constant of the BOLD signal of each geometric layer were derived based on the fitted curve. Here, the time constant was the time difference between the stimulation on time and the time when the fitted curve reached 1/e of the maximum of the curve on the decay phase. In addition, instead of using the fitted curve, the BOLD onset time was calculated using the time difference between the stimulation on time and the time when the BOLD signal was firstly two standard deviations above the baseline.

Results: Fig. 1a shows a representative result of a task fMRI activation map in S1FP and its corresponding layerification. It also shows BOLD percent change maps per geometric layers of an individual block and the average of 922 blocks after outlier exclusion. The BOLD percent change curves per geometric layers are shown in Fig. 1b. The hemodynamic profiles are shown in Fig. 2. We observed distinct laminar BOLD responses to rat forepaw stimulation. The response height decreased from superficial to deep layers (Fig. 2b). The third geometric layer of S1FP exhibited the shortest FWHM, time-to-peak, onset, and time constant (Fig. 2c-f).
Figure 1. (a) BOLD percent change maps. (b) BOLD percent change curves per geometric layers.

Figure 2. (a) BOLD signal change of S1FP. (b) Response height. (c) FWHM. (d) Time-to-peak. (e) Onset. (f) Time constant of BOLD decay phase.

Conclusions: This study has revealed a laminar-specific timing in the BOLD response to sensory stimuli. Consistent with previous findings1,2, the middle layers had the shortest onset time. The cortex at its 30% depth also showed the shortest time constant of the BOLD decay phase. Ultrafast fMRI with laminar spatial resolution enhances our grasp of the neurovascular dynamics across cortical depths, offering important implications for interpreting fMRI data.

References
Poster No 1349

GPU-Empowered Mapping of Population Receptive Fields (GEM-pRF)

Siddharth Mittal¹, Michael Woletz¹, David Linhardt², Christian Windischberger³

¹Medical University of Vienna, Vienna, Vienna, ²Medical University of Vienna, Wien, Vienna, ³Medical University of Vienna, Vienna, Austria

Introduction: Population receptive field (pRF) mapping allows for determining the retinotopic organisation in the visual cortex (Dumoulin & Wandell, 2008). It involves modelling pRFs as 2D Gaussian functions in the visual field and fitting them to time series data of the neuronal responses. While highly accurate, this process is computationally demanding due to iterative refinement. To address this, we propose a novel pRF implementation called GPU-Empowered Mapping of pRF (GEM-pRF). It uses a reformulated mathematical notation based on the originally proposed technique by Dumoulin & Wandell (2008) for faster and accurate pRF parameter estimation. Here we show that our new approach harnesses high-performance computing advantages to speed up acquisition by over 15 times.

Methods: GEM-pRF is a two-stage procedure. During the first stage, a grid search is performed to compute the coarse pRF parameters estimation. The estimated pRF parameters for a given pRF are its position and size (i.e., μₓ, μᵧ, and σ). Our derived mathematical notation simplifies this step in order to use GPU-based matrix multiplication for major speed gains. In the second stage, refining the coarsely estimated pRF parameters involves a quadratic approximation of the error function in the neighbourhood of the coarse result. We use partial derivatives of the error term to find minima, thereby enabling estimation of the best pRF fitting parameters. Goodness-of-fit is based on residual sum of squares (RSS). Our novel approach was evaluated on a laptop with an NVIDIA RTX 3050Ti GPU and a university server’s GPU cluster using NVIDIA Tesla V100. We assessed the accuracy of this method with both simulated and empirical data.

Results: Our GEM-pRF implementation shows notable speed enhancement without compromising accuracy. To validate our results on simulated data, we utilised a validation framework (Lerma-Usabiaga et al., 2020) for pRF mapping methods. Within this framework, we generated low- and high-noise datasets comprising 5000 voxels each. Datasets were generated for two scenarios, first for a smaller pRF located at visual field centre (i.e. μₓ=0, μᵧ=0, σ=1), and second for off-centred bigger pRF (i.e. μₓ=3, μᵧ=-2, σ=1.8). We compared our pRF parameter estimations with different fMRI analysis toolboxes (mrVista, SamSrf, and f-pRF ((Bhat et al., 2021) from CNI_toolbox). In Figure 1, our new implementation pRF parameter estimation (position & size) showed very good pRF parameter estimation results compared to other pRF implementations in both low- and high SNR scenarios. For evaluation on empirical data, we scanned a healthy male using a 64-channel head coil on a 3T Siemens PrismaFit scanner. The full coil was used for anatomical measurements (MP2RAGE, 1mm iso), while functional measurements (CMRR EPI, TR/TE=1000/38ms, 1.5mm iso, MB=3) used the coil’s lower part only. Our pRF parameter estimates were compared to those computed by the standard mrVista implementation, a specialised software package for pRF fMRI data analysis. The comparison of results is presented in Figure 2, which shows the estimated pRF positions (μₓ, μᵧ) and their sizes (σ). Figure 2(d) shows the comparison of Variance Explained (R²) values for the modelled signals. The overall comparison reveals high correspondence between our novel approach and the standard mrVista implementation. Our implementation, however, requires considerably less computation time: while mrVista and similar implementationsrequire about 10 minutes, our implementation completes pRF parameter estimation in approx. 30-40 seconds for datasets containing up to 10,000 voxels.
Figure 1: Comparison of pRF mapping methods on simulated data with low & high noise. Blue dot and dashed circle indicate the groundtruth pRF center and its radius, while the black dot and dashed circle represent the averaged estimated pRF center and its radius. Gray circles depict estimated circular pRFs. (A): Groundtruth pRF centered at ($\mu_x = 0$, $\mu_y = 0$) deg, size $\sigma = 1.0$ with low & high noise. (B): Groundtruth pRF centered at ($\mu_x = -3$, $\mu_y = 3$) deg, size $\sigma = 1.8$ with high noise.

Figure 2: Evaluation of pRF estimations computed using GEM-pRF and mvVista on empirical data acquired from a 3T scanner. (a)-(c) Comparison of the center-X (μ_x), center-Y (μ_y), and the size of the estimated pRFs. (d) Comparison of mvVista vs. GEM-pRF variance explained (R^2). (e)-(f) Coverage maps obtained by mvVista and GEM-pRF respectively.
Conclusions: Our proposed GPU-empowered mapping of pRF (GEM-pRF) approach maintains the high-accuracy of the pRF parameters estimation results as compared to the existing popular techniques, while reducing the computational time by more than an order of magnitude.

References

Poster No 1350

Stimulus smoothness influences pRF parameters

David Linhardt¹, Johanna Bogner¹, Michael Woletz¹, D. Samuel Schwarzkopf², Christian Windischberger¹

¹High Field MR Center, Medical University of Vienna, Austria, ²University of Auckland, New Zealand

Introduction: Population receptive field (pRF) modeling with functional MRI (fMRI) is the gold-standard method for revealing how a subject's visual field maps onto the visual cortex. Subjects maintain focus on a central point while a bar aperture moves across their visual field. Traditionally, this bar jumps to a new position with each fMRI volume captured, tying the model's temporal resolution to the scan's repetition time (TR). This method, however, also impacts spatial resolution, as it fails to distinguish small pRFs within the range of a single bar jump. Further, the jump width of the stimulus also imposes a constraint on the pRF size that cannot be effectively analyzed when too small. To assess the impact of the stimulus smoothness on pRF mapping, here we tested stimuli varying in their movement patterns, from classical jumps to smooth transitions, and explicitly incorporated stimulus temporal resolution in the pRF model.

Methods: We designed 3 stimulus conditions based on a classical pRF mapping paradigm. A bar (width=1.6°) moved through the field of view in eight different directions, revealing a reversing checkerboard pattern. Subjects were instructed to fixate on the central dot. The stimulus reached a total diameter of 12° visual angle: Standard: the bar jumped once per TR for ½ of the bar width Small jumps: the bar jumped twice per TR smooth: the bar jumped 8 times per TR, resulting in smooth movement. A total of 6 healthy subjects (5 female, age: 24.5±2.6) were measured on a 7T SIEMENS MAGNETOM scanner. For every stimulus condition, we acquired two functional runs (TE/TR=25.6/1000ms, 1.2mm isotropic) in one session, resulting in 6 runs per subject. Together with an additional structural T1-weighted image (0.75mm isotropic) the data were minimally pre-processed using containerized solution FMRIprep v23.1.4 (fmriprep.org). For the pRF mapping, the analysis tool SamSrf v9.7 (github.com/samsrf/samsrf)¹ was used, which allows for the creation of the pRF model at a higher temporal resolution. Using this option, the analysis created models in the native temporal resolution of the stimulus. These high resolution models were then subsampled to the timings of the acquired data (at every TR). This procedure was used to estimate the pRF position (eccentricity, polar angle) and size (sigma). Only data in V1 and exceeding a variance explained threshold of 10% were included in the analysis. Coverage plots were created as the maximum surface of all pRFs using prfresult v0.11 (github.com/dlinhardt/prfresult). Reproducibility was assessed using Spearman's correlation, between the two runs of each condition. For every pRF parameter, the correlation was calculated for every subject independently and then averaged across subjects.

Results: Differences in coverage plots are shown for two subjects in Figure 1. The columns represent results obtained from the standard, small jump and smooth stimulus respectively. The standard analysis revealed pronounced clustering artifacts in both subjects, with the clustered pRFs exhibiting sizes notably smaller than typical. While diminished, these artifacts persisted in the small jump stimulus. For both conditions, the distance between clusters roughly corresponds to the jump width of the bar. Only results for the smoothly moving bar in the third column are free of these artifacts. Comparative analysis of reproducibility across standard, small jump, and smooth stimuli yields negligible differences, with values for standard (eccentricity: 0.91; polar angle: 0.97; sigma: 0.26), small jump (0.92; 0.98; 0.27), and smooth (0.91; 0.96; 0.29) stimulation. Variance explained averages across subjects show a marginal increase for small (26%) and smooth (25%) compared to standard (24%) stimulation.

Conclusions: Though we could not find an improved performance of the smooth stimuli in terms of reproducibility or goodness of fit, artifacts driven by tiny pRFs were heavily reduced and we found an overall more uniform coverage using a smoother stimulus design.
Poster No 1351

Neural Correlates of Embodiment using Virtual Reality Mental Illness Avatar Body Experience

Kelssy Hitomi dos Santos Kawata1, Wey Lem1, Koki Ono1, Hiroshi Oyama1

1The University of Tokyo, Bunkyo-Ku, Tokyo

Introduction: We previously demonstrated via visual-motor action synchronization that the sense of embodiment (SoE) experience into an avatar with mental illness using immersive virtual reality (IVR) increased knowledge acquisition and decreased stigma towards the mental illness person1. In order to maximize this effect, there is a need to verify the neural correlates of individual differences of SoE. Here, we investigated the effect of SoE through visual-motor action synchronization using embodiment into an avatar with mental illness via IVR in regard to the neural correlates of the individual difference of SoE.

Methods: We analysed data from 32 right-handed native Japanese (14 female; M = 24.00, SD = 6.10 years), and they were randomized into either the IVR-control or control-IVR sequence groups. The IVR group experienced the embodiment of an avatar with mental illness in IVR via a head-mounted display (HMD), in which they assumed the role of a company employee with mild symptoms of depression and experienced stigma. The embodiment experience was performed via visual-motor action synchronization with the hand-tracking feature, allowing for three types of interactions; grabbing a paper, holding a computer mouse, and pressing the snooze button on the alarm clock. On the other hand, the control group watched a video with the same content as the IVR group but without visual-motor action synchronization. In both groups, after each experience, participants were evaluated in terms of the SoE. During the functional magnetic resonance imaging (fMRI) scanning that occurred before and after these experiences, all participants were asked to listen to the main auditory content of the embodiment experience while wearing a sleeping mask to minimize the visual effects generated by removing the HMD. For the behavioural data, a paired t-test was conducted for the SoE scores between the IVR and control groups. In addition, the effect of individual differences of embodiment on brain activity was examined using a 2nd-level between participant regression analysis, respectively for the IVR and control groups. The voxel-wise statistics used an uncorrected p-value of <0.001 for the cluster-forming threshold and at a threshold of family-wise error (FWE)-corrected p-value of <0.05 for cluster.
Results: The SoE score in the IVR group was significantly higher than those in the control group. The SoE score related to the IVR group was negatively associated with the neural response of mental illness embodied experience in the right inferior frontal gyrus, right anterior insula and left angular gyrus. These brain regions contain mirror neurons which engage in understanding visual-motor actions and emotion in various fMRI studies beyond embodiment.

Conclusions: Thus, our findings suggest that mirror neurons contributes to the mechanisms of embodiment simulation using IVR and has important implications for the development of a more objective method of SoE assessment, based on physiological data.

References

Poster No 1352
Movie-specific temporal dynamics analysis in functional connectivity using the COBE method
Priyanka Mittal¹, Anil Sao², Bharat Biswal³
¹Indian Institute of Technology, Mandi, Himachal Pradesh, ²Indian Institute of Technology, Bhilai, Chattisgarh, ³New Jersey Institute of Technology, Newark, NJ

Introduction: Temporal dynamics of brain states, measured using fMRI, could be associated with a sequence of well-defined functional states and can be derived using dynamic functional connectivity (FC). It has been reported that in fMRI scans made during movie watching, the transitions of functional states are temporally aligned to specific features of the movie (Meer et al., 2020). Leveraging the Hidden Markov Model (HMM), such dynamics of whole-brain networks can be modeled as hidden states, where each state can be described by the mean activation vector (Hungi et al., 2019; Vidaurre et. al., 2016, 2018a). Most frequently observed states for a window of time may be different across the subjects due to individual-level variations despite they have undergone the same movie stimuli during the scan. In this study, we attempted to suppress the subject level variations present in the dynamic FC observed during movie-watching fMRI data through the Common orthogonal basis extraction (COBE) algorithm. This leads to enhanced consistency in the state's temporal dynamics across the subjects that have undergone the same movie stimuli.

Methods: We have analyzed movie fMRI data from the publicly available dataset called the “HCP S1200 release.” This included data from 184 individuals who underwent fMRI scanning while watching movies on a 7 Tesla scanner at the University of Minnesota (https://db.humanconnectome.org). The stimuli for MOVIE1_CC1 and MOVIE3_CC2 consisted of four short clip compilations consisting of independent Creative Commons videos. MOVIE2_HO1 and MOVIE4_HO2, on the other hand, consisted of scenes from Hollywood movies. In this study, dynamic FC matrices are computed using 160 regions of interest (ROIs) from the Dosenbach atlas using point-by-point multiplication of z-scored ROIs. To estimate the HMM states from the group of dynamic FC matrices related to four different movie stimuli, we have used the HMM-MAR toolbox (Vidaurre et. al., 2016). Further, we applied the Common Orthogonal Basis Extraction (COBE) method (Zhou et al., 2016) to extract common FC patterns across subjects for a movie. Thus movie-specific information present in dynamic FCs is extracted as the common subspace and subject level variations are separated from the FC. For the analysis of movie-specific temporal dynamics present in the dynamic FC, HMM states are extracted from the common subspace of FC across subjects.

Results: Figure 1 shows the workflow pipeline where HMM states are estimated using group analysis of all four movie stimuli-related dynamic FC matrices. HMM states were also computed in this study after the COBE application on the dynamic FC matrices of each movie stimuli separately. Using the COBE algorithm, the common information present in the dynamic FC which is movie-related (as movie stimuli are common across the subjects for a particular stimuli) is retained after removing the individual components of the COBE decomposition of FC matrices. Using the HMM model, the state path followed by each
of the subjects across time can be observed. Figure 2 shows the most frequent states for both cases (with and without using COBE) when a nonoverlapping time window of 10-time points is considered for all the subjects. It is evident from Figure 2 (b) that after COBE application, the state path of most frequent states across the subset of subjects is more consistent than the previous case Figure 2 (a). For all four movies, after the COBE application, fewer states are frequent and comparatively consistent across the subjects.

Figure 1: Workflow pipeline for extracting HMM states directly from dynamic FC matrices and after performing COBE on dynamic FC matrices while retaining their common information.

Figure 2: Most frequent States over the time windows across subjects, (no. of states =8) extracted: (a) directly from dynamic FC matrices (b) after applying COBE with no. of components = 30
Conclusions: In this study, using the COBE algorithm, we have attempted to separate the individual-level variation present in FC matrices and one can observe its effect in the form of consistent state transition across the subjects over the time window. The HMM method is used in this work to model the fMRI data as transitions of some hidden states which will be aligned to the specific features of their movie stimuli.

References

Poster No 1353
Surprising the brain: neuroscientific inquiry into surrealistic art
Yingying Huang1, Cristina Denk-Florea1, Gujing Li1, Christina Konstantinou2, Stephen Forcer2, Frank Pollick1
1School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom, 2School of Modern Languages and Cultures, University of Glasgow, Glasgow, United Kingdom

Introduction: How does the brain process surreal artworks that depict objects or scenes that do not exist in reality? Surrealism, an artistic and literary movement that emerged in the early 20th century, aimed to reveal hidden parts of the mind that challenge conventional notions of reality. While surrealism is often claimed to have psychological significance, it has not been extensively studied from a neuroscientific perspective. Our study seeks to contribute to the dialogue between art and neuroscience by investigating the potential neural mechanisms underlying the perception of surrealistic art, specifically in relation to surprise, error prediction, and neural representation.

Methods: We used 3T functional Magnetic Resonance Imaging (fMRI) technique to examine the brain response to images of surrealistic objects and paintings, in comparison to images of naturalistic objects and paintings. To control for confounding factors, such as valence, arousal, familiarity, and luminance, a behavioural pre-test was included to select a set of images consisting of 64 surreal objects, 64 surreal paintings, 64 natural objects, and 64 natural paintings for fMRI experimental procedure. The experiment used a 2x2 factor design (condition: surreal and natural, category: object and painting). We conducted four functional experiment runs, one anatomy, and one retinotopic mapping run. In each experimental run, participants were required to view each image for 4s and press the button when the black fixation cross changed to red, which was used to monitor participants’ attention. Each block (16s) consisted of four images from the same category and was followed by an 8s baseline. All image stimuli were presented only once. A total of 27 healthy participants attended the fMRI experiment. We used BrainVoyager 22.4 to do the fMRI data analysis with a F-test to indicate interaction and main factor effects. We then used Matlab to perform a whole brain searchlight decoding analysis and a multivoxel pattern analysis (MVPA) with linear support vector machine (SVM) classifier.

Results: 1) F-test results. Using cluster thresholding (p<0.05) with a cluster determining threshold of p<0.001, we revealed a significant interaction effect in multiple brain regions, including the superior and inferior frontal gyrus in both hemispheres, as well as cuneus, precuneus, and cingulate gyrus in the right hemisphere. This suggests that surrealistic images may engage unique neural mechanisms compared to naturalistic images, possibly related to the surprising and unexpected elements often present in surrealistic art. Additionally, the main effect of condition (surreal vs natural) involved the amygdala, as well as visual cortex and frontal cortex in both hemispheres. The main effect of category (object vs painting) was found to be significant mainly in the visual cortex and frontal cortex in both hemispheres. 2) Whole-brain searchlight MVPA decoding results showed that decoding accuracy in the visual cortex was significant (p<0.01 after the false discovery rate (FDR) q <0.05 correction). 3) We further conducted MVPA decoding specifically for the brain activity patterns in the early visual cortex (EVC). The results demonstrated that voxel activity patterns between surrealism and naturalism conditions were different in the EVC and that the patterns between object and painting category were also notably distinct. This implies that the early visual cortex is sensitive to these distinctions between surreal and natural art.

Conclusions: These findings provide preliminary evidence for the neuroscientific relevance of surrealism and contribute to our understanding of how the brain processes artistic stimuli, emphasising distinct neural signatures associated with surrealism and naturalism.
Common and distinct neural mechanisms of aversive and appetitive pain-related learning

Jialin Li¹,², Katharina Schmidt², Lea Busch², Tamás Spisák², Katja Wiech³,², Ulrike Bingel²

¹Max Planck School of Cognition, Leipzig, Germany, ²University Medicine Essen, Essen, Germany, ³Wellcome Centre for Integrative Neuroimaging, Oxford, United Kingdom

Introduction: Learning from signals of upcoming aversive and appetitive events is crucial for humans. Several studies have investigated the mechanisms underlying these two types of learning (Martin-Soelch et al., 2007; Fullana et al., 2016; Klein et al., 2022; van der Schaaf et al., 2022), but mostly using different sensory modalities and paradigms (e.g., pain vs. monetary reward), which limits interpretations (Klein et al., 2022). A recent study (van der Schaaf et al., 2022) addressed this issue by comparing aversive and appetitive learning within the same sensory modality (tonic heat pain increase vs. decrease) and found marked behavioural differences including stronger aversive than appetitive acquisition but no differences in extinction. However, little is known about the neural underpinnings of such findings. This study aims to elucidate common and distinct neural mechanisms of aversive and appetitive pain-related learning in healthy individuals.

Methods: N = 62 healthy individuals participated in an fMRI paradigm in which moderate continuous pain was elicited by a novel capsaicin-induced tonic heat pain model (van der Schaaf et al., 2022). Individually calibrated phasic heat pain (unconditioned stimulus, US) was experimentally induced and paired with predictive cues (conditioned stimulus, CS). Following habituation, three geometrical cues (CSupcrease, CSdecrease, CSmedium) signaled pain exacerbation (USincrease), pain decrease (USdecrease) and no change in temperature (USmedium) respectively in the acquisition phase. In the subsequent extinction phase, all cues were followed by the USmedium (Fig. 1). Neuroimaging data were preprocessed using the fMRIprep pipeline. Univariate general linear model analyses were performed separately for each phase using SPM12. First-level regressors included all CS and US events during acquisition and CS events during extinction, as well as nuisance variables (ratings, head movement). To identify brain regions that show increasing engagement with learning over time, we applied time modulation to CS regressors (Forkmann et al., 2023), and individual-wise contrasts modeling time x condition interactions (e.g., aversive: CSupcrease x time > CSmedium x time) were entered into group-level one-sample t-tests. Results were followed up by functional connectivity analyses (gPPI; McLaren et al., 2012) for key regions identified. Results were thresholded at p < .05 family-wise error (FWE) corrected at peak level with small volume correction (SVC) for brain regions included in our a priori hypotheses (SFB1280 A11 project).

Results: The time x condition interaction indicated that compared to appetitive events, the acquisition of aversive events was associated with a stronger increase in medial thalamus activity (Fig. 2a). Conjunction analysis revealed that both types of learning were accompanied by increasing responses in the superior frontal gyrus and medial occipital cortex (Fig. 2b). Functional connectivity analysis using the occipital cortex as the seed region showed positive coupling with the frontal operculum during both types of learning (Fig. 2c), suggesting a similar connectivity pattern regardless of valence during acquisition. In the extinction phase, we found a greater decrease in activity in the lateral occipital cortex for the aversive than the appetitive condition, whereas the parahippocampal gyrus showed a stronger decrease in the appetitive condition (Fig.
Both conditions showed a decrease in response over the course of the extinction phase in the vmPFC (Fig. 2e), which was negatively correlated with the activity in the periaqueductal gray (Fig. 2f).

Conclusions: Our results show that in healthy individuals, aversive and appetitive learning (within the same sensory modality) involve a common set of brain regions but can also be distinguished in areas such as the medial thalamus during acquisition and the occipital cortex, parahippocampal gyrus and vmPFC during extinction.

References

Poster No 1355
Activation analysis of T2* time-series from multi-echo fMRI data
Anezka Kovarova1,2, Michal Mikl2
1Masaryk University, Faculty of Medicine, Brno, Czech Republic, 2CEITEC Masaryk University, Brno, Czech Republic

Introduction: The multi-echo fMRI acquisition provides enhanced sensitivity to the Blood Oxygenation Level Dependent (BOLD) signal by capturing multiple echoes within a single imaging sequence. Moreover, this advanced approach introduces the possibility of incorporating T2* mapping principles into every time point of the imaging data. This abstract explores the pilot study of the multi-echo multi-band (ME MB) fMRI approach coupled with the principles of T2* mapping, as a synergistic strategy for advancing the field of fast functional imaging. This combination may have the potential to enhance the robustness and stability of processed ME MB fMRI data.

Methods: Data was collected from 49 healthy volunteers aged 20-38 without any neurological, psychiatric, or mental disorder. The study protocol was approved by the Masaryk University Ethics Committee. The measurements were performed on the Siemens Prisma 3T MR whole-body scanner with 64-channel head-neck coil. The acquisition consisted of high-resolution anatomical images (MPRAGE, voxel size 1 x 1 x 1 mm, FOV 224 x 224 x 240 mm) and then 7 different BOLD runs with block design combining visual stimulation and motor activity (pressing buttons). The acquisition time of each run was 6 minutes, echo times (TE) were 17, 35 and 52 ms, voxel size was 3 x 3 x 3 mm. Repetition times (TR), number of scans and flip angles (FA) were different for every run as follows: 1) 3.05 s / 120 / 80°; 2) 3.05 / 120 / 45°; 3) 0.8 s / 450 / 45°; 4) 0.8 s / 450 / 20°; 5) 0.6 s / 600 / 45°; 6) 0.6 s / 600 / 20°; 7) 0.4 s / 900 / 20°. Acquired data was processed in as composite ME model data the optimal combinations weighted by the contrast-to-noise ratio in the standard way in SPM12. The second model was calculated as T2* estimation of the same data. The results of activation were verified by using GLM models on single-subject and group levels. We mainly focused on activation level and power of statistics, so we evaluated the differences between multi-echo and T2* models by assessing the number of active voxels, variance of residuals, percent signal change (PSC) and the power of t-statistics. We explored both global and local metrics which were chosen according to the level of activation.
Results: The comparison of ME MB data and T2* data was done using several metrics. For the global level of activation, we computed the number of active voxels, where the T2* model provided similar values as ME model and in runs 3 and 5 the T2* yielded even higher values than ME and these differences were statistically significant (shown in fig. 1). The variance of residuals was slightly worse in T2* model. We also evaluated data in chosen ROIs based on activation and then picked top 50 voxels from each ROI. When comparing the t-values, the T2* model outperformed ME model in some ROIs as shown in fig. 2 (Left precentral gyrus), especially in runs 3,4,5,6 where the difference was statistically significant. However, in some other ROIs the T2* model provided slightly worse results than ME model. Both models provided similar values of PSC in most ROIs, like in the ROI shown in fig. 2, where the T2* model performed significantly better in runs 5, 6 and 7.
Conclusions: The pilot comparison study of ME MB data and T2* mapping showed promising results in terms of acquiring the same or even higher level of data quality in observed metrics. We hope that T2* as a quantitative parameter could contribute to the robustness and stability of the fast fMRI data processing. Although some ROIs gave slightly worse results of T2* than ME model, the overall activation in our data appears to be comparable. We are also planning to verify our theory and results on event-related data or other types of fMRI task data.

References

Poster No 1356
Adaptation to Numerosity Changes Monotonic Responses to Image Contrast in Early Visual Cortex
Liangyou Zhang1, Evi Hendrikx1, Yizhen Wang2, Surya Gayet1, Serge Dumoulin2, Ben Harvey1
1Utrecht University, Utrecht, The Netherlands, 2South China Normal University, Guangzhou, China, 3Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands

Introduction: Humans and many animals effortlessly perceive numerosity, the number of visual objects in an image. Numerosity perception is affected by adaptation (Burr & Ross, 2008): after viewing a particular adapter numerosity frequently or for a long time, other numerosities appear more different from this adapter than they are. Recent studies show two broad classes of neural responses to numerosity. First, parietal and frontal numerosity-tuned responses (Harvey et al., 2013; Nieder et al., 2002) show activation peaks at a specific (preferred) numerosity. We have recently shown that this preferred numerosity is affected by numerosity adaptation (Tsouli et al., 2021). Second, monotonic responses in the early visual cortex (DeWind et al., 2019; Park et al., 2015) increase in amplitude as numerosity increases. These monotonic responses are found in neural populations at the retinotopic location of the stimulus in early visual field maps (Paul et al., 2022). Furthermore, they follow spatial frequency domain image contrast more closely than they follow numerosity, though close relationships between contrast and numerosity may underlie numerosity's straightforward perception. Here we ask whether effects of numerosity adaptation on perception and numerosity-tuned responses originate in early visual contrast representations.

Methods: We used ultra-high field 7T fMRI to record responses to numerosity in early visual field maps V1-V3, hV4, LO1-2 and V3A/B. Participants viewed dot groups of gradually changing numerosity to map numerosity preferences. We repeated this under three different conditions. The low numerosity adaptation condition alternated this changing numerosity display with displays containing one item. The high numerosity adaptation condition alternated the changing numerosity with twenty items. In the control condition, every display contained the changing numerosity. In each condition, we used a general linear model (GLM) to capture the responses to the changing numerosity, where each voxel's response is predicted by the spatial frequency domain contrast energy (i.e. Fourier power) of each display. This determines the amplitude of the monotonic response to increases in Fourier power as the slope (beta) of the relationship between the display's Fourier power and each voxel's response. We used visual field mapping to determine which visual field map each voxel lay in and its preferred visual field position (Figure 1a-c). For each visual field map, we selected voxels responding within the numerosity stimulus area and showing a monotonically increasing response to Fourier power in the control condition. We tested whether the mean response slope differed between low and high numerosity adaptation conditions. We then compared, across visual field maps, the proportion by which the response slope decreased between the low and high adaptation conditions.

Results: The monotonic response's amplitude (slope or beta in the GLM) reduced during adaptation to high numerosities, compared to adaptation to low numerosities, in all visual field maps (Figure 1d). This is consistent with perceptual effects where high numerosity adaptation decreases perceived numerosity. Furthermore, the proportion by which response amplitude decreased from the low to high numerosity adaptation conditions became progressively greater from earlier visual field maps (~30% decrease in V1) to later visual field maps (~70% decrease in V3A/B and LO2) (Figure 1e).

Conclusions: These results imply that adaptation effects on numerosity-tuned neural populations' preferred numerosities, and on numerosity perception, may result from effects beginning in early visual contrast representations. These effects begin by V1 and increase through the visual processing hierarchy. Therefore, numerosity adaptation in part reflects early-stage adaptation to image contrast. However, the progressive increase in this effect suggests that adaptation may have further effects at later stages of numerosity processing.
References

Poster No 1357
Framework for parametric fMRI fitting
Michael Woletz1, David Linhardt2, Siddharth Mittal1, Christian Windischberger3
1Medical University of Vienna, Vienna, Vienna, 2Medical University of Vienna, Wien, Vienna, 3Medical University of Vienna, Vienna, Austria

Introduction: Most task-based fMRI analysis designs make use of a general linear model (GLM) (Friston, 1995), where a regression matrix is constructed based on the task design and the research question and fitted, along with additional nuisance regressors to the data in a least-squares way. Other, specialized methods, such as population receptive field mapping (PRF), employ models where the regression matrix is not only depending on the task, but also additional parameters, which are in turn estimated from the data using optimization methods. In this work we present a simple framework, allowing the fast comparison of different parameters during the optimization process, as well as the computation of derivatives.

Methods: A mathematical framework was developed, by making use of algebraic properties of the regressors, which simplifies the fitting process. Instead of performing least squares fitting, the fitting problem can be reduced to a matrix multiplication by enforcing orthonormality constraints, without changing the overall fit. That is, the static regressors are made orthonormal using a QR decomposition and the model regressor by subtraction of the static regressor fits (see Figure 1 for details). The constructed matrix consists of time courses, corresponding to different sets of parameters, which can be used...
for a coarse fitting routine on all measured voxels at once. Once approximate parameters are found, the framework allows for the computation of derivatives with respect to the estimated parameters, which enables the use of efficient derivative based methods for the estimation of all parameters in all measured voxels. The proposed framework was tested on simulated data, simulating a PRF acquisition. Noisy time-courses were generated, representing a moving bar stimulus for a Gaussian PRF at a given position and size. Time courses were generated using the equations in Figure 1, as well as the derivative for the optimization function and used to compare the simulated ground truth results with the result from the parametric fitting framework.

\[
\begin{align*}
X &= s(\theta) R \\
s^*(\theta) &= [1 - R R^T] s(\theta) \\
s^*(\theta) &= \sqrt{s^*(\theta)^T s^*(\theta)} \\
X^* &= s^*(\theta) R \\
\hat{e} &= \left[1 - XX^T X^{-1} X^T \right] y \\
\hat{e}^T \hat{e} &= y^T y - (y^T s(\theta))^2 - y^T R R^T y
\end{align*}
\]

Figure 1. Modifications to the general linear model (GLM) design matrix in this work. Please note that the residual sums of squares (\(\hat{e}\)) only a scalar product of the data \(y\) and the model signal \(s\) depend on the parameters \(\theta\), reducing the optimisation to a matrix product and allowing the computation of partial derivatives.

Results: The calculated error function and its partial derivatives as a function of the location parameters for a simulated PRF experiment can be seen in Figure 2. Our framework is very efficient, allowing the computation of both the error function and the gradient as simple matrix multiplications, enabling a fast evaluation of both for many voxel time-courses at once, without reducing the fitting accuracy.

Conclusions: By reformulating the GLM model, we have presented a framework, which allows fitting of parameters in an fMRI experiment. The new framework allows for faster fitting routines and gradient based fitting routines, not only on CPUs, but GPUs, enabling not only faster results, but also more complicated models.

References

Poster No 1358

BOLD fMRI effects of concurrent tDCS at the pre-SMA on inhibition in OCD patients

Daniela Rodriguez Manrique\(^1\), Kathrin Koch\(^2\)

\(^1\)Technical University Munich, Munich, Bavaria, \(^2\)Neuroradiology, Klinikum rechts der Isar der Technischen Universität München, Munich, Bavaria

Introduction: OCD Patients have difficulty inhibiting obsessive thoughts and reoccurring compulsive behaviors, two core symptoms underlying the disorder. Hence, studies have investigated brain areas and networks involved in response inhibition...
in OCD patients. They find the inferior frontal gyrus and the pre-supplementary motor area (pre-SMA) as key regions involved in inhibition5,6,9. Previously, the pre-SMA has been chose as a target in inhibition performance tDCS studies. Post stimulation OCD studies showed modulated pre-SMA-vmPFC connectivity7. tDCS is an attractive method due to its cheap and mobile nature, however its underlying mechanisms are poorly understood and rarely studied in combination with imaging. Studies rarely detail the conditions between stimulation and task results. Performing concurrent fMRI-tDCS allows increased insight into the immediate and postponed blood oxygen dependent (BOLD) changes in brain regions and networks and their second-hand effects1. Thus, allowing studies to better investigate the neuronal basis for behavioural and symptomatic changes in patients. This study aimed to test whether tDCS at the pre-SMA could improve inhibition performance and related brain connectivity.

Methods: 54 OCD patients recruited from four clinics in and around Munich, a double-blinded crossover study, the patients received 20 minutes of tDCS during one appointment and a 30 second sham during another. Patients were stimulated in the scanner during which they performed the stop-signal task and the Stroop task (each 10min). Electrodes were placed on the FC1 and FC2 10-20 EEG positions. 46 Patients with OCD were included in the analysis upon excluding participants with outlying task performance. The imaging data recorded during the Stroop task were analysed using McIntosh’s event-related approach with partial least squares2. This multivariate analysis technique identifies whole-brain patterns of covariance related to conditions of an experiment. Each brain voxel has a weight, referred to as salience, which specifies how strongly the voxel contributes to the covariance explained by that latent variable (LV). In the non-rotated mean-centred event-related PLS, the analysis looks for LVs which explain the maximum percentage of variance between the contrast and the BOLD signal. The LVs were determined with a permutation test using 2000 permutations, each event had a temporal window size of 14 time-points post-stimulus onset, called Lags. To answer our hypothesis on the effect of tDCS on the inhibition (incongruent) condition, we contrasted between task conditions and timepoints. Furthermore, the reliability of each voxel’s contribution to a particular LV was tested by submitting all saliences to a bootstrap estimation of the standard errors (SEs), using 2,000 bootstraps. The bootstrap ratio (BSR) is calculated by dividing salience with standard error. Peak voxels with a salience/SE ratio ≥ 3.0 or ≤ -3 for negative correlations (p< .001) were deemed as reliable3.

Results: No significant differences in stroop and stop-signal task performance between the stimulation and sham timepoints were found. Figure 1 displays the brain scores for each condition and over time. All three timepoints included in Fig 2. Had their most significant cluster in the supramarginal gyrus. The stimulation condition did show an increase connectivity in the expected inferior frontal gyrus (Fig. 2)6,9.

![Figure 1a. The brain scores shown with the confidence intervals (CI) have been mean-centered (mean across conditions). The sham incongruent and stim congruent condition are not significantly different as their CI bars overlap. However, the stim incongruent condition is significantly different to the sham congruent condition (p<0.05). Additionally, the stim incongruent condition is positively correlated with the Latent Variable pattern.](image1)

![Figure 1b. The Temporal Brain Scores Plot displays the brain scores for the entire temporal window. All 46 subjects are plotted on the left and the average is visible on the right. Brain scores are seen on the y-axis and the x-axis shows TRs post-stimulus onset.](image2)
Conclusions: Correlations with behavioural performance scores including accuracy and response time will be included in further analysis. Additionally, the question whether timepoint sequence influences brain patterns remains to be answered. Finally, a separate analysis will be conducted where the effect of electric field magnitude patterns calculated for each participant using a method developed last year will be considered.

References

Poster No 1359
Neurological Representations of Galvanic Skin Response Under 7T fMRI. A Pilot Study
Zachary Cohen¹, Mirja Steinbrenner², Rishi Sharma³, Rory Piper⁴, Neo Baker⁵, Mark Richardson³, David Carmichael⁶
¹King’s College London, London, United Kingdom, ²Department of Neurology, Charité, Berlin, Germany, ³Department of Basic and Clinical Neuroscience, London, United Kingdom

Introduction: Galvanic skin response (GSR) represents sympathetic arousal¹. In an inverse relationship the increase of GSR leads to a decrease in cortical excitability². Furthermore, changes in GSR can lead to regionally increased activity in premotor and supplementary motor cortices³⁴. The modulation of GSR has been explored as a potential therapy for epilepsy⁵–⁸. However, an incomplete understanding of the acute effects of GSR limits its potential application. This study utilised the increased spatial resolution and sensitivity of 7T MRI to investigate the neurological representations of GSR signal during functional magnetic resonance imaging (fMRI).

Methods: Seven healthy controls attended St Thomas’ Hospital (London, UK) for two study sessions. In the first session, they received GSR modulation training. Electrodes were placed on their fingers and connected to a BrainAmp ExG amplifier. The GSR signal was recorded (BrainVision) and downsampled to 10Hz. Increases in GSR were represented in a game
where a bird’s height increased. Participants played this game for 1.5 hours with breaks. In the second session, participants underwent scans using a 7T MRI (Terra Siemens Healthineers), acquiring 0.65mm isotropic structural MP2RAGE images and 220 echo-planar images (1.1mm isotropic, TR=2600ms, TE=24ms) per run. They underwent two fMRI runs of 9 minutes, alternating between rest and attempting to increase GSR in 1 minute blocks. Additionally they tapped their right index finger to their thumb at 1Hz in randomised minute blocks. Instructions were given via lights on a screen. Data was processed in Statistical Parametric Mapping (SPM), including realignment, normalisation, and smoothing (12mm kernel). The Functional Image Artifact Correction Heuristic (FIACH) tool for R was used to provide a noise model from signal time courses in brain regions with high noise levels. GSR data was recorded on MR conditional Brain Products equipment. The GSR signal was convolved with a standard hemodynamic response function in SPM. A General Linear Model analysed three conditions: attempted GSR increase, finger tapping, and actual GSR-signal. T-contrasts were generated at the first level; a second level analysis determined the group effect. Resultant maps were superimposed onto normalized individual echo planar images and a standard Montreal Neurological Institute (MNI) template brain for group analysis, comparing individual and group neural activity in response to the experimental conditions.

Results: For the condition of GSR modulative increase, we found association of increased activation in attention-network related areas of the brain – specifically left frontal (p<0.001 unc). At the group level these findings were not significant in our number of participants (p>0.001 unc). Expected increases in activity of the left motor area were seen in all individuals and at the group level (p<0.001 unc). During periods of increasing GSR signal we observed increased bilateral frontal pole activation at a group level (T = 5.2 p<0.001 unc) (Fig1).

Conclusions: GSR modulation shows promise as a therapy for neurological and neuropsychiatric disorders, potentially reducing cortical excitability and influencing sensorimotor activity. This study aims to explore the acute effects of GSR modulation using a novel paradigm in conjunction with 7T MRI fMRI. Despite the small numbers, a prefrontal increase in activity with increasing GSR is consistent with previous literature suggesting altered frontal pole activity. This research establishes the feasibility for both additional healthy controls and participants with GGE to be scanned under this paradigm, interrogating if a GSR modulative increase causes reduced sensorimotor connectivity that may be associated with a reduction in seizures.

References

Poster No 1360

Spatial Frequency Maps in Human Visual Cortex: A Replication and Extension

Jiyeong Ha\(^1\), William Broderick\(^2\), Kendrick Kay\(^3\), Jonathan Winawer\(^4\)

\(^1\)Department of Psychology, New York University, New York, NY, \(^2\)Center for Computational Neuroscience, Flatiron Institute, New York, NY, \(^3\)Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, \(^4\)Department of Psychology, Center for Neural Science, New York University, New York, NY

Introduction: Neurons in primary visual cortex (V1) of non-human primates are tuned to different spatial scales, often quantified in terms of spatial frequency. This tuning is known to vary systematically, such that preferred spatial frequency decreases with eccentricity. fMRI studies in human have shown that spatial frequency tuning can be measured at the millimeter scale, showing the expected decline in preferred frequency with eccentricity. However, there is still wide variability in estimates of peak spatial frequency tuning across studies, with measures at a given eccentricity differing by up to four-fold, except for the two recent studies by Aghajari, Vinke, & Ling (2020) and Broderick, Simoncelli, & Winawer, (2022), which show good agreement. To better understand the discrepancies, it is crucial to investigate the reproducibility of spatial frequency maps obtained in previous studies using identical stimulus classes and analysis techniques. In this study, we aimed to replicate Broderick et al.'s results using an independent dataset. Furthermore, we extended the analyses of Broderick et al, which was limited to V1, to extrastriate maps (V2 and V3).

Methods: We applied the parameterized approach of Broderick et al. (2022) to model spatial frequency preferences, which fits all the voxels in an entire visual area simultaneously with a relatively small number of parameters. This enables compact characterization of spatial frequency tuning across all of V1 as a function of 4 attributes: stimulus spatial frequency, voxel eccentricity, stimulus orientation (absolute orientation), and stimulus orientation relative to voxel polar angle preference (relative orientation). For this replication and extension, we used an unreleased extension of the Natural Scenes Dataset (NSD) (Allen et al., 2020) in which fMRI responses to a set of log-polar grating stimuli similar to those used by Broderick et al. were measured in the NSD subjects. To assess the reproducibility of spatial frequency maps, we compared the final parameters estimated from NSD and the original study.

Results: Despite many experimental differences between Broderick et al and NSD, including field strength (3T vs 7T), number of stimulus presentations per observer (96 vs 32), and stimulus field of view (12° vs 4.2° maximal eccentricity), NSD dataset also showed good responses to scaled gratings (Fig. 1). Specifically, the data are well captured by log Gaussian tuning function and preferred spatial frequency exhibited a noticeable decrease with eccentricity. Notably, there was good agreement in most model parameters, capturing the dependency of preferred spatial frequency on voxel eccentricity. Moreover, the effect of absolute stimulus orientation on spatial frequency maps was similar: a higher spatial period for vertical and oblique orientations compared to horizontal and cardinal orientations in both studies. Lastly, we also found systematic changes with visual hierarchy. From V1 to V3, there was an increasingly large bandwidth in the voxel spatial frequency tuning functions.

Figure 1:

V1, V2, and V3 response profiles showing eccentricity bands and local spatial frequency (cpd).
Conclusions: Using an independent dataset and the same parametric modeling approach, our results showed good agreement on spatial frequency preference maps in V1 with the two most recent studies (Fig. 2), and some systematic changes in spatial frequency representation between V1 and extrastriate areas. Together, our findings show robust reproducibility of visual fMRI experiments, and bring us closer to a systematic characterization of spatial encoding in the human visual system.

References

Poster No 1361

Effects of phase-encoding on BOLD data with a positive control task

Céline Provins, Alexandre Cionca, Elodie Savary, Patric Hagmann, Oscar Esteban
1Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland

Introduction: Quality assessment and quality control (QA/QC) checkpoints layered throughout the dataflow are essential to ensure the reliability of neuroimaging analyses (Niso et al. 2022). In the case of functional MRI, best practices recommend collecting a ‘positive control’ task with which the different layers of QA/QC can be validated. These are short and simple tasks designed to elicit robust and precisely located brain activation patterns, permitting the diagnosis of potential issues in the workflow. Here, we examine how the phase-encoding direction (PE) choice in echo-planar imaging (EPI) blood-oxygen-level-dependent (BOLD) fMRI influences the resulting activation maps using a positive control task that includes visual and motor paradigms.

Methods: Data. 36 fMRI images were extracted from a dense sampling dataset, called the Human Connectome Phantom (HCPPh), acquired as part of a registered report (Provins et al. 2023). A single male subject underwent repeated scans over four weeks. fMRI was acquired in a 3T Siemens Magnetom PrismaFit using a multi-echo EPI BOLD sequence varying PE across sessions in the four possible directions: anterior-posterior (AP), PA, left-right (LR), and RL. The echo times were TE=(12.60/33.04/53.48/73.92)ms. The other parameters, unchanged across sessions, were: 99 volumes with TR=1.6s, FA=64°, 2.2×2.2×2.2[mm3] resolution, distance factor 0%, 60 slices, 96×96 matrix, FOV=211mm, GRAPPA factor 2, SMS factor 4. Task. Our quality control task (QCT), implemented with PsychoPy (Peirce et al. 2019), was adapted from the ‘eye-movement’ variant of the tasks proposed by (Harvey et al. 2018). It consists of four paradigms: a central fixation dot (blank), gaze movement, visual grating patterns, and a finger-tapping (left/right) block. The presentation order and realization of these paradigms (e.g. the coordinates in the gaze movement and the hand in fingertapping) were randomized. Preprocessing. Data were preprocessed with fMRIPrep (Esteban et al. 2019) and further denoised by regressing out the 6 motion parameters, the WM and CSF mean signal, censoring frames with a framewise displacement above 0.4mm and smoothed to an estimated 4mm Gaussian kernel. No susceptibility distortion correction was applied to preserve the impact of different PE directions. Four QCT fMRI scans were excluded, three due to failed fMRIPrep runs and one for incorrectly defined events. Task activation analysis. We used an event-based first-level model to estimate which voxels are significantly active during the tasks. Second-level models were then constructed using PE as confounds. The models were implemented with nilearn (“Nilearn” 2023). Data & code availability. The HCPPh dataset and the fMRIPrep derivatives will be publicly released with the Stage 2 culmination of the corresponding registered report. The task implementation is openly available at https://github.com/TheAxonLab/HCPPh-
fMRI-tasks. Our analysis is openly available as an educational notebook at https://www.axonlab.org/hcph-sops/analysis/qct-activation/.

Results: Our QCT produces precisely-located brain activations. Confirming that the responses align with the expected activations is an integral component of the quality control protocol for our HCPh project (Figure 1). Different PE caused activation disparities beyond susceptibility distortion-prone areas. We contrasted several pairs of PE and report the most relevant one in Figure 2. The latter highlights significant differences in fingertapping-induced activation within a segment of the primary motor cortex, a region that is usually not considered impacted by susceptibility distortion.

![Figure 1. Brain activations elicited by our QCT are precisely-located and correspond to the expected responses.](image1)

Conclusions: Quality control tasks, acquired in just a few minutes, can easily be integrated into any acquisition protocol, serving as a potent tool to assess the integrity of analysis workflows. We showcased its potential by examining how PE affects task activation maps. Next steps include inspecting maps in subject space and further interpreting the differences among PE directions.

References

Poster No 1362

Functional localization of SMA through fMRI and OPM-MEG

Jeff Soldate¹, Lester Sands¹, Michelle Hampson², Pendleton Montague¹, Stephen LaConte¹

¹Virginia Tech, Roanoke, VA, ²Yale University School of Medicine, New Haven, CT

Introduction: Neurofeedback tracking supplementary motor area (SMA) is a promising intervention for Tourette Syndrome, reducing symptom severity¹. Localization of tic neural correlates to the functionally heterogeneous SMA is an important step in personalizing neurofeedback. Ideally tic production during neuroimaging could be used to set the target of interest, but sensitivity to motion in MRI makes this strategy difficult. OPM-MEG, offering similar spatial resolution to MRI at higher temporal resolution and with motion resistant, wearable sensor arrays, is an ideal imaging modality for such localization. As a nascent technology, it remains to be seen how similar functional localization results are between fMRI and OPM-MEG. This work examines localization of SMA in both modalities in four healthy participants, using a bi-manual tapping task.

Methods: Participants performed synchronized and poly-rhythmic bi-manual tapping. This task has been shown to differentially activate SMA between the two task conditions (synchronized and poly-rhythmic tapping)². Tapping was visually paced by matching rotation speed of two wedges in either side of a central point (adapted from³). Synchronized trials demanded 2 Hz tapping from both hands while poly-rhythmic trials demanded 3 Hz tapping from the right hand and 2 Hz tapping from the left. In fMRI, we used 16, 30 second blocks divided evenly between both conditions. In MEG, we used 80, 8 second long trials divided evenly between conditions. MRI images were obtained at 3T using a single band EPI sequence (TR=2000ms, TE=30ms). MEG recordings were taken using a 22 channel array of 11 dual axis, zero field magnetometers at 1200 Hz⁴ in a custom built magnetically shielded room⁵. Recordings were filtered for gamma band neural oscillation (14-30Hz), corrected for the influence of homogeneous fields, and source localized using a linearly constrained minimum variance beamformer implemented in MNE⁶.

Results: Both tasks elicited difference in signal between poly-rhythmic and even tapping over SMA, as defined by the Eichoff-Zilles macro labels atlas⁶. Virtual electrodes from these clusters show a characteristic decrease in beta power during finger tapping and a rebound after cessation. Both methods showed significant clusters of active voxels overlapping with SMA, though the size and location of each cluster differed between neuroimaging method. Average deviation between active clusters (based on thresholds of q≤0.0001 and z≥2.5) was 23±9mm with the majority of disagreement in the Y (A-P) dimension. Both tasks saw increased activity during poly-rhythmic tapping over even tapping.

Conclusions: We were able to show localization of SMA within participant with a contrasting tapping task in both fMRI and OPM-MEG. OPM-MEG source localization remains a difficult problem, leading to varied and spatially dispersed regions of activity. This should decrease as the number of channels and density of sensor arrays increases. Overall, these results indicate OPM is able to identify spatial signal changes related to differing levels of SMA engagement in bi-manual finger tapping.
ABSTRACTS

References
5. Holmes, N., Rea, M., Chalmers, J. et al. (2022), 'A lightweight magnetically shielded room with active shielding'. Scientific Reports. 2022 12(13561)

Poster No 1363
Predicting Variance in Behaviour and Cognition from Task-Based fMRI-Derived Brain Networks
Maiya Rasheed1, Zhangyu Yang1, Kyle Mackenzie1, Abhijit Chinchani2, Luca Besso3, Todd Woodward1

1University of British Columbia, Vancouver, British Columbia, 2The University of British Columbia (UBC), Vancouver, British Columbia (BC), 3The University of Manchester, Manchester, United Kingdom

Introduction: The field of neuroscience has been moving towards understanding behaviour and cognition by examining underlying brain activity. Beyond deepening the understanding of individual differences in these constructs, examining what brain activity relates to cognitive or behaviour traits unlocks important translational applications such as personalized neuromodulation. One way to examine brain activity is using fMRI measurements during task paradigms, where networks underlying the cognitive operations required to complete a task may be extracted (Percival et al., 2020). Task-based fMRI can provide precise brain activity parameters that describe hemodynamic activity in different networks over different phases of the task. Importantly, a supervised multivariate approach called iterative constrained principal component analysis (CPCA) may be used to derive fine relationships between brain activity and behaviour. Iterative CPCA provides benefits over traditional analyses. Rather than reducing many variables into a single summary score and restricting the analysis to only variance in one variable, CPCA includes all individual items for both sets of variables (Chinchani et al., 2021). In this study, we aimed to evaluate the relationship between brain activity in four task-based networks extracted from a social task from the human connectome project and measures of behaviour/cognition.

Methods: 1000 participants were included in this analysis. During the experiment, participants were presented with a short video (20 s) of objects either moving randomly or interacting socially, and had to respond with one of three options: 1) objects had a social interaction, 2) objects had no social interaction, or 3) unsure (Van Essen et al., 2013). fMRI-CPCA (Percival et al., 2020) was used to extract brain networks from fMRI variance related to task timing. Four components were found and classified as the auditory attention for response network, sustained attention network, re-evaluation network, and traditional default mode network. Features of each network’s estimated hemodynamic response were extracted to describe brain activity (Figure 1). This project collected behavioural data such as demographics, emotions, personality, cognition, and task performance. The predictor variables were made up of the brain network parameters, while criterion variables were made up of behavioural data. First, variance in the criterions was constrained to what is explained by the predictors.(Hunter & Takane, 2011). Next, components were extracted to summarize overlap between the two sets of variables. Finally, rigorous split-half reliability and permutation testing were performed to determine specific, reliable relationships between items.
Results: Activity at the end of the trial in the sustained attention network, when participants watched videos denoting social interaction, was related to perceptions of social support (predictor loading=0.57, predictor loading reliability proportion=0.82, p=0.020). Specifically, perceptions of emotional (0.20) and instrumental support (0.15) were positively associated with this network activity, while perceptions of rejection (-0.19), loneliness (-0.13), and hostility (-0.18) were negatively associated with this network activity.

Conclusions: In this study, we aimed to delineate fine relationships between two sets of variables describing brain activity and behaviour, specifically examining relationships between network variables extracted in a social cognition task and emotions. The association with end-trial activity in the sustained attention network in the social condition suggests that people who exhibit more hostile traits stop attending to social stimuli faster than people who have higher perceived social support. These findings shed light on the detailed interplay between brain activity and behavior, in particular, emphasizing the relevance of Theory of Mind in deciphering how individuals with varying social traits engage with and process social stimuli.

References
The Hypothesis Race Model for evaluation of research findings

Robert Kelly¹, Matthew Hoptman²

¹Well Cornell Medicine, White Plains, NY; ²Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY

Introduction: Empirical results from individual research experiments are commonly evaluated with Null Hypothesis Significance Testing (NHST). The “replication crisis” refers to concerns that statistically significant findings derived from NHST often are not replicable. Benjamin et al. (2018) suggested that we “improve reproducibility” for “claims of new discoveries” by reducing the conventional α-level from 0.05 to 0.005, while increasing sample sizes to maintain study power. However, doing so can increase the total cost of “confirming” hypotheses over multiple studies. We demonstrate this problem using a Bayesian model called the Hypothesis Race Model (HRM, Fig. 1) for the case where many hypotheses are tested simultaneously, each with a small initial probability of being true. For this “Horse Race” scenario, cost-efficiency improves by reducing sample sizes and focusing testing on hypotheses that best progress toward “confirmation.”

Methods: From Bayes’ theorem R1 = BF1*R0, where R0 is the prior odds that our hypothesis is true (Ht; Hf if false), and R1 is the posterior odds that our hypothesis is true after obtaining the results, T1, of an experiment; and BF1 = P(T1 | Ht)/P(T1 | Hf). For the binary outcomes of statistically significant (+) or not (-), BF1+ = (1-β)/α, where 1-β is the power of the study and α, the α-level for statistical significance; and BF1- = β/(1-α). In the nonbinary approach, T1 is a measured continuous test statistic and P(T1 | Ht) and P(T1 | Hf) are the probability densities for obtaining T1 given Ht or Hf, respectively. Our illustrative “experiment”: measuring tumor-cell reduction after exposure to a chemical in a petri dish, testing 10,000 chemicals, each with a 1/1000 chance of being a “winner,” until we find 5 winners. Our 10,000 hypotheses were simulated with a database of candidate chemicals having effect sizes of Cohen’s d=0, except for 10 cases with d = 0.2, 0.4 or 0.8 (the winners). We assessed statistical significance with one-tailed paired t-tests comparing to 0 the mean difference in number of cells in the petri dishes before and after exposure, with df=N-1, where N was the number of petri dishes in each sample. We recorded the total number of petri dishes required, over multiple trials with sample sizes of 5, 10, 20, 40, 80 or 160. A Monte Carlo simulation found the winners by repeatedly picking and testing a hypothesis with the highest R-value, confirming it as a winner when R > 100. A computer program generated the test statistic Tj (for the jth trial) that corresponded to a randomly selected point on the cumulative t-distribution with df=N-1, centered on d for the tested hypothesis. We conservatively estimated BFj for the binary HRM from the estimate d=de=0.2, calculating a fixed value of α for each N, such that the average distance traversed toward confirmation would be optimized (work not shown). The estimated value of β followed from the t-distribution corresponding to de=0.2. The nonbinary HRM followed the same pattern, except that α did not need to be specified. For each sample size, 500 iterations were performed, for the binary and nonbinary applications. Mean values for total number of petri dishes needed were compared using two-tailed, unpaired t-tests, considering p < 0.001, uncorrected, statistically significant. Each of these 6 values were compared pairwise within each group (binary or nonbinary) and across groups for a total of 36 comparisons.

Results: Smaller trial sizes (N = 5, 10 or 20) were significantly more cost-effective in terms of total number of petri dishes needed than larger trial sizes (N = 40, 80 or 160) for both the binary and nonbinary HRM (Fig. 2). The percentage of incorrectly identified winners per iteration ranged from 0.04% to 0.68% for the 12 cases.

Conclusions: A Bayesian perspective that considers results from multiple trials can help to estimate and reduce costs of evaluating hypotheses through empirical testing.
References

Poster No 1365
Scalable Gaussian Process Neural Network with application to Neuroimaging Data
Kan Keeratimahat¹, Thomas Nichols², Jian Kang³
¹University of Oxford, Oxford, Oxfordshire, ²University of Oxford, Oxford, United Kingdom, ³University of Michigan, Ann Arbor, MI

Introduction: Scalar-on-image regression, modelling a univariate outcome per subject given image data, is a core machine learning task in neuroimaging but remains a challenge due to the high-dimensional, heterogeneous nature of the brain image data. While such prediction tasks must combine information from across the brain, conventional approaches neglect the complex spatial dependence and potential for nonlinear association. However, spatial Bayesian models do not necessarily...
ABSTRACTS

scale to biobank-sized datasets needed to detect subtle associations. Here we introduce a fast Bayesian model designed to address these issues.

Methods: We propose a Bayesian Gaussian Process-induced Neural Network (GPNN) that captures nonlinear associations while using spatial smoothness constraints to establish a biologically plausible network structure. Specifically, we employ scalable approximate GPs with a modified squared exponential kernel, affording control over smoothness, concentration, and anchor points of each GP, allowing long-range, inter-regional dependencies in the association. While Bayesian approaches can be computationally intensive, our approach leverages low-rank basis functions and stochastic learning to handle large imaging datasets. Additionally, we employ Bayesian conjugate updates, eliminating the need for costly parameter grid searches while allowing the parameter distributions to adapt to the data. We propose three major architectures, each comprising a 1-layer fully-connected spatially-informed neural network: GPNN-GP-GP [Figure 1], GPNN-Linear-GP, and GPNN-GP-Linear. For instance, GPNN-Linear-GP denotes a GPNN with a linear connection in the input layer and a GP connection in the hidden layer. Additionally, we implement a scalable approximate posterior sampling method, Stochastic Gradient Langevin Dynamics on the trained neural network to obtain the full posterior distribution for our parameters and their corresponding posterior predictive distributions. This equips our model with the capability to quantify the uncertainty of individual predictions, a desirable yet uncommon feature in regular machine learning techniques. We apply our method to predict Brain Age using T1-weighted structural images from the extensive UK Biobank dataset (where p >> 100,000 and n = 4,000). In this study, a brain atlas consisting of 12 grey-matter regions is employed as the spatial prior information.

Figure 1: Visualisation of the proposed GPNN-GP-GP architecture. The example diagram illustrates a GPNN-GP-GP architecture with 3 regions of interest.

Results: All the GPNN models have superior predictive accuracy relative to the GP Regression model, and in particular, the GPNN-Linear-GP outperforms Ridge and LASSO models as well [Figure 2a]. Additionally, the saliency obtained from GPNN reveals an interpretive model representation based on the incorporated spatial prior, distinguishing it from traditional methods. Specifically, the GPNN saliency maps are smooth, unlike Ridge or LASSO which lack such spatial structure [Figure 2b]. Furthermore, the adaptation of SGLD provides posterior predictive intervals, shown to be accurate relative to Metropolis-Hasting [Figure 2a].
Figure 2a: Real data optimisation performances and posterior inference performances (median). Figure 2b: Absolute values of saliency (GPNN) and magnitude of fitted coefficients (regressions).

Conclusions: The proposed GPNN models demonstrate superior performance compared to traditional models, showcasing their potential for accurate and interpretable predictions. Notably, we found the GPNN-Linear-GP model to be the top-performing model. A limitation of our work is the long computation to train our network; however, in this initial work all computations were performed on a CPU, and substantial optimisations will be possible with a GPU implementation. In future work, we plan to extend the GPNN framework to incorporate multiple modalities of imaging data, as well as non-imaging data.

References

Poster No 1366
Efficient Compression and Interpretation of Multimodal Data: Scalable Bayesian Factor Analysis
George Hutchings1, Thomas Nichols1, Chris Holmes1, Habib Ganjgahi1
1University of Oxford, Oxford, United Kingdom

Introduction: There is growing interest in large-scale epidemiological studies, with both many individuals and many variables, and dimensionality reduction is an important tool for summarising the structure in these datasets. For example, the UK Biobank and NO.MS (Novartis-Oxford multiple sclerosis dataset, a longitudinal study involving 8000 individuals) include a diverse assortment of variables: from binary variables to brain images. This data, which is both high dimensional and includes discrete variables, provides challenges for existing methods like ICA and PCA, which are optimal for continuous (and even Gaussian) variables. Additionally, they only have heuristics for choosing the number of latent features. We propose an efficient data compression method, a Bayesian factor analysis which can handle high dimensional data, as well as dealing with mixed modality data and inferring the number of latent variables in a principled manner.
Methods: Our method utilizes a Bayesian model optimized through the variational EM algorithm (Fig 1). A sparsity-inducing spike & slab prior on the loading matrix promotes interpretable latent variables. Each element of the loading matrix follows a zero-mean normal distribution, with differing variances. Non-zero elements are assigned to the slab (with probability 1-w), have a large variance, while zero elements are assigned to the low variance spike (with probability w). Sparsity is induced through an Indian buffet process (IBP) prior on w, which also can shrink any unimportant latent variables to 0, inferring the number of latent features. To ensure scalability, our method utilizes a variational EM approach as opposed to more traditional MCMC which is prohibitive in high dimensions and can suffer from the label switching problem, a common issue arising from model unidentifiability. The approach maintains dependencies between variables, with only the factor scores and the continuous analogue of the discrete variables assumed to factorise. Other latent variables in the model are treated without factorisation, preserving their dependencies, this is unlike a purely mean-field approximation. For handling discrete variables, we incorporate a semiparametric Gaussian copula, providing a principled approach to address discrete data within the model.

Results: The efficacy of our model is assessed with simulation studies and real data, with the noteworthy ones outlined below: Sim i) Data is simulated from loading matrix shown in fig 2a, of note is that the data is of higher dimensionality than the number of samples. The recovered loading matrix is in fig 2b. Sim ii) Binary data is simulated from loading matrix shown in fig 2c (binarized by thresholding the continuous data at 0), one should note that two latent dimensions share multiple covariates making this a challenging simulation. The recovered loading matrix is in fig 2d. One can see that in both cases the true loading matrix is recovered (the loading matrix is unidentifiable to permutation of columns) and in sim i the number of latent variables (non-zero columns) is shrunk to the true number. Additionally, we apply our method to the NO.MS clinical dataset which includes binary, count and continuous covariates, we obtain the structure of the loading matrix seen in fig 2e and 2f.
Conclusions: We propose a scalable factor analysis method designed to handle the complexities of large-scale epidemiological studies, and imaging data. The method efficiently compresses high-dimensional, mixed modality data, using an approach inspired by probabilistic PCA. The method is then evaluated in several simulation studies and on real data.

References

Poster No 1367
Structured-Spectral Dynamic Causal Modelling for Resting-State fMRI
Matthew Greaves¹, Leonardo Novelli², Adeel Razi³
¹Monash University, Melbourne, Victoria, ²Monash University, Clayton, Victoria, ³Monash University, Melbourne, Australia

Introduction: We introduce a new dynamic causal model (DCM) for resting-state functional MRI (fMRI) that utilises structural connectivity to characterise power spectra of endogenous neuronal fluctuations. Research indicates a relationship between
a brain region’s structural connections (i.e., its degree) and the power spectrum of its neuronal activity, typically exhibiting a power-law (scale-free) distribution (Baria et al., 2013; Fallon et al., 2020; Lee & Xue, 2017). Regions with a higher degree exhibit higher power at lower frequencies (i.e., predominant slower fluctuations), which may be due to the role hubs play in coordinating widespread activity across the brain (He, 2014; He et al., 2010). Noting this relationship, we introduce a biologically plausible generative model in which the structural connectivity degree of each brain region characterises the power spectrum of its (random) neuronal fluctuations.

Methods: Spectral DCM models neuronal (state) noise with generic 1/f spectra, which characterises fluctuations in systems that are at a nonequilibrium steady state (Friston et al., 2014). Spectral DCM parameterises neuronal fluctuations using a power-law form for their power spectra. Under this model, amplitude and exponent parameters control the shape of these power spectra. In the proposed generative model, we provide a new forward model for spectral DCM that utilises the structural connectome. In this model, the degree of each brain region’s (normalised) structural connectivity is assumed to have a linear mapping with the exponent parameter of the power spectra. To provide face validation of the proposed structural-spectral DCM, we performed both in silico and empirical illustrations involving a cortico-subcortical effective connectivity network. Thus, we evaluated the performance of the structural-spectral DCM in capturing ground-truth effective connectivity and in describing effective connectivity in a network with substantial interregional differences in terms of the power of low frequency fluctuations (Fallon et al., 2020; He et al., 2010).

Results: The in silico analyses showed that new structural-spectral DCM was superior in capturing the power spectra of intrinsic neural fluctuations, as compared to the conventional spectral DCM. The model successfully identified hub regions and their associated lower frequency fluctuations, agreeing with the existing evidence about brain network dynamics (e.g., Baria et al., 2013; Fallon et al., 2020). Likewise, this approach was more accurate than spectral DCM in recovering ground-truth effective connectivity. The empirical illustration demonstrated higher model-evidence for the new DCM relative to the spectral DCM.

Conclusions: The structural-spectral DCM introduced here represents an important advance in characterising endogenous neuronal activity by furnishing a biologically-plausible generative model of their (structurally-informed) power spectra. Although previous research has integrated structural connectivity into DCM via the introduction of empirical priors (e.g., Sokolov et al., 2019, 2020; Stephan et al., 2009), the proposed DCM gracefully fused structural connectivity into the generative model. The mechanistic understanding of how structure shapes the intrinsic functional dynamics afforded by this new DCM will have broad implications for probing pathophysiology of various brain disorders in which power spectra of neural activity is altered (e.g., Trakoshis et al., 2020).
Validation of a dynamic causal model of NMDA receptors: sensitivity and parameter recovery analysis

Nikola Jajcay¹, Jakob Heinzle², Jiří Horáček³, Klaas Stephan²

1National Institute of Mental Health, Klecany, Czech Republic, 2Translational Neuromodeling Unit (TNU), University of Zurich & ETH Zurich, Zurich, Zurich, 3National Institute of Mental Health, Klecany, Česká republika

Introduction: The NMDA receptor is essential for controlling synaptic plasticity and mediating learning and memory functions. Furthermore, its hypofunction may be one of the pathophysiological mechanisms of schizophrenia. To study dysfunctions in NMDA signalling, one can employ dynamic causal models (DCMs) that utilize mathematical models of neural ensembles to predict fluctuations in synaptic currents and their influence on postsynaptic potentials. DCMs allow us to infer the most likely parameters that generated brain activity. Before using such models to profile NMDA receptor (dys)function in actual data, we conducted a full model validation, including sensitivity and parameter recovery analyses, to explore the validity, identifiability, and robustness of various neurobiological model definitions and parameters.

Methods: DCMs are generative models representing the joint probability of data and model parameters. It is possible to “invert” the model and infer the posterior distribution of the parameters given the measured data. DCMs for EEG data consist of three modelling layers: the first layer models the average population membrane potential, the second layer models populations grouped into a single source, and the final layer represents a collection of sources. This work focuses on the first two layers and explores neural and noise sensitivity and parameter recoverability. We utilise the variance-based method for the parameter sensitivity analyses by computing Sobol indices, whereas for parameter recovery analysis, we sample model parameters from the prior and run the variational inference to check and compare posterior estimates. Here, we investigate a conductance-based DCM with two sources consisting of a canonical microcircuit. Finally, we formulate the problem in a Fourier domain by transforming the simulated data into cross-spectral densities (CSD) as a preparatory step for using the validated model on resting-state data.

Results: We first explored the effect of neuronal, noise and connectivity parameters on the simulated CSD using one-at-a-time prior sampling, where we estimated the CSD variance and then estimated Sobol indices using a generalised chaos polynomial estimator. Most parameters affect only the amplitude of the CSD but cannot shift the frequency peaks. The notable differences are the firing rate variance, GABA time scale, and some within-source excitatory connections. The parameters with the strongest influence on the CSD are background input, GABA synaptic time scale, magnesium block sensitivity, noise amplitude, and noise colour. The Sobol sensitivity analysis in the first order showed that the effect of these parameters varies by frequency and that the most substantial effect in the low frequencies (theta and below) is due to the background input and noise parameters. In contrast, the higher frequencies (alpha and low beta) are governed by the magnesium block parameters, thus directly relating to the NMDA signalling. Finally, the parameter recovery analysis suggests relatively high recoverability of neural parameters (such as background input and synaptic time scales). At the same time, the model struggled to recover noise parameters (correlation between sampled value from the prior and MAP posterior estimate around 0.2 for noise magnitude and 0.5 for noise colour).
Fig. Exploration of effects of selected parameters on the CSD in NMDA-R DCM model. The values for each parameter were sampled from their default prior with twice the variance.

Conclusions: We have started a methodological sensitivity, parameter recovery, and robustness analysis of the conductance-based DCM. In the next step, we plan to examine parameter interactions more closely via n-order Sobol indices, although our preliminary results suggest that most parameters are orthogonal and second-order Sobol indices are generally relatively low. Finally, we plan to finish our model validation with prior and posterior predictive checks to compare with data of the animal pharmacological model of the NMDA antagonist, ketamine. This model validation is essential to arrive at a robust NMDA-R DCM model able to profile NMDA receptor (dys)functions.

References

Acknowledgements
This project has received funding from the European Union’s Horizon Europe research and innovation programme under the Horizon WIDERa Talents grant agreement number 101090306.

Poster No 1369

Probabilistic Staging in Alzheimer’s Disease with Deep Kernel Learning

Vasiliki Tassopoulou¹

¹University of Pennsylvania, Philadelphia, PA

Introduction: Machine learning (ML) can significantly enhance the process of subject stratification and selection in clinical trials, offering a more sophisticated and data-driven approach to these critical aspects of clinical research. In this work, we propose to learn a continuous temporal function of progression that describes the transition of subjects from several diagnosis stages. In Alzheimer’s Disease (AD), we usually have clinical stages of Cognitive Normal (CN), Mild Cognitive Impairment (MCI) and finally AD. In this study, we use a deep kernel learning framework with temporal single-task Gaussian Processes to
learn the temporal function that describes the evolution of the clinical status. Our approach tailors the deep architecture to handle multimodal data including imaging, genomics and clinical information to learn a common embedding as the input to the Gaussian Process (GP) kernel.

Methods: Subjects scanned using the same scanner with more than four longitudinal MRI acquisitions from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Baltimore Longitudinal Study of Aging (BLSA) study cohorts were used for method development. T1 structural MRIs were preprocessed and segmented into 145 gray (GM) and white matter (WM) regions of interest (ROIs) using previously described methods\(^1\). Models were trained using 145 ROI volumes at baseline along with clinical covariates such as the Age at baseline, the Sex, the APOE4 Allele, cognitive status (CN, MCI or AD), and the number of years of education as features. The output of the model is the temporal function of the cognitive status. The learned temporal function is a function of the baseline acquisition of the subject, which means that on inference time, we need only the first scan of the subject so as to get the temporal function of the clinical status. Through the predictive posterior distribution we can obtain an estimate of the staging curve along with the uncertainty bands. Models were trained using 5-fold cross validation is applied in subject level, which indicates a leave-subjects-out validation scheme.

Results: In the first figure, we visualise the staging curve that is our model’s output, along with the staging’s uncertainty intervals. The red dashed lines are the critical points that indicate the progression from one stage to another. The 1 corresponds to the CN status, the 0 to the MCI and the -1 to AD. The critical threshold of 0.5 determines the progression from CN to AD, whereas the critical threshold -1 determine the progression from MCI to AD. In the first plot, we observe 6 test samples. The staging curve has been produced using only the baseline acquisition as input. In the plot, we visualize three stable subjects, one CN, one MCI and one AD, along with three converters to AD. In the stable subjects, we observe how the predicted staging curve remains stable. In the CN subject, the staging curve is above 1, on the MCI is between -0.5 and 0.5 and on the stable AD subject the test subjects that progress to AD. This plot showcases the potential of the model to predict staging curves. In the second plot, we calculate the correlation of the clinical biomarker with an imaging one, the SPARE-AD score\(^2\), stratified based on the progression status. The CN stable have the smaller correlation with the SPARE-AD score, since the staging curve is stable and the SPARE-AD are noisy and we observe some variation. In the following progression status, the correlation increases and that indicates a positive relationship with the SPARE-AD score.

Conclusions: The two attached plots, showcase the potential of the Temporal Deep Kernel GP model to be used as a staging model for test subjects with only baseline acquisitions. Further validation, such as the correlation of the Staging Curve with other clinical variables, such as cognitive scores, is needed in order to prove further the validity of the produced staging curves. The work for further validating this model is part of our current and ongoing work.
Poster No 1370

Structure in ongoing experience: extending Bayesian changepoint analysis for event segmentation

Elizabeth DuPre1, Scott Linderman1, Russell Poldrack2

1Stanford University, Stanford, CA, 2Stanford University, Palo Alto, CA

Introduction: Unconstrained or “naturalistic” stimuli have become increasingly popular in computational cognitive neuroscience, demanding new methods to analyze minimally annotated data. Event segmentation—when task or stimulus changes are inferred directly from neural data—is an important tool in this space. Commonly, segmentations are labeled using left-right Hidden Markov Models (lrHMM), as in Baldassano et al. (2017). Importantly, lrHMMs have been shown to successfully segment functional magnetic resonance imaging (fMRI) data into events that agree with human annotations, such as individual scenes in a film. Researchers can then examine how these segmentation boundaries differ across brain regions and experimental contexts. However, these models are trained on averaged subject-level fMRI data, obscuring inter-individual variability in the location of event boundaries. They also produce a single segmentation, limiting insight into the model’s relative confidence in event boundaries.

Methods: Here, we jointly identify individual as well as consensus group-level event segmentations by extending existing work on Bayesian changepoint analysis (Fearnhead, 2006) to a hierarchical framework. That is, we jointly estimate changepoints for each individual subject, constrained by hierarchically-estimated group changepoints. This framework also enables us to make additional improvements on existing lrHMMs, such as identifying the model’s relative confidence in a given segmentation versus other segmentations with differing numbers of changepoints. We are additionally able to allow individual voxels to exhibit unique variances, better matching the underlying fMRI signal. We showcase this model in the Sherlock dataset shared during the OHBM Naturalistic Data educational course (Chang et al., 2020) and previously collected by Chen and colleagues (Chen et al., 2017).

Results: Hierarchical Bayesian changepoint analysis reveals variability in event segmentations that is commonly missed in lrHMM analyses. In Figure 1, we show this variability at the group level, highlighting the relative confidence of the model for a range of changepoints (i.e., segmented events). We note that these segmentations still capture meaningful structure in the data, as shown in Figure 2 for an example segmentation. Our results also allow us to identify segmentation time courses for each individual in the training dataset, which has not been possible to date.

Figure 1. The posterior probability for the number of changepoints identified at the group-level analysis of eight subjects watching an episode of the series Sherlock. Each changepoint is a single boundary in the event segmentation. Here, 81 changepoints is identified as the most probable segmentation; however, other nearby values also show high-confidence.
Conclusions: We expect this hierarchical Bayesian changepoint analysis implementation will be broadly useful in naturalistic neuroimaging, as well as in neural data recordings that show significant inter-session or inter-individual variability with limited annotations. This work will also be increasingly important in mapping individual differences in event segmentation and their changes in health and disease (Jafarpour et al., 2022).

References

Poster No 1371
Behavioural and brain activation differences in Hierarchical Bayesian Inference across Age
Vae Zhang¹, Wilson Lim¹, SH Annabel Chen²

¹School of Social Sciences, Psychology, Nanyang Technological University Singapore, Singapore, Singapore, ²School of Social Sciences, Psychology, Nanyang Technological University Singapore, Singapore

Introduction: Hierarchical causal relations underlie state changes in dynamic environments¹. These relations could be encoded in the brain hierarchically²,³ and optimal inference occurs via Bayesian estimation of the context of incoming sensory evidence⁴. The neural correlates of Hierarchical Bayesian Inference (HBI) and their changes across age are not well elucidated. Thus, we examined the neural encoding of HBI across age groups in a probabilistic task during an EEG recording (fig.1).

Methods: 30 older (age 55-72) and 30 younger adults (age 21-34) were included in the analysis. Subject-wise HBI parameters were computed for each trial using the Hierarchical Gaussian Filter⁴. 64-channel EEG activity was preprocessed before computing each frequency band’s relative power across epochs for all trials of each subject from different ROIs for the pre- and post-stimulus period (fig.1B). Correlations between HBI parameters and relative power were examined across trial types and age groups using linear models in R. All pairwise post-hoc comparisons were false discovery rate corrected.

Results: Older adults had lower sensory surprise (p=0.002), higher variances in their estimation of contextual rules(p<0.001), and higher estimated variance in the mean rate of contextual changes (p=0.015) as compared to young adults. Before stimulus onset, a significant interaction between age group and trial type in the occipital region was found in the linear correlations between beta band power and sensory surprise. Opposite trends between younger and adults for these high-surprise trial correlations were significantly different (post-hoc p = 0.031). The linear correlation between beta power and estimated variance in sensory predictions was higher in high-surprise trials than in low-surprise trials in the parietal region (p=0.021). In the post-stimulus period, linear correlations between alpha band power and estimated variance in contextual
rules were significantly higher in low surprise trials as compared to high surprise trials in the parietal region (p=0.007). There was a significant interaction effect between age and trial type for the linear correlation between alpha power and subjects’ estimates of the mean rate of change of context in the prestimulus period. The linear correlation between the two variables was significantly higher in younger adults for the high surprise trials compared to old adults in the central regions of the brain (post-hoc p=0.0025).

Conclusions: Hierarchical Bayesian modelling revealed that older adults may experience lower than necessary levels of sensory prediction errors which resulted in comparatively higher variances in the estimation of contextual contingencies and thus higher variance in the estimation of context volatility, as compared to younger adults. Specific neural hierarchies that might be responsible for encoding HBI were found, and changes in these hierarchies may have resulted in different uncertainty estimates across ages. Posterior beta power in the prestimulus period increased with prediction error and estimated variance in predictions which is consistent with its proposed role in signalling predictive expectancies⁵,⁶. This relationship was inverted in older adults which may explain why older adults experience lower sensory surprise. Alpha power is proposed to correlate both negatively and positively with stimulus uncertainty⁷,⁸. These differences may be resolved by looking at uncertainty from a hierarchical perspective. We found that the correlations between poststimulus parietal alpha power correlated negatively with estimated precision and update of contextual rules in high surprise trials, while central prestimulus alpha power correlated positively with context volatility which is a higher level of uncertainty. This was inverted for older adults in high surprise trials which could suggest poorer inhibition control in the central region.
References

Poster No 1372
Influence of In-domain Pre-training on 3D Vision Transformer in Structural Neuroimaging Data
JiHoon Kim¹, Roshan Rane²,³,⁴, Kerstin Ritter²,³
¹Freie Universität Berlin, Department of Education and Psychology, Berlin, Germany, ²Charité – Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany, ³Bernstein Center for Computational Neuroscience, Berlin, Germany, ⁴Einstein Center for Neurosciences Berlin, Berlin, Germany

Introduction: Vision Transformer (ViT) is gaining attention for predictive modeling of associations between brain structure and phenotype in neuroimaging¹. Adapting ViT to neuroimaging is challenging due to its data-hungry nature. This nature may bring a risk of overfitting, and poor generalization with limited data²,³. Transfer learning is crucial to overcome these challenges⁴. Two in-domain pre-trained models: one for sex classification and the other for age estimation, show promise in neuroimaging⁵,⁶. However, a systematic comparison of the impact of different kinds of pre-training on different phenotypes in diverse sample sizes is lacking. Therefore, we pre-train two in-domain pre-trained models and conduct a systematic comparison of the models in predicting different phenotypes across different sample sizes.

Methods: We use T1-weighted brain images from the UK Biobank dataset (N=36,598), subjected to minimal processing: skull stripping, bias correction, and Montreal Neurological Institute (MNI) template registration. Images are downsampled to 96x96x96 voxels. We utilize randomly initialized Vision Transformer (ViT) and ‘DenseNet-121’ Convolution Neural Network (CNN) models, referred to as Vanilla ViT and Vanilla CNN. We conduct two-stage experiments consisting of pre-training and fine-tuning stage (Figure 1). In the pre-training stage, we pre-train ViT models for sex classification (ViT w.SEX) and age
estimation (ViT w.AGE). In the fine-tuning stage, we perform three binary classification tasks: biological sex, chronological age group (68 – 82 vs. 44 – 61), and high vs. low alcohol use. Four models: ViT w.SEX, ViT w.AGE, Vanilla ViT, and Vanilla CNN are trained per task across sample sizes from 200 to 7,000. We evaluate model performance on a holdout set (N=3,055) using balanced accuracy (BACC). Lastly, we apply Chefer’s feature visualization method to obtain ViT classification relevance feature values and overlay normalized mean values of true positive samples onto the MNI templates.

Results: After pre-training, ViT w.SEX achieved BACCs of 98.89% and 98.84%, and ViT w.AGE showed mean absolute errors of 2.94 and 2.88 in validation and holdout sets, respectively. Figure 2 (a) shows the model performance of three prediction tasks on the holdout set after fine-tuning. ViT w.SEX and ViT w.AGE outperformed other models in Sex and age group predictions, respectively. In alcohol consumption prediction, ViT w.SEX performed better than Vanilla ViT in small sample sizes (200 to 1,000). Also, ViT w.SEX reaches its best BACC of 61.53% in training size 7,000. We observed different feature importance patterns for each model. Within each model, patterns are consistent across varying training sizes. Figure 2 (b) shows the feature visualization of the high alcohol use in training size 7,000. Notably, Vanilla ViT and ViT w.SEX have common features but also ViT w.SEX highlighted brain stem, right cerebellum, left corpus callosum, and left midcingulate cortex regions, setting it apart from Vanilla ViT.
Conclusions: We show that phenotype prediction strongly depends on the pre-training. The results of sex and age group prediction showed the importance of aligning pre-training tasks with target phenotypes. ViT w.SEX showed competitive results in alcohol consumption prediction, especially in smaller datasets. It may indicate that the prediction is confounded by sex. We provide feature visualizations of high alcohol use. The literature consistently reported associations between alcohol intake and alterations in grey matter volume of widespread areas such as the cerebellum, frontal, and temporal lobes, as well as various subcortical structures. Our findings echo these observations. ViT w.SEX may outperform Vanilla ViT based on the distinct highlighted features. We demonstrate that the effectiveness of in-domain pre-training can vary based on factors such as the size of the fine-tuning dataset, and the relationship between the pre-training and target phenotypes.

References

Figure 2: Model performance and feature visualization on the holdout set. (a) Model performance - results of three prediction tasks. Larger sample sizes enhance balanced accuracy and tighten confidence intervals in sex and age group predictions, affirming increased precision for true population estimates. In contrast, smaller changes in the confidence interval occur with alcohol consumption as the sample size increases. Vanilla CNN exhibits superior performance over Vanilla ViT for sex and alcohol consumption predictions in small sample sizes. In contrast, Vanilla ViT showed a competitive model performance against Vanilla CNN in age group prediction. All values are reported as balanced accuracy with corresponding 95% confidence intervals. (b) Feature visualization - high alcohol use interpreted from ViT w.SEX and Vanilla ViT in training size 7,000. There are common features strongly highlighted in the left superior temporal gyrus region and less highlighted in the right pre-central gyrus for both models. All visualizations are displayed with one sagittal, coronal, and axial cross-section of the images. Images are oriented in RAS+ orientation. ViT w.SEX: ViT pretrained on sex classification, ViT w.AGE: ViT pretrained on age estimation, Vanilla ViT: Randomly initialized ViT, Vanilla CNN: Randomly initialized Convolution Neural Network, MNI: Montreal Neurological Institute, L: Left, R: Right, P: Posterior, A: Anterior, I: Inferior, and S: Superior.

Poster No 1373

Probabilistic prediction of cognitive impairment in continuous time for confidence quantification

Bruno Hebling Vieira¹, Dorothea Floris², Camille Elleaume³, Franziskus Liem⁴, Gaël Varoquaux⁵, Nicolas Langer¹
¹University of Zurich, Zurich, Switzerland, ²Methods of Plasticity Research, Department of Psychology, University of Zürich, Zürich, Switzerland, ³University of Zurich, Zurich, Zurich, ⁴ETHZ, Zurich, Switzerland, ⁵SODA, Inria, Paris, France

Introduction: Machine learning models have been employed to great success in the prediction of cognitive impairment from demographic and familial risk-factors and imaging derived phenotypes (IDPs). Using MRI-based markers of brain atrophy, it is possible to obtain accurate continuous time classification of MCI and dementia patients¹, as well as predict subjects’ trajectories in different staging and screening instruments²³. To date most models have been trained to give point-predictions in fixed time windows, despite the added benefits of probabilistic prediction and continuous time trajectories, such as the assessment of confidence. This provides adjustable decision thresholds with guarantees for future translation of such models into actionable insights. In this work, we implement continuous time probabilistic prediction of cognitive impairment from brain regional morphometry and covariates.

Methods: We employed T1w MRI data from ADNI (1, 2, GO, 3) for training and validation, while external testing was performed on images from OASIS⁴⁻⁵ (3, 4). FreeSurfer 7.3.2 morphometry estimates were used as IDPs (see Figure 1.A). We predicted Clinical Dementia Rating (CDR) Sum of Box Scores (SOB)⁶ scores from 4 sets of inputs: (1) IDPs (fs2cdr), (2) other CDR session (cdr2cdr), (3) both an IDP session and a different CDR session (fscdr2cdr), (4) covariates only (cov2cdr). Modeling was performed with gradient boosted decision trees from LightGBM (4.0.0), well suited for unstructured tabular data⁷ in Python (3.10.2), predicting the level of six CDR Box Scores. Covariates were included in all models, including patients’ current age, sex, APOE2 and APOE4 allele counts, educational attainment, MRI scanner field strength, and the time difference(s) between the input and output time (see Figure 1.A-B). We compared probabilistic expectations to a regression model that predicts the CDR-SOB directly in the same settings as before, to identify potential performance degradation in the probabilistic model. We evaluated the calibration of predicting impairment in the future, i.e., p(CDR-SOB>0), to assess if the model is over- or under-confident in identifying abnormal cognition. Biological validity was assessed by the feature importance for the prediction of each CDR Box Score (see Figure 2).
Results: Probabilistic models maintain good performance for point-predictions, on the same level as direct regression models. In short time-windows, up to 5 years in the future, present CDR provides the best predictions of future CDR according to the observed Pearson correlation between true and predicted CDR-SOB. Approximately 5 years in the future onwards, the IDP-derived model (fs2cdr) surpasses the CDR-only model (cdr2cdr). Including both CDR and IDPs (fs2cdr) is optimal at all time scales (see Figure 1.C). We detected underestimation (in red), and overestimation (in blue) of the probability of impairment (see Figure 1.D). This information can be used to recalibrate the underlying model in future work. The performance of point-predictions from probabilistic models can be explained by biological heterogeneity underlying different CDR Box Score domains. Figure 2.A-B show feature importance for each CDR Box Score. Overall, highlighted regions resemble atrophy patterns observed in Alzheimer’s. The left hippocampal volume is highly correlated with verbal episodic memory, while the right hippocampus volume correlates with spatial memory in older subjects. High spatial similarity between importance scores can be explained by the positive correlation between Box Scores, shown in Figure 2.C.
Conclusions: IDPs provide optimal performance to predict cognitive impairment in longer time scales. Probabilistic predictions maintain accuracy of point-predictions with the benefit of confidence quantification. This work represents a significant step towards improving the translation of machine learning models into actionable insights, to enhance research on clinical trials and personalized medicine.

References

Poster No 1374

Functional gradient boosting predicts trajectories of cognitive impairment from brain morphometry

Bruno Hebling Vieira¹, Camille Elleaume², Nicolas Langer¹

¹University of Zurich, Zurich, Switzerland, ²University of Zurich, Zurich, Zurich

Introduction: The literature has shown that quantifiable MRI-markers of brain atrophy are highly predictive for future classification between cognitively normal (CN) individuals and Alzheimer’s disease dementia (AD)¹ patients. This holds significant promise for prognostic applications, particularly in the recruitment phase of clinical trials targeting pre-clinical and subclinical stages of dementia². However, cognitive impairment occurs along a continuum, not as discrete diagnostic categories. Our previous work has shown that structural MRI adds information to a model predicting the yearly rate of change in CDR-SOB and MMSE³. While approximating the trajectory of cognitive impairment as a linear decline is valid for small intervals, it breaks down at long intervals, since the actual evolution follows a non-linear trajectory⁴. Due to the sparsity of longitudinal data, accurately estimating non-linear trajectories for individual participants becomes a challenging task. To test the effectiveness of different trajectory classes in the prediction of future cognitive impairment we present a method that can accommodate (non-)linear trajectories independent of the number of samples per participant in a cohort. Our approach involves estimating a versatile class of ‘functions’ aimed at best approximating the trajectories of participants’ scores from features such as brain imaging features and risk factors. We employed a large-scale dataset (ADNI) to train three distinct models for predicting CDR-SOB trajectories using regional brain morphometry. We compared the performance of a linear functional, an inverse cloglog functional, and a direct regression that incorporates time as a feature.

Methods: Features for modelling CDR-SOB trajectories were risk factors (i.e., age, sex, educational attainment, APOE2 and APOE4 allele counts), confounders (i.e., MRI magnetic field strength), covariates (i.e., the time between the input and output sessions in the direct regression model) and imaging derived phenotypes (IDPs). IDPs were obtained from FreeSurfer, including cortical thickness and surface area from 148 regions in the Destrieux atlas, and volume from 46 non-neocortical regions. Data from ADNI (1, 2, GO, 3) were used for training and validation. We split ADNI into a training set comprising data of 80% of the subjects and a validation set containing the remaining 20% subjects. External validation relied on the independent dataset OASIS (3,4)⁵ (see Figures 1.A-B). We estimated a linear trajectory model, outputting two parameters only, and two non-linear trajectory models, including an inverse cloglog functional with a Beta likelihood, and a direct non-parametrized regression functional (see Figure 1.C-E).

Results: All three models display a similar level of performance in ADNI and generalize to OASIS (see Figure 2.A-B,D). The models are overly conservative, however, and tend towards flat predictions and underestimation of CDR-SOB in the case of AD due to regression-to-the-mean, which is visible in Figure 2.C. The MAE increases in longer time windows, with the best models reaching approximately 3 for AD patients, and 1 for CN individuals (see Figure 2.D). Explicit parametrization of predictions can be used to estimate rates of decline, age of onset and phase transition, and integrate prior knowledge, e.g., the inverse cloglog function is bounded between 0 and 18, as is the CDR-SOB. Direct regression can also incorporate monotonicity constraints in features, but in our experiments, it did not result in better models. Future research will investigate other parametrizations as well as other likelihood functions.
Overview of the study procedure. (A) Input features, including covariates and FreeSurfer IDPs. The time between sessions only affects the direct regression model, and not the parametrized functional models. (B) Total number of data available for training, validation and testing. (C) Different functional models were trained on ADNI data to predict CDR-SOB trajectories from brain regional morphometry estimates and covariates, including an inverse cloglog functional, a linear functional and a direct regression taking the time between the imaging session and the CDR session as an additional input. (D) The model is optimized to provide a good approximation of all CDR-SOB values available for the given subject at once. In the case of the linear trajectory, only two outputs are necessary to fully specify the functional, \(\{r_0, r_1\} \), assuming a Gaussian likelihood with constant variance. In the case of the inverse cloglog trajectory, the mean function is given by \(\{r_0, r_1\} \) and a Binomial likelihood is assumed. The direct regression model results in a non-parametric functional solution per input. (E) Example of real predictions and true CDR-SOB trajectories are shown from a 70 years old subject in OASIS. The gray area represents the past, in relation to the MRI session.

MAE (A) and relative MAE (B) according to both the age at the MRI session and the time to the target CDR session (diagonal lines show the age at the CDR session), across all data points. Relative MAE is computed as a percentage from the naive baseline model, which consists of the expected CDR-SOB for a given age in ADNI data. All models demonstrate performance better than the baseline model. (C) Residuals for the three models in the earliest image available of cognitively normal (CN, n=477) participants and confirmed primary Alzheimer’s disease dementia (AD, n=391) patients in OASIS, as a function of the time since the MRI session. Red denotes overestimation of the expected CDR-SOB and blue denotes underestimation. MAE is estimated as a function of time according to a locally estimated regression (LOESS). (D) The MAE curves from (C) are shown, superimposed on boxplots of absolute errors computed every 6 months into the future, with the y-axis limited to 5 to ease visualization. The linear and the inverse cloglog functionals provide consistently better predictions than the baseline for both AD and CN participants in several time windows.
Conclusions: Our approach enables the prediction of (non-)linear trajectories of cognitive impairment, independent of the number of data points per subject. Non-linear trajectory models did not outperform the linear functional model in the prediction of CDR-SOB in the future from IDPs.

References

Poster No 1375
Meta-matching to translate phenotypic predictive models from big to small data on structural MRI

Naren Wulan1,2,3, Lijun An1,2,3, Chen Zhang1,2,3, Ru Kong1,2,3, Pansheng Chen1,2,3, Danilo Bzdok4,5, Simon Eickhoff6,7, Avram Holmes8, B. T. Thomas Yeo1,2,3,5,10

1Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, NUS, Singapore, Singapore, 2Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore, 3N1 Institute for Health & Technology, National University of Singapore, Singapore, Singapore, 4McConnell Brain Imaging Centre (BIC), Montreal Neuro, McGill Universityygical Institute (MNI), Montreal, QC, Canada, 5Mila – Quebec Artificial Intelligence Institute, Montreal, QC, Canada, 6Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany, 7Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Jülich, Germany, 8Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, 9Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore, 10Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States

Introduction: A central goal in neuroscience is understanding how brain imaging is associated with behavior. Structural MRI has been used to make individualized predictions in a variety of neurological and psychiatric disorders (Arbabshirani et al., 2017; Bhagwat et al., 2019; Cohen et al., 2021) due to its good contrasts. However, the prediction performance is strongly limited by a small sample size for many current MRI studies (Kharabian Masoumi et al., 2019; Poldrack et al., 2020; He et al., 2020). By transferring knowledge from large-scale source datasets (e.g. UK Biobank) to small target datasets, meta-matching has greatly improved prediction performance in functional MRI (He et al., 2022). Here, we tailored meta-matching approaches to predict new phenotypes in small boutique datasets with structural MRI.

Methods: Our study departed from the UK Biobank (N=36,461, 67 phenotypes; Alfaro-Almagro et al., 2018), HCP-YA (N=1017, 35 phenotypes; Van Essen et al., 2013), and HCP-Aging (N=656, 45 phenotypes; Bookheimer et al., 2019). We transferred models pretrained from meta-training set to meta-test sets. For within UK Biobank analysis, we randomly split UK Biobank dataset into meta-training set (N=26573, 33 phenotypes) and meta-test set (N=9888, 34 phenotypes). There is no overlap between participants or phenotypes across meta-training and meta-test sets. On meta-test set, K participants (K-shot, where K had a value of 10, 20, 50, 100, and 200) were randomly selected to mimic traditional small sample size studies, while the remaining participants in the meta-test set served for evaluation. Each random K-shot split was repeated 100 times to ensure stability. For cross-dataset analysis, the UK Biobank served as a meta-training set, while HCP-YA and HCP-Aging served as meta-test sets separately. We adopted meta-matching by pretraining a 3D CNN model (Peng et al., 2021) on the meta-training set structural brain imaging to improve phenotypic prediction performance on meta-test sets (Figure 1). For baseline approaches, we considered the elastic net and direct transfer learning algorithm (Figure 1). The input of elastic net was morphometric measures (volumes and thickness from cortical and/or subcortical ROIs by FreeSurfer); the input of deep learning approaches is T1 images affine transformed to MNI152 standard space.

Results: Figure 2 (A) shows the prediction accuracy (Pearson’s correlation) across all test phenotypes on the UK Biobank meta-test set. The boxplots represent 100 repetitions for K-shot. We can observe that meta-matching-based approaches (meta-matching finetune and meta-matching stacking) can significantly outperform the Elastic net baseline and direct transfer
learning methods (for every K number). The previous experiment results (Figure 2 (A)) suggested that meta-matching-based methods can perform well when transferring within the same dataset (e.g. UK Biobank). To demonstrate the generalization ability of meta-matching-based methods, approaches are also applied to the meta-test set in the HCP-YA dataset Figure 2 (B), and the HCP-Aging dataset Figure 2 (C) respectively. Figure 2 (B) and Figure 2 (C) show that the meta-matching-based methods can significantly outperform baseline methods in most cases when transferring from the meta-training dataset (UK Biobank) to the meta-test dataset (HCP-YA or HCP-Aging).

Conclusions: We adopted meta-matching from functional to structural imaging and achieved superior performance over elastic net and direct transfer learning on small datasets including HCP-YA and HCP-Aging. Our results showed the great potential of meta-matching framework in structural MRI-based behavior predictions.
ABSTRACTS

References

Poster No 1376

Brain-based predictions of cardiovascular risk factors in midlife populations at risk of dementia

Bolin Cao1,2, Qing Qi1,2, Feng Deng1,2, Maria-Eleni Dounavi3, Graciela Muniz-Terrera4,5, Paresh Malhotra6,7, Ivan Koychev8, John O’Brien4, Craig Ritchie4,5, Brian Lawlor1,2, Lorina Nacc1,2

1Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland, 2Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland, 3Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK, 4Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK, 5Department of Social Medicine, Ohio University, Ohio, USA, 6Department of Brain Science, Imperial College London, London, UK, 7UK Dementia Research Institute Core Research and Technology Centre, Imperial College London and the University of Surrey, London, London, UK, 8Department of Psychiatry, Oxford University, Oxford, UK, 9Scottish Brain Sciences, Edinburgh, UK

Introduction: Dementia, particularly Alzheimer’s disease (AD), is a growing public health challenge. The progression of AD underscores the critical importance of midlife as a period for preventive intervention1-3. As dementia is a heterogeneous neurodegenerative condition, single risk factors are inadequate for accurately identifying people who are most likely to develop dementia4-6. Instead, multifactorial risk scores, like the cardiovascular risk factors, aging, and dementia (CAIDE) risk score5, encompassing cardiovascular (blood pressure, cholesterol, body mass index, and physical inactivity) and non-modifiable risk factors (age, sex, and APOE ε4 genotype), are crucial for dementia risk estimate. However, the underlying functional brain architecture correlating with these risk factors is poorly understood. This study seeks to bridge this gap through network-based statistic (NBS)-Predict6, a novel predictive model aiming to identify neuroimaging biomarkers for dementia-related risks in midlife, thus aiding in personalized prevention and intervention strategies.

Methods: Resting-state fMRI imaging, CAIDE, cardiovascular and non-modifiable risk factors, and a lifetime of experiences questionnaire (LEQ) data were collected in 585 (207/378 female/male) healthy participants aged 40-59 years (mean = 50.9) enrolled in the PREVENT-Dementia study7-9 who had usable MR data. Following standard preprocessing procedures, the Dosenbach atlas10 was utilized to extract mean time series and construct functional connectivity (FC) matrices for each participant. We applied the NBS-Predict model to predict the CAIDE, cardiovascular, and non-modifiable risk factors scores based on the whole-brain FC (Figure 1). Specifically, our analysis employed a linear support vector machine characterized by 10-fold cross-validation (repeated 10 times), with feature selection at p<0.05 and 1000 permutations for statistical significance. Additionally, a hierarchical regression model was used to assess the impact of midlife LEQ score on the FC linked with cardiovascular risk factors. The LEQ specific and non-specific score, age, sex, years of education, and mean framewise displacement (FD) were set independent variables.

Results: NBS-Predict models significantly predicted the CAIDE (r=0.214, p<0.001), the cardiovascular (r=0.201, p<0.001), and the non-modifiable (r=0.237, p<0.001) risk factors scores. We observed similar FC patterns related to the CAIDE and cardiovascular risk factor score, with connections between the somatomotor and cingulo-opercular networks and within the
somatomotor network, as shown in Figure 2a. By contrast, the FC patterns for the non-modifiable risk score were different from those observed for CAIDE. Furthermore, we found that the non-specific score (physically, socially and intellectually stimulating mid-life activities) was positively associated with the FC of regions impacted by cardiovascular risk factors ($\beta=0.001$, $p=0.017$).

Conclusions: We found considerable overlap in FC patterns associated with CAIDE and cardiovascular risk factors in midlife, which were very different from those associated with non-modifiable risk. This suggests different neurobiological pathways for cardiovascular-based modifiable and other non-modifiable risk factors contributing to dementia risk in midlife. These results bolster the case for personalized approaches to dementia prevention decades before the onset of clinical symptoms. The research highlights the beneficial impact of an active and engaged lifestyle on brain health.
Brain Connectome Analysis for Alzheimer's Disease using Hodge Laplacian-based Edge Convolution

Joonhyuk Park1, Yechan Hwang1, Moo K Chung2, Minjeong Kim3, Guorong Wu4, Won Hwa Kim5

1Pohang University of Science and Technology (POSTECH), Pohang, Korea, Republic of, 2University of Wisconsin, Madison, WI, 3University of North Carolina at Greensboro, Greensboro, NC, 4University of North Carolina at Chapel Hill, Chapel Hill, NC

Introduction: Advancement of graph theory has facilitated the study of the human brain as a graph, depicting anatomical regions of interest (ROIs) as nodes and white matter connectomes as edges. Recent brain network analysis employs graph neural networks (GNNs) that utilize graph convolution on node signals, where the analysis is performed on the node measures and the actual connectomic features play an indirect role as a neighborhood selector. Thus, we propose to utilize Hodge-GNN that can capture the edge-wise relationship and allow the spatial graph convolution to directly employ the higher-order connectivity (i.e., connectivity between edges) of a graph as a simplicial complex via Hodge Laplacian. Our method was validated on Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and depicted Alzheimer’s Disease (AD) associated brain connectivities, which aligned with existing literatures. This research was supported by IITP-2019-0-01906 (AI Graduate Program at POSTECH), the Korea Health Industry Development Institute (KHIDI) HU22C0168 and HU22C0171, and National Research Foundation (NRF) NRF-2022R1A2C2092336.

Methods: Dataset. The dataset consists of structural brain connectivity data obtained from Diffusion Tensor Images (DTI) within ADNI using tractography. Each sample is given as a weighted graph with 160 nodes (148 cortical and 12 subcortical ROIs) from Destrieux atlas and the weights denote the number of white matter fiber tracts connecting different ROIs. The dataset is composed of 1824 subjects within Control (CN, N=844), Early and Late Mild Cognitive Impairment (EMCI, N=490 and LMCI, N=250), and AD (N=240) groups. Preliminaries. A simplicial complex comprises simplices, representing objects in varying dimensions within topological space, such as nodes (0-simplex), edges (1-simplex), triangles (2-simplex), and higher-dimensional counterparts. The mapping of simplices in the p-th dimension to their (p-1)-th dimensional boundaries is facilitated by a boundary matrix, a matrix form of the boundary operator. This boundary matrix plays an important role in defining the Hodge Laplacian, enhancing the representation of higher-order graph structures. Method. The proposed method is composed of two components: 1) graph transformation of adjacency matrix to Hodge 1-Laplacian, and 2) edge-wise graph convolution using the Hodge 1-Laplacian (Fig. 1a). The Hodge 1-Laplacian is defined through the 1-simplex boundary matrix (i.e., the incidence matrix), capturing topological features associated with 1-simplices not initially discernible in the original graph form. Consequently, utilizing Hodge 1-Laplacian for spatial graph convolution not only provides the connectivity over edges, but also assigns different weights on adjacent edges based on the graph topology (Fig. 1b). 4-way graph classification on Control, EMCI, LMCI and AD was conducted via 5-fold cross validation. The performance was measured using average accuracy, Macro-(precision, recall, and F1-score), and compared with various baseline methods.

References
Results: Experimental Results. Our method outperformed conventional graph classification methods\(^5,6\), spatial and spectral GNNs\(^5,6\), and edge convolution method\(^9\) in all evaluation measures (Fig. 2A). Also, the significant edges depicted from the AD analysis exhibited consistency with prior works of AD, highlighting connectomes within subcortical regions, temporal lobe, and frontal lobe (Fig. 2B,C)\(^3\). Interestingly, some of the depicted edges showed symmetry found in both hemispheres, such as pallidum-putamen and amygdala-hippocampus connectomes, which are known to play crucial roles in the development of AD\(^7,8\).
Conclusions: We proposed a novel graph edge-learning framework, Hodge-GNN, to extract edge-wise relationships within the spatial domain of graphs via Hodge 1-Laplacian. Hodge-GNN conducts graph convolution on edges directly, enabling an accurate classification of AD stages. The validation experiment proved effectiveness even in scenarios lacking node-wise measurements, a common reliance in most GNN methods, accompanied by interpretability that delineates specific connectomes and ROIs for effective AD analysis.

References

Poster No 1378
Decoding naturalistic auditory and visual information using high-density diffuse optical tomography
Morgan Fogarty¹, Kalyan Tripathy², Zachary Markow³, Jason Trobaugh¹, Joseph Culver²

Introduction: Decoding of naturalistic information from functional neuroimaging data has important neuroscience and clinical implications. Prior studies using functional magnetic resonance imaging (fMRI) have reconstructed visual (Nishimoto et al., 2011) and language (Tang et al., 2023) from neural responses. However, the physical constraints of fMRI make some natural studies and widespread application impractical. High density diffuse optical tomography (HD-DOT) is an optical imaging modality that uses many overlapping light measurements to reconstruct images similar to fMRI (Eggebretcth et al., 2014). HD-DOT has a quiet, open scanning environment, and in some cases portability, allowing for a range of decoding studies. Here, we evaluate the performance of decoding audiovisual movie clip identity through a template-matching with HD-DOT data. This work establishes the feasibility of decoding complex auditory and visual stimulus information from optical neuroimaging data.

Methods: Our HD-DOT system has 128 sources and 125 detectors distributed across posterior, lateral, and dorsal surfaces of the head with a grid spacing of 1mm. Highly sampled adults (n=3, 20-31 years old) watched a library of 20, 5-minute animated audiovisual movie clips twice each over 5 imaging sessions. A spatiotemporal template-matching approach was selected to decode the clip identity based on the HD-DOT data (Tripathy et al., 2021). Data from each session was divided into a template run and test run with one viewing of each movie clip in each half. The voxel-wise Pearson correlation coefficients were computed between the test data and the template data for each clip and averaged across the voxels to determine the mean template correlation. Decoded clip identity was assigned based on the maximum correlation between the templates and test run. Confusion matrices were generated by tracking the number of times that each test clip was decoded as each of the possible options across all imaging sessions was included in the analysis. Mean decoding accuracy was reported as the total percentage of trials across all sessions that were decoded correctly. To assess factors that impact decoding performance, the number of templates and clip duration was varied, and decoding accuracy reevaluated for each parameter.

Results: Participants viewed four movie clips twice in each imaging session. Cortical responses between independent viewings of every possible pairing of clips reveals strong correlations between runs in which the participant was presented the same movie clip (Fig 1A). Averaging inter-run correlation maps across all possible pairings of matched and mismatched movies illustrates that movies evoke reproducible, clip-specific patterns of brain activity (Fig 1B). The clip identity was decoded through template matching (Fig 1C) and aggregated across sessions and subjects (Fig 1D). The bright main diagonal of the confusion matrix illustrates that the decoded clip usually matched the clip that was presented with an accuracy of 92.3±4.4%. Decoding improved with increased clip duration but was already significantly above chance with as little as 15 seconds of data (Fig 2A). Using a fixed clip duration of 45 seconds, the number of decoding choices was varied between 4 and 16. Decoding
accuracy decreased with an increasing number of templates but remained well above chance (Fig 2B). Varying both clip duration and the number of templates across all sessions (Fig 2C-E) resulted in accuracies greater than chance for decoding 8 clip segments (90 second clip, accuracy = 76.0±5.0%, chance = 12.5%), 16 clip segments (45 seconds clip, accuracy = 53.4±6.3%, chance = 6.25%), and 64 clip segments (15 second clip, accuracy = 23.3±4.2%, chance = 3.13%).

Conclusions: This work illustrates that complex, naturalistic information can be decoded from HD-DOT data. These results encourage further studies applying more intricate decoding algorithms to HD-DOT data, for instance to reconstruct novel scenes from optical neuroimaging data.

References
The magnitude of prediction error for behavior relates to sociodemographic and scan factors

Jingwei Li1,2, Jianxiao Wu1,2, Simon Eickhoff2,1, B. T. Thomas Yeo3,4, Sarah Genon1,2

1Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany, 2Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, 3CSC, TMR, ECE, WisDM, ISEP, National University of Singapore, Singapore, Singapore, 4Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA

Introduction: MRI-based prediction of behavioral phenotypes is a promising approach for individualized diagnosis and treatment of mental health. However, this field lacks generalizability: some (groups of) individuals are generally misclassified or show relatively large prediction errors1-3. Although it has been suggested that misclassified people tended to deviate from the stereotypical patterns observed in correctly classified participants, the range of sociodemographic and neuroimaging-specific factors relating to prediction errors is unknown. In this study, we investigated the associations between the prediction error magnitude of multiple behavioral domains and a broad range of variables in developmental and young adult cohorts.

Methods: We focused on three scan-related and five sociodemographic variables of interest in three open datasets: the Adolescent Brain Cognitive Development cohort (ABCD; N = 5351; 9-11y; 36 behavioral measures), the Human Connectome Project -Young Adults (HCP-YA; N = 948; 22-37y; 51 behavioral measures), and the Human Connectome Project – Development (HCP-D; N = 455; 8-22y; 22 behavioral measures). The preprocessing of resting-state fMRI followed our previous work (ABCD & HCP-YA: 1; HCP-D: 7), resulting in functional connectivity (FC) matrices across 400 cortical areas8 and 199 (for ABCD & HCP-YA) / 5410 (for HCP-D) subcortical areas. Similarly, kernel ridge regression (for ABCD & HCP-YA) and support vector regression (for HCP-D) were used to predict the behavioral measures from FC. Age, gender, education (parental education for ABCD), intracranial volume, and head movement (and family income for HCP-YA) were regressed from behavioral scores and FC. For simplicity, behavioral measures were clustered within each dataset based on their similarities in prediction errors (Fig. 1A). Prediction errors were averaged within each behavioral cluster. The associations between the averaged prediction errors and each continuous covariate were examined by Pearson’s correlation. The associations of categorical covariates with prediction errors were quantified by a two-sample t-test (gender) and one-way ANOVA (other covariates). To control the effect of dataset size, we randomly subsampled 100 times in ABCD and HCP-YA to match HCP-D.

Results: In scan-related factors, head movement was widely correlated with multiple behavioral domains across datasets (Fig. 1B). In developing cohorts (ABCD, HCP-D), head size, captured by intracranial volume, was significantly negatively correlated with prediction errors of Child Behavior Checklist (CBCL), prodromal psychosis, and emotion recognition. In sociodemographic factors, consistent with our previous work1, ethnicity was strongly associated with prediction errors for most of the behavioral domains in ABCD and HCP-YA. In addition, (parental) education and family income were even more broadly associated with prediction errors of almost all behavioral domains across all datasets. Age was correlated with prediction errors in both developing cohorts. The associations observed in the full samples still hold in subsamples. Examples of the observed associations are illustrated in Fig. 2.

Conclusions: FC-based behavioral prediction errors were broadly associated with many scan-related and sociodemographic factors in young populations. More associations were observed for the behavioral domains that were more difficult to predict, such as CBCL and prodromal psychosis in ABCD and emotion recognition in the two HCP datasets. It suggests that the predictive models might learn more information from non-neurobiological factors to predict such behavioral measures. More associations were observed in ABCD compared to the other two datasets, possibly related to the higher diversity of this dataset. In sum, this study importantly contributes to a better understanding of the insufficient prediction power and low generalizability in the field.
(A) Group of behavioral measures clustered by similarity in prediction error

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Correlation with prediction errors > 0.4</th>
<th>Correlation with prediction errors > 0.3</th>
<th>Correlation with prediction errors > 0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short delay recall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading (phonemic)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual-spatial accuracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analexia/Depression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total neurocognitive symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social cognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive/Negative Feelings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotion Recognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotion Recognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long delay recall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystallized cognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual-spatial efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withdrawal/Depression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predominantly pyknic symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social cognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social cognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sadness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotion Recognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticipation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotion Recognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picture vocabulary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotion Recognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall cognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thought problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loneliness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotion Recognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid cognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggressive behavior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived Stress</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotion Recognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attention problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attention problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotion Recognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Role-taking behavior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotion Recognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mania</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friendliness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived Rejection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotional Support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived Visual acuity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(B) Association with behavioral prediction errors in full samples

For ABCD and HCP-V1, the significant associations were confirmed by random subsampling.

For Figure 1, (A) Detailed names of behavioral measures included in each behavioral cluster. To simplify the analysis, we grouped the behavioral measures that shared similar patterns in the prediction errors together. Later on, we only investigated the association between the averaged prediction errors for each behavioral cluster and covariates. (B) Associations between prediction errors and covariates in the full samples. For continuous covariates, e.g. age, head size (i.e. intracranial volume), both the Pearson's correlation and the corresponding p value are reported. For a binary covariate (sex/gender), two-sample t-test was used to test if significant differences in behavioral prediction error existed between the two covariate categories. For non-binary categorical covariates, e.g. education, one-way ANOVA was used to determine if significant differences in prediction error existed across covariate categories.
References
Introduction: Our knowledge of the organisation of the human brain at the population-level is yet to translate into power to predict functional differences at the individual-level, limiting clinical applications, and casting doubt on the generalisability of inferred mechanisms. It remains unknown whether the difficulty arises from the absence of individuating biological patterns within the brain, or from limited power to access them with the models and compute at our disposal.

Methods: Here we comprehensively investigate the resolvability of such patterns with data and compute at unprecedented scale. Across 23,810 unique participants from UK Biobank, we systematically evaluate the predictability of 25 individual biological characteristics, from all available combinations of structural and functional neuroimaging data. Over 4526 GPU*hours of computation, we train, optimize, and evaluate out-of-sample 700 individual predictive models, including fully-connected feed-forward neural networks of demographic, psychological, serological, chronic morbidity, and functional connectivity characteristics, and both uni- and multi-modal 3D convolutional neural network models of macro- and micro-structural brain imaging.

Results: We find a marked discrepancy between the high predictability of sex (balanced accuracy 99.7%), age (mean absolute error 2.048 years, R² 0.859), and weight (mean absolute error 2.609Kg, R² 0.625), for which we set new state-of-the-art performance, and the surprisingly low predictability of other characteristics (Figure 1). Neither structural nor functional imaging predicted an individual’s psychology better than the coincidence of common chronic morbidity (p<0.05). Serology predicted common morbidity (p<0.05) and was best predicted by it (p<0.001), followed by structural neuroimaging (p<0.05) (Figure 2).

Conclusions: Our findings suggest either more informative imaging or more powerful models will be needed to decipher individual level characteristics from the human brain. We make our models and code openly available.
AutoMatic MRI-based Prognostic Prediction After Acute Ischemic Brain Stroke

Noam Rotenberg, Brian Caffo, Andreia Faria

Johns Hopkins University, Baltimore, MD

Introduction: Stroke is a leading cause of long-term disability. In addition to the obvious benefits to patients and families, early prognosis prediction can assist in triage, precision care, and provide benchmarks for clinical interventions. Previous studies have tried to predict mRS-90, a common measure of outcomes 90 days after stroke, using clinical and imaging features, but they encountered challenges related to their limited and homogeneous samples, and subjectivity of the lesion evaluation.

We developed a comprehensive model to predict mRS-90 in patients with acute ischemic stroke, based on automatically extracted features of the acute injury. This model adds up to the “Acute stroke Detection and Segmentation” tool, ADS, a public and user-friendly toolbox, accessible to non-image experts clinical researchers, providing objective quantification of acute ischemic strokes in real time.

Methods: The sample includes 1154 patients with MRIs with evidence of ischemic stroke in the diffusion weighted images (DWI), and recorded mRS-90, a subset of our public dataset. Each patient’s imaging data was represented by a quantitative feature vector (QFV) that reflects the ratio of injury in brain structures: basal ganglia, deep white matter (WM), internal capsule, cerebellum, insula, brainstem, thalamus, and occipital, parietal, temporal, and frontal lobes, plus injury volume and hemisphere(s) affected. A variety of machine learning models (Table 1), were trained (n = 800), tuned, and tested (n = 354).

In order to make our results both interpretable and comparable with previous studies we evaluate efficiency of our models in two paradigms: 1. mRS per se: We computed: a) Flexible mRS: accuracy, where predicted mRS ±1 compared to the ground truth mRS is considered true positive; and b) 3-level mRS: accuracy, where predicted mRS and true mRS are mapped into three groups: mRS 0-2 (not affected or slightly disabled), 3-4 (moderately disabled), 5-6 (severely disabled or dead). 2. Binary statistics: predicted and true mRS are mapped into two groups: mRS-90 <3.5 and > 3.5 (good and bad prognosis, respectively). AUROC, F1, sensitivity, and specificity were calculated. This approach makes our results comparable with those of previous studies, which commonly use a binary paradigm, and enable us to see whether the prediction efficiency differs for patients mildly or severely affected. Feature Analysis was performed with gradient boosting forest feature importance in three models, including 1) all patients; 2) patients with small strokes (below-median (5.8 mL) injury volume); and 3) patients with large strokes, which are known to exhibit more variable prognosis. Stratifying by lesion volume aims to reduce the effect of total lesion volume and to reveal the regions that mostly influences prognosis.
Results: Overall, all models had similar accuracy, both for the “per se” mRS and the binary prognostic prediction, and all had higher specificity than sensitivity (table 1). These results rival with those reported in previous studies for binary prognostic classification\(^1\)\(^-\)\(^3\). This is encouraging since the models were trained and tested in large and independent samples of real clinical data. The feature analysis (figure 1) shows that stroke volume was the most important feature in the model trained with all the patients, as expected. In small strokes, as the importance of the total injury volume diminishes, the importance of lesions in regions that are crucial for vital functions (e.g., brainstem) or in association areas (frontal lobe, WM) increases. Within the large strokes, the injury of regions within the posterior circulation (occipital and temporal lobe, thalamus, and cerebellum) lead to predict worse prognosis.

Conclusions: Our results show that prognosis can be reasonably predicted by lesion location automatically calculated from brain MRIs. This process enables lesion-functional modeling and accessible prognostic prediction for patient stratification and personalized care.

![Feature Importances after Stroke Size Stratification](image)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Flexible mRS</th>
<th>3-classes mRS</th>
<th>AUROC</th>
<th>F1 score</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>0.61</td>
<td>0.65</td>
<td>0.75</td>
<td>0.54</td>
<td>0.58</td>
<td>0.83</td>
</tr>
<tr>
<td>Linear</td>
<td>0.61</td>
<td>0.64</td>
<td>0.74</td>
<td>0.54</td>
<td>0.49</td>
<td>0.88</td>
</tr>
<tr>
<td>Linear</td>
<td>0.6</td>
<td>0.64</td>
<td>0.73</td>
<td>0.54</td>
<td>0.35</td>
<td>0.85</td>
</tr>
<tr>
<td>Bagged Linear</td>
<td>0.59</td>
<td>0.83</td>
<td>0.72</td>
<td>0.53</td>
<td>0.66</td>
<td>0.74</td>
</tr>
<tr>
<td>Bagged Linear</td>
<td>0.6</td>
<td>0.65</td>
<td>0.73</td>
<td>0.55</td>
<td>0.51</td>
<td>0.9</td>
</tr>
<tr>
<td>Support Vector</td>
<td>0.68</td>
<td>0.63</td>
<td>0.72</td>
<td>0.54</td>
<td>0.53</td>
<td>0.87</td>
</tr>
<tr>
<td>Radius Neighbors</td>
<td>0.55</td>
<td>0.64</td>
<td>0.73</td>
<td>0.55</td>
<td>0.63</td>
<td>0.8</td>
</tr>
</tbody>
</table>

References
Early Prediction of Long-term Cognitive Development Using Multimodal MRI in Infants Born Preterm

Nehal Parikh¹, Mekibib Altaye², Armin Allahverdy², Hailong Li², Beth Kline-Fath², Weihong Yuan², Abiot Yenealem Derbie¹, Lili He², Leanne Tamm²

¹Cincinnati Children’s Hospital, Cincinnati, OH, ²Cincinnati Children’s Hospital, Cincinnati, OH

Introduction: Cognitive impairment remains the most common long-term adverse outcome following preterm birth. Accurate diagnosis usually takes 3 to 5 years during which time we are missing an early critical window of neuroplasticity. Detection during this window would allow for early targeted interventions to enhance therapeutic efficacy. Our goal was to improve early prediction of cognitive development by term-equivalent age (TEA) by exploiting features from brain morphometry, structural connectivity (SC), and functional connectivity (FC) derived from structural MRI, diffusion MRI (dMRI), and resting state functional MRI (rsfMRI), respectively.

Methods: We studied a multisite regional cohort of 358 very preterm (VPT) infants born at or below 32 weeks’ gestational age from 5 Southwest Ohio NICUs (Cincinnati Infant Neurodevelopment Early Prediction [CINEPS] cohort). All infants were imaged at Cincinnati Children’s Hospital between 39 and 44 weeks postmenstrual age on the same 3T Philips scanner and 32-channel receiver head coil with the following identical sequences: dMRI: TE: 88 msec, TR 6972 msec, FA 90°, resolution 2×2×2 mm³, 36 directions; b-value 800 s/mm², MB factor 2; rsfMRI: TE: 45 msec, TR 893 msec, FA 90°, resolution 2.5×2.5×2.5 mm³, 400 volumes, MB factor 4; Axial T2w: TE 166 msec, TR 8,300 msec, FA 90°, resolution 1×1×1 mm³. Cognitive development was assessed with the Differential Ability Scales (2nd Edition) General Conceptual Ability (GCA) score at 3 years corrected age.

We used established pre- and post-processing pipelines and neonatal brain atlases from the Developing Human Connectome Project (dHCP) to generate brain volumes, cortical maturation metrics, SC and FC as previously described (Bastiani M. 2019; Kline JE, 2020; Kline JE, 2021). Missing data was handled via k-nearest neighbor imputation. We used two unsupervised approaches for feature selection/reduction from the nearly 20,000 MRI predictor variables: CONN, which generated six graph theory measures per modality for each of the 81 dHCP atlas regions of interest and non-negative matrix factorization (NMF), which decomposed these measures to 26 morphometry, 28 FC and 30 SC network components. Global efficiency from SC and FC and postmenstrual age at MRI scan were modeled separately. We selected one conventional MRI (cMRI; global brain abnormality score) and 10 known clinical predictors of cognitive development a priori (Table 1). Last, we applied support vector machine (SVM) to develop a multimodal model that included the above 86 independent variables to predict the GCA score.

We created 500 bootstrap datasets to evaluate model performance and correct for over-optimism per the TRIPOD guidelines (Moons KGM, 2015). To assess model fit, we calculated optimism-corrected values for R², root mean square error (RMSE), and difference between observed and predicted scores.

Results: The mean (SD) gestational age was 29.3 (2.5) and GCA score was 93.7 (20.0) for the 314 infants (88%) with follow-up data at or after 3 years CA (Table 1A). The 11 a priori selected clinical + cMRI predictors (Table 1) did poorly in predicting the DAS GCA score: R² 24.0%. The combined multimodal model achieved the highest accuracy with an optimism-corrected R² value of 64.3% (95% CI: 56.3, 72.3) (Table 1B). The predicted cognitive scores of the multimodal model were closely aligned with the observed scores (Fig. 1A); Approximately two-thirds of the predicted GCA scores were within +/- 6 points (1 SD) of the observed scores (Fig. 1B).
Table 1A. Maternal and infant clinical characteristics of children born preterm with long-term cognitive outcome data.

<table>
<thead>
<tr>
<th>Baseline Variables*</th>
<th>Preterm Infants (N=314)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histologic chorioamnionitis (moderate-severe)</td>
<td>47 (15.0%)</td>
</tr>
<tr>
<td>Hypertensive disorder of pregnancy</td>
<td>129 (41.1%)</td>
</tr>
<tr>
<td>Multiple gestation</td>
<td>115 (36.6%)</td>
</tr>
<tr>
<td>Gestational age, weeks, mean (SD)</td>
<td>29.3 (2.5)</td>
</tr>
<tr>
<td>Female sex</td>
<td>152 (48.4%)</td>
</tr>
<tr>
<td>Surgical necrotizing enterocolitis / intestinal perforation</td>
<td>16 (5.1%)</td>
</tr>
<tr>
<td>Postnatal sepsis</td>
<td>33 (10.5%)</td>
</tr>
<tr>
<td>Bronchopulmonary dysplasia</td>
<td></td>
</tr>
<tr>
<td>Grade 1</td>
<td>73 (23.3%)</td>
</tr>
<tr>
<td>Grade 2</td>
<td>48 (15.3%)</td>
</tr>
<tr>
<td>Grade 3</td>
<td>15 (4.8%)</td>
</tr>
<tr>
<td>Social risk score, median (IQR)</td>
<td>3 (1, 5)</td>
</tr>
<tr>
<td>Postmenstrual age at MRI scan, weeks, mean (SD)</td>
<td>42.8 (1.3)</td>
</tr>
<tr>
<td>Global brain abnormality score, median (IQR)*</td>
<td>6 (2.8)</td>
</tr>
</tbody>
</table>

*These clinical and conventional MRI variables were selected a priori for the SVM model; all values are n (%) unless otherwise noted.
*Based on Kiddokoro H, et al. (2013)

Table 1B: Prediction accuracy (optimism-corrected R^2) and root mean square error (RMSE) for each of the modalities independently and in combination.

<table>
<thead>
<tr>
<th>Modality</th>
<th>Optimism Corrected R^2 (95% CI)*</th>
<th>RMSE (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical variables</td>
<td>0.203 (0.088, 0.290)</td>
<td>17.99 (16.45, 19.30)</td>
</tr>
<tr>
<td>Conventional MRI (cMRI)</td>
<td>0.111 (0.014, 0.176)</td>
<td>18.99 (17.27, 20.38)</td>
</tr>
<tr>
<td>Clinical + cMRI</td>
<td>0.240 (0.141, 0.338)</td>
<td>17.53 (15.94, 19.11)</td>
</tr>
<tr>
<td>Morphometry</td>
<td>0.378 (0.261, 0.484)</td>
<td>16.82 (13.91, 19.85)</td>
</tr>
<tr>
<td>Structural connectivity (SC)</td>
<td>0.517 (0.423, 0.603)</td>
<td>14.44 (12.87, 16.22)</td>
</tr>
<tr>
<td>Functional connectivity (FC)</td>
<td>0.454 (0.342, 0.571)</td>
<td>15.59 (12.68, 18.06)</td>
</tr>
<tr>
<td>Morphometry+SC+FC</td>
<td>0.596 (0.513, 0.678)</td>
<td>13.07 (11.54, 14.52)</td>
</tr>
<tr>
<td>Clinical+cMRI+Morphometry+SC+FC</td>
<td>0.643 (0.563, 0.723)</td>
<td>11.94 (10.43, 13.24)</td>
</tr>
</tbody>
</table>

*All values are optimism-corrected after bootstrapping (Moons KGM, Ann Intern Med. 2015).
*NMF selected of 30 SC, 28 FC, and 26 morphometry components that were combined with 10 clinical and two structural MRI a priori selected variables that were added to the SVM model. GCA scores were imputed from the 5 yr. testing visits for 31 children with missing data at age 3.

Figure 1. A) Scatter plot of observed versus predicted cognitive scores (mean scores after bootstrap and optimism correction) and B) Histogram of difference between observed and predicted scores.
Conclusions: In a regional prospective cohort of VPT infants, we used multimodal advanced neuroimaging and machine learning to enable early prediction of long-term cognitive development. Our study generated data that is considerably higher in accuracy than current prognostic models. We aim to use this internally validated model to enable targeted risk stratification for interventions that are designed to enhance cognitive development in high-risk VPT infants.

References

Poster No 1383

Accurate, Early Detection of Cerebral Palsy Using Multimodal MRI at Term in Infants Born Preterm

Nehal Parikh1, Mekibib Altaye2, Armin Allahverdy2, Julia Kline3, Karen Harpster2, HaiLong Li2, JunQi Wang2, Abiot Yenealem Derbie4, Jean Tkach2, Beth Kline-Fath2, Stephanie Merhar2, WeiHong Yuan2, Lili He2

1Cincinnati Children’s Hospital, Cincinnati, OH, 2Cincinnati Children’s Hospital, Cincinnati, OH, 3National Institutes of Health, Bethesda, MD, 4Cincinnati Children’s Hospital, Cincinnati, OH

Introduction: Despite recent advances in early diagnosis of cerebral palsy (CP), accurate and timely detection remains elusive. Advances in quantitative MRI and machine learning technology appear promising to enable early, accurate prediction of CP. Our goal was to improve early CP prediction in preterm infants by exploiting advanced quantitative MRI biomarkers acquired at term-equivalent age.

Methods: We recruited a multisite regional cohort of 358 very preterm (VPT) infants born at or below 32 weeks’ gestational age from 5 Southwest Ohio Neonatal Intensive Care Units (Cincinnati Infant Neurodevelopment Early Prediction Study [CINEPS]). All infants were imaged at Cincinnati Children’s between 39 and 44 weeks postmenstrual age on a single 3T Philips scanner and 32-channel receiver head coil with the following identical sequences: dMRI: TE 88ms, TR 6972ms, FA 90°, resolution 2×2×2 mm3, 36 directions; b-value of 800 s/mm2; MB factor 2; rsfMRI: TE 45, TR 893ms, FA 90°, resolution 2.5×2.5×2.5 mm3; 400 volumes; MB factor 4; Axial T2w: TE 166 ms, TR 8300ms, FA 90°, resolution 1×1×1 mm3. CP was diagnosed at 2 years corrected age (CA) using the Amiel-Tison (1998) standardized neurological exam and the Gross Motor Function Classification System (GMFCS, Palisano RJ, 2000). We used established pre- and post-processing pipelines and neonatal brain atlases from the Developing Human Connectome Project (dHCP) to generate brain morphometry measures (volumes, cortical maturation), structural connectivity (SC) from diffusion MRI (dMRI), and functional connectivity (FC) from resting state functional MRI (rsfMRI) as previously described (Bastiani M, 2019; Kline JE, 2020; Kline JE, 2021). We used CONN to generate six graph theory measures per modality for each of the 81 dHCP atlas regions of interest. We used an unsupervised approach for feature selection/reduction from the nearly 20,000 MRI predictor variables. Specifically, we employed non-negative matrix factorization (NMF) to decompose these predictors into 7 network components each from morphometry, FC, and SC. We elected to include moderate-severe brain injury from conventional MRI (cMRI) and five clinically known predictors of CP a priori (Table 1). Last, we applied a support vector machine to develop a multimodal model that included the above independent variables to predict CP. We created 1,000 bootstrap datasets to evaluate model performance and correct for over-optimism per the TRIPOD guidelines (Moons KGM, 2015). To assess model fit, we calculated optimism-corrected values for sensitivity, specificity, and area under the receiver operating characteristic curve (AUC).

Results: There were no significant differences in the baseline clinical variables between the 307 VPT infants (86%) that returned for standardized CP testing at 2 years CA (shown in Table 1) and the 51 that did not (data not shown). 34 infants (11.1%) developed CP (GMFCS ≥1) of which 11 (3.6%) had moderate-severe CP (GMFCS≥2). The CP vs. non-CP groups differed in several clinical factors (Table 1). We observed moderate-severe injury on cMRI at term in 25 (8.1%) infants. The AUC was 0.657 (95% CI: 0.581, 0.730) for the clinical plus cMRI model. For the combined model that included clinical, cMRI, and quantitative MRI modalities, the AUC was 0.870 (0.818, 0.914), sensitivity was 86.0% (73.5, 96.4), and specificity was 88.0% (79.5, 96.0) for the prediction of any CP; the corresponding values for moderate-severe CP were 0.946 (0.859, 0.993), 93.4% (72.2, 100), and 95.8% (90.5, 99.7) (Table 2).
Conclusions: In a regional prospective cohort of VPT infants, we combined multimodal neuroimaging and machine learning to enable early, accurate prediction of CP that outperformed current statistical models. Our internally validated model can be immediately translated to enable targeted risk stratification for research studies following NICU discharge that are designed to prevent or reduce the severity of CP in high-risk VPT infants.
Artificial neural network in classification of traumatic brain injury using rs-fMRI and PET imaging

Faezeh Vedaei1, Najmeh Mashhadi2, Mahdi Alizadeh3, George Zabrecky3, Daniel A. Monti3, Nancy Wintering3, Andrew B. Newberg4, Feroze B. Mohamed3

1University of Pennsylvania, Philadelphia, PA, 2University of California-Santa Cruz, Santa Cruz, CA, 3Thomas Jefferson University, Philadelphia, PA

Introduction: Mild traumatic brain injury (mTBI) is a public health concern that may adversely affects person’s quality of life, thinking, memory and behavior. Most of the complications of mTBI are brain function alterations that impact on cognitive performance and in a long-term may lead to neurodegenerative diseases.1 Functional brain imaging including resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET) have been used to detect brain function abnormalities in brain disorders.2,3 While statistical group level analysis can provide spatial patterns of brain function at population level, these methods are not able to provide imaging signature of brain disorders that can be applied at single individual level. Machine learning (ML) algorithms including artificial neural network (ANN) have recently gained more popularity in medical image analysis due to their capability to learn complex representations of data.4 We aimed to develop automatic classification model using ANN and rs-fMRI and PET imaging to distinguish between patients at chronic stage of mTBI from healthy controls (HCs).

Methods: rs-fMRI and PET were acquired from 83 patients with mTBI and 40 HCs. Voxel-wise brain maps of rs-fMRI metrics including fractional amplitude of low frequency fluctuation (fALFF), degree centrality (DC), regional homogeneity (ReHo), functional connectivity strength (FCS), and voxel-mirrored homotopic connectivity (VMHC) generated for each subject using DPARSF_V5.0 after preprocessing steps. Also, PET data was processed using PETPVE12 toolbox running on MATLAB. ANN architecture was developed using autoencoder, several hidden layers of rectified linear unit (ReLU) function and the last layer of sigmoid function. Input features were generated applying Automated Anatomical Labeling (AAL) atlas and extracting the mean values of each measurement from 116 region of interest (ROI). The classification model was developed for single modality and multimodality measurements.5 The performance of the models was estimated via 5-fold cross validation (CV) using the receiver operator characteristic (ROC) curve analysis. Also, top 10 ROIs with the most contribution to the model prediction were extracted for each metric.6,7

Results: Classification performance analysis showed high scores for each single modality. However, the accuracy of classification improved using multimodality model that achieved the highest using multimodality of rs-fMRI and PET measurements (Table 1). The selected top 10 important features for all the metrics were among several main brain functional network including default mode network (DMN), sensorimotor network, visual cortex, cerebellum, and limbic system (Figure 1).

Conclusions: In the need to robust biomarkers discriminating patients with mTBI from HCs, our study for the first developed automatic classification model using deep leering (DL)-based architectures. We employed autoencoder to extract the extract hidden representations using unsupervised approach. We showed that each single modality can capture specific information from neurophysiology of mTBI providing comprehensive approach to study of brain function alteration in brain disorders including mTBI. Also, considering the complicated pathologic process of mTBI, multiple neuroimaging metrics may provide complementary information and can be investigated via multimodality classification models. Cognitive dysfunction that is accompanied with mTBI is linked with brain function alteration in specific brain areas. We have shown that brain regions located in the frontal, temporal, and parietal lobes, as well as brain regions located in the limbic system and visual cortex as well as cerebellum are among the most important features have the most contribution in model prediction.8-10 These results
suggest that DL-based classifiers might be extended to quantitative imaging biomarker providing a new avenue for prediction of individual patients in the clinical settings.

<table>
<thead>
<tr>
<th>Features</th>
<th>AUC</th>
<th>Accuracy</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>F1-score</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>87.95</td>
<td>91.67</td>
<td>98.75</td>
<td>77.14</td>
<td>94.21</td>
<td>90.31</td>
<td>98.75</td>
</tr>
<tr>
<td>fALFF</td>
<td>81.25</td>
<td>86.67</td>
<td>95.00</td>
<td>67.50</td>
<td>91.01</td>
<td>88.13</td>
<td>95.00</td>
</tr>
<tr>
<td>FCS</td>
<td>78.66</td>
<td>84.17</td>
<td>93.75</td>
<td>63.37</td>
<td>88.94</td>
<td>85.24</td>
<td>93.75</td>
</tr>
<tr>
<td>ReHo</td>
<td>75.13</td>
<td>80.83</td>
<td>91.32</td>
<td>58.93</td>
<td>86.71</td>
<td>84.42</td>
<td>91.32</td>
</tr>
<tr>
<td>VMHC</td>
<td>78.21</td>
<td>85.00</td>
<td>97.50</td>
<td>58.93</td>
<td>89.85</td>
<td>83.62</td>
<td>97.50</td>
</tr>
<tr>
<td>PET</td>
<td>72.04</td>
<td>79.17</td>
<td>92.65</td>
<td>51.43</td>
<td>85.85</td>
<td>80.49</td>
<td>92.65</td>
</tr>
<tr>
<td>rs-fMRI</td>
<td>92.32</td>
<td>94.17</td>
<td>97.50</td>
<td>87.14</td>
<td>95.82</td>
<td>94.55</td>
<td>97.50</td>
</tr>
<tr>
<td>rs-fMRI + PET</td>
<td>93.75</td>
<td>95.83</td>
<td>100</td>
<td>87.50</td>
<td>97.04</td>
<td>94.38</td>
<td>100</td>
</tr>
</tbody>
</table>

AUC, area under the receiver operator curve; DC, degree centrality; fALFF, fractional amplitude of low frequency fluctuation; FCS, functional connectivity strength; ReHo, regional homogeneity; VMHC, voxel mirrored homotopic connectivity; rs-fMRI, resting-state functional magnetic resonance imaging (rs-fMRI = DC + fALFF + FCS + ReHo + VMHC).

References
Efficient Synthesis of 3D sMRI for Schizophrenia Classification with Generative Adversarial Networks

Alexandra Reichenbach1, Sebastian King1, Yasmin Hollenbenders1

1Heilbronn University, Center for Machine Learning, Heilbronn, Baden-Württemberg

Introduction: Schizophrenia (SCZ) is a heterogeneous psychiatric disease lacking reliable biomarkers (Mohammadi, Rashidi, & Amooeian, 2018) despite genetic, blood, and brain alterations being linked to it. Automated decision support for diagnosing psychiatric diseases using deep learning (DL) classifiers based on structural magnetic resonance imaging (sMRI) of the brain is currently investigated. However, these classifiers typically require large datasets for training, which are not available for SCZ patients. To overcome this obstacle, we synthesize artificial data for SCZ patients and a healthy control (HC) group using generative adversarial networks (GAN) based on 193 3D sMRI images of SCZ patients and HC from the MCIC dataset (Gollub et al., 2013). Despite rapid developments in the field of generative models, synthesis of 3D MRI brain data for psychiatric diagnosis support has not yet been demonstrated.

Methods: Four GAN architectures based on a deep convolutional GAN (DC-GAN) are adapted to address the technical challenges arising from the specific use case and evaluated for their image synthesis capabilities (Fig. 1). Spectral normalization regularization (SN-GAN) deals with the vanishing gradients problem that often occurs for small sample sizes (Miyato, Kataoka, Koyama, & Yoshida, 2018). Incorporating an encoder (α-SN-GAN) helps to alleviate mode collapse (Kwon, Han, & Kim, 2019). Both problems are also addressed by applying data augmentation during training (DiffAugment) (Zhao, Liu, Lin, Zhu, & Han, 2020). Additionally, a hierarchical approach is adapted (HA-GAN) to reduce the computational cost of the training (Sun et al., 2022) and also combined with the α-SN-GAN to join their advantages (α-HA-GAN). Subsequently, three conditioning approaches are employed for creating the two clinical groups (SZC/HC). Finally, the images are “diagnosed” using a 3D convolutional neural network (3D-CNN). Multiple training datasets consisting of different sizes and ratios of real and synthetic images are evaluated.

Results: Regularization combined with incorporating an encoder (α-SN-GAN) yields synthetic images of high fidelity and diversity shown with qualitative and quantitative evaluation (Fig. 2 left and middle). The hierarchical approaches as well as data augmentation for training produces data of lesser quality. Furthermore, we demonstrate that the α-SN-GAN conditioned with an auxiliary classifier produces synthetic images that trains the 3D-CNN equally well as the real images for the diagnostic classification task. Increasing the training dataset size with synthetic images 6-fold results in 18% improvement of classifier performance from 61% to 79% accuracy (Fig. 2 right, large dataset).

Conclusions: This work demonstrates the synthesis of high-quality 3D brain sMRI data for two clinical groups from a small dataset. A diagnostic classifier separating real sMRI data from SCZ patients and HC can be trained successfully with the synthetic data and increasing the amount of synthetic training data increases the performance of the classifier by nearly 20%. This increase suggests that the synthetic data is capable of making the algorithm more robust for classifying the real data. The systematic comparison of GAN architectures for basic training as well as for conditioning the data on the clinical group demonstrates that the architectural choices for the GAN are essential and the resulting data always needs to be evaluated carefully. This approach can be adapted to bolster other imaging modalities such as fMRI for training multimodal classifiers that have shown promise for SCZ diagnosis. Furthermore, the auxiliary α-SN-GAN has the potential to reveal underlying structural differences between the two clinical groups and might therefore also aid in the research for SCZ biomarkers.
References
Improved Motor Neurone Disease Prognosis Prediction with Multimodal Data Fusion

Florence Townend¹, James Chapman¹, Ayodeji Ijishakin¹, Federica Agosta²,³, Edoardo Spinelli²,³, Silvia Basaia², Yuri Falzone³, Paride Schito⁴, Massimo Filippi⁴, Andrea Malaspina⁴, James Cole¹

¹Centre for Medical Image Computing, University College London, London, UK, ²Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy, ³Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy, ⁴UCL Queen Square Institute of Neurology, University College London, London, UK

Introduction: Motor Neurone Disease (MND) is a multifactorial and heterogeneous neurodegenerative disease with an expected survival time of 3 to 5 years from symptom onset. During diagnosis, a multimodal set of data can be collected, including brain MRI, blood tests, and functional ratings. Accurate prognosis prediction for personalised clinical management is challenging but vital for empowering patients’ and families’ future planning and for clinical trial design. However, most current MND prognosis tools only use clinical measures, and the potential contribution of brain MRI to prognosis prediction has been under-explored. We aimed to explore the advantages of using multimodal data for prognosis prediction compared to using unimodal data, by modelling survival time in MND patients using baseline volumes extracted from structural MRI and clinical measures. Further, we evaluated different multimodal data fusion approaches, via the Fusilli Python package (Townend, 2023).

Methods: The study utilised two datasets, University College London Queen’s Square Institute of Neurology’s ALS Biomarkers Study (UK MND CSG) and Ospedale San Raffaele in Milan, Italy, containing clinical information and brain MRI. We included patients (N=110) in our analysis who had passed away and who had T1w or T2w brain MRI scans within 12 months of diagnosis. Patients were categorised into slow- and fast-progressors based on median survival time from diagnosis to death (see Table 1 for patient demographics). MRI segmentation was performed using SynthSeg, a modality-agnostic deep-learning segmentation tool (Billot, 2021), that enabled mismatched MRI modalities among patients to be included. The resulting 33 extracted volumes were z-score normalised. The clinical features were age, sex, diagnostic delay (the time between symptom onset and diagnosis), and ALSFRS-R, a functional disability rating scale. We compared 10 multimodal data fusion methods and 2 unimodal methods on their performance in classifying newly diagnosed MND patients as slow- or fast-progressing. Each method was trained with 10-fold cross validation and the training was repeated until the mean AUC (Area Under the receiver-operating characteristic Curve) stabilised over all repetitions. The AUC for each repetition was computed by aggregating validation folds from the cross-validation training and calculating the AUC of the aggregated folds. Data fusion methods were compared on their mean AUC over the stability repetitions.

Results: Figure 1 shows the performance distributions over the stability repetitions of each fusion model, arranged by mean AUC from highest to lowest. Of the ten fusion models evaluated, four outperformed the extracted volumes unimodal model (AUC=0.74), and eight outperformed the clinical features unimodal model (AUC=0.65). The highest-performing model (AUC=0.80) was the early concatenation fusion model, where extracted volumes and clinical features were concatenated before being input into a fully connected neural network. The highest AUC of 0.80 shows that there is promise in using multimodal techniques for MND prognosis prediction over standard unimodal approaches. However, to ensure robust performance on external datasets without using stability repetitions, a larger sample size is needed.

<table>
<thead>
<tr>
<th>Variables</th>
<th>MND Subjects (N=110)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>63.6 ± 11.7</td>
</tr>
<tr>
<td>Min-Max</td>
<td>28.5 - 93.6</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>65.1 (13.2)</td>
</tr>
<tr>
<td>Sex (%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>52 (47.3)</td>
</tr>
<tr>
<td>Male</td>
<td>58 (52.7)</td>
</tr>
<tr>
<td>ALSFRS-R (out of 48)</td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>37.5 ± 7.2</td>
</tr>
<tr>
<td>Min-Max</td>
<td>13.0 - 48.0</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>39.0 (10.0)</td>
</tr>
<tr>
<td>Survival time (months)</td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>29.3 ± 23.1</td>
</tr>
<tr>
<td>Min-Max</td>
<td>0.9 - 122.7</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>24.4 (28.4)</td>
</tr>
</tbody>
</table>

Table 1: Patient demographics in our analysis. ALSFRS-R is the revised amyotrophic lateral sclerosis functional rating scale, a functional rating scale of MND-related disability at baseline visit, with possible values ranging from 0 to 48.
Conclusions: Data fusion of both brain MRI and clinical features led to improved performance, showing the added value of neuroimaging features predicting MND prognosis. Crucially, the choice of data fusion method influenced predictive performance, with some performing better and some performing worse than unimodal methods. This variability in performance highlights the importance of assessing different data fusion methods and the power of the Fusilli toolbox to achieve this. Future work will explore the fusion of clinical features with voxel-wise MRI data and test generalisability in external datasets.

References

Poster No 1387
Enhanced inter-subject synchrony promotes phenotype prediction in naturalistic conditions
Xuan Li1, Simon Eickhoff1, Susanne Weis1

1Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, North Rhine–Westphalia Land

Introduction: Recent studies have suggested that naturalistic stimuli, such as movie clips, outperform rest and conventional tasks in phenotype prediction1,2. Despite their promise, the impact of stimulus selection on phenotype prediction remains largely unclear. Most existing datasets of naturalistic conditions lack sufficient justifications for selecting specific stimuli, and many studies so far have used only one single stimulus. Here, we investigate the impact of stimulus selection on phenotype prediction from two aspects, namely brain states (inter-subject synchrony)3 and stimulus features. We focus on the paradigmatic case of sex classification due to the robust and well-established nature of the brain-sex relationship.

Methods: We used preprocessed fMRI data of 178 subjects while watching 13 different short movie clips provided by the Human Connectome Project. All fMRI data were truncated to 132 TRs (i.e., 2:12 min) for a direct comparison across different movie clips. For sex classification we applied our previously proposed approach1, which allows phenotype prediction from evoked activity. Subject-specific loadings onto shared responses identified as principal components (PCs) of the fMRI time series across subjects were computed within each of 436 parcels4. These loadings (here we only used PC1 loadings) were used as features for classification by using a support vector machine with a radial basis function kernel4. Performance was quantified as average balanced accuracy over 10 repetitions of 10 cross validation folds. Family structure was controlled for and data leakage was prevented during all phases of the procedure. Group-level brain states were characterised by inter-subject synchrony, quantified as the variance explained by PC1 (the shared response) for each parcel and movie clip, with a large amount of variance indicating stronger inter-subject synchrony. A variety of movie features were extracted and analysed,
including total motion energy, visual brightness, loudness, number of TRs showing human faces, number of spoken words and semantic features.

Results: We observed large variations in both sex classification performance and inter-subject synchrony across movie clips and a significant correlation between the two ($r = 0.70$, $p = 0.007$; Fig. 1A-C). Influence of head motion was excluded (Fig. 1D-E). Better accuracy was significantly ($r = 0.87$, FDR corrected $p<0.05$; Fig. 1F) associated with higher inter-subject synchrony in the right temporal parietal junction (TPJ), a key brain area for social cognition and attention maintenance. Similar findings were obtained for the 17 networks (Fig. 1G). High inter-subject synchrony was associated with large variations in auditory loudness across time (RMS_std, $r = 0.65$, $p = 0.017$; Fig. 2A-B) and semantic features (Fig. 2C) related to concrete objects (e.g., “living_things”, “person”), human actions and social interactions (e.g., “move”, “travel”) and story structure (e.g., “causal_agent”). Better classification performance was associated with more spoken words ($r = 0.55$, $p = 0.049$; Fig. 2D-E). Results on semantic features were highly similar between inter-subject synchrony and classification performance (Fig. 2F).
Conclusions: Contrary to intuition, we show that movie stimuli promoting similar brain states across subjects may actually enhance phenotype prediction. Notably, our results here may provide very conservative lower bounds due to the very short nature of the movie stimuli. Higher inter-subject synchrony may reflect better subject engagement and higher attention levels caused by stimulus processing, suppressing noises (e.g., spontaneous thoughts) while amplifying phenotype relevant signals. Moreover, we show that stimuli with rich social content and cohesive stories may benefit phenotype prediction by promoting inter-subject synchrony. These results collectively offer valuable insights for future studies in selecting an appropriate naturalistic stimulus for phenotype prediction.

References

Poster No 1388

MRI meets economics: Balancing sample size and scan duration

Leon Ooi1, Csaba Orban1, Thomas Nichols2, Shaoshi Zhang1, Trevor Wei Kiat Tan1, Ruby Kong1, Scott Marek2, Nico Dosenbach3, Timothy Laumann2, Evan Gordon2, Juan Helen Zhou1, Danilo Bzdok4, Simon Eickhoff5, Avram Holmes6, B. T. Thomas Yeo1

1National University of Singapore, Singapore, Singapore, 2University of Oxford, Oxford, United Kingdom, 3Washington University, St. Louis, MO, 4McConnell Brain Imaging Centre (BIC), Montreal Neurol, McGill University, McGill University of Montreal, Montreal, Quebec, 5Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, North Rhine-Westphalia Land, 6Rutgers University, Piscataway, NJ

Introduction: Resting-state functional connectivity (RSFC) is widely used to predict behavioral traits in individuals. A pervasive dilemma when collecting functional MRI (fMRI) data is whether to prioritize sample size or scan duration given fixed resources. Larger sample sizes lead to better individual-level prediction accuracy and brain-behavior association reliability. However, in parallel, other studies have emphasized the importance of longer fMRI scan duration per participant, which leads to improved data quality, reliability, and prediction performance. Here, we investigate the trade-off between sample size and scan time in the context of prediction accuracy and reliability of brain-behavior relationships using RSFC.

Methods: We utilized 792 participants from the Human Connectome Project (HCP) and 2565 participants from the Adolescent Brain Cognitive Development (ABCD) study. Each participant’s brain was parcellated into 419 regions of interest, and a FC matrix was formed by taking the correlation of BOLD signals for each pair of regions from the first T mins. The FC matrices were used to train regression models for a wide set of behavioral measures. A nested cross-validation procedure was used and accuracy was measured using Pearson’s correlation between the predicted and actual scores of participants in the test fold. The above analysis was repeated with different training set sizes, N, achieved by subsampling each training fold, while keeping the test set identical across different training set sizes to keep the results comparable across different N. The whole procedure was repeated with different values of T. T was varied from 2 mins to the maximum scan time of each dataset. To explore the reliability of univariate brain-wide association analyses, we followed a previously established split-half procedure. We derived the t-statistic between each RSFC edge and behavioral measure across participants, on two non-overlapping sets of participants. Their concurrence was then computed using the intra-class correlation formula. Sample size and scan duration were varied in a similar manner as before.

Results: Fig 1A shows prediction performance for a cognition factor score derived in each dataset. Accuracy increases with more training participants and scan time. Plotting prediction performance against total scan time (T x training participants x scan time), reveals a logarithmic-like relationship when considering points with less than 30min of scan time (Fig 1B). Sample size and total scan time are broadly interchangeable below this point, achieving comparable prediction accuracies so long as the total scan time is similar. This relationship generalized to 19 other scores in the HCP, and 14 others in the ABCD. Fig 1C shows that total scan time explains prediction accuracy remarkably well across measures in both datasets. Reliability of brain-
behavior associations increases with more training participants and scan time as well (Fig 2A). However, plotting reliability against total scan time reveals that sample size dominates scan time much earlier, between 6 to 10 mins of scan time (Fig 2B). We similarly visualized reliability in terms of total scan time with a logarithmic function in Fig 2C to show the generalizability of this relationship across multiple behavioral measures.
Conclusions: Total scan time explains prediction performance of behavioral measures very well, such that increasing sample size (with fixed scan time) or scan time (with fixed sample size) leads to similar accuracy. Conversely, reliability of brain-behavior association is more dependent on sample sizes rather than scan time. Notably, larger samples are important to get better sampling of intersubject variability related to features, targets and confounds. Our findings establish an empirically informed reference for calibrating scan times and sample sizes to maximize prediction and reliability of brain-behavior association.

References
Poster No 1389

Subtyping Disease Progression Pattern in Dementia: BBB leakage and Cortical thinning Trajectories

Yanghee Im1, Won-Jin Moon2, Hong Jun Jeon2, Hyun Woo Chung3, Kyoung Ja Kwon4, Min-Young Noh5, Hee-Jin Kim5, Seol-Heui Han2, Yeonsil Moon2, Hosung Kim1

1University of Southern California, Los Angeles, CA, 2Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Korea, Republic of, 3Departments of Nuclear Medicine, Konkuk University Medical Center, Seoul, Korea, Republic of, 4Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Seoul, Korea, Republic of, 5Department of Neurology, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Korea, Republic of

Introduction: Dementia, a cognitive decline syndrome, often stems from neurodegenerative diseases like Alzheimer’s disease. The blood-brain barrier (BBB) guards the brain against toxins but can break down, allowing harmful substances to enter and cause neuronal injury. Although BBB’s impact on neuronal injury is acknowledged, our understanding of the temporal and spatial aspects remains limited. The Subtype and Stage Inference (SuStaIn), a machine-learning approach, reveals the heterogeneity and temporal complexity in diseases like Alzheimer’s and Parkinson’s disease. SuStaIn identifies subtypes with unique progression trajectories using cross-sectional patient data (Young et al., 2018). This study employs multimodal imaging markers, including BBB permeability and cortical thickness explaining neuronal loss, to stratify dementia into subgroups. The goal is to associate clinical symptoms with each identified subtype.

Methods: A total of 137 participants composed of 36 patients of normal cognition (NC), 52 patients of mild cognitive impairment (MCI) and 49 patients of dementia were studied. The diagnoses of MCI and dementia were based on previous criteria (Petersen et al., 1999). Patients with MCI performed normal daily living activities; nonetheless, they exhibited an objective memory impairment, implying <1.5 standard deviation from the norm in at least one memory test. Dynamic Contrast-Enhanced (DCE) using Gadobutrol (1.0 mmol/kg of body weight) and T1-weighted MRI acquisitions were conducted at the Konkuk University Medical Center using a Magnetom Skyra 3.0 Tesla unit (Siemens Medical Systems, Erlangen, Germany). The specific parameters and protocols can be found in (Moon et al., 2023). Automated brain region segmentation was conducted using the InBrain (https://www.inbrain.co.kr). The cortical thickness and BBB K-trans metrics extracted from DCE-MRI were mapped and averaged in each cortical ROI based on the Desikan Killiany atlas (Desikan et al., 2006). The SuStaIn model was applied to 12 features: two metrics, K-trans (measure of BBB-permeability) and cortical thickness (measure of neuronal loss), in six different ROIs. Each feature was z-scored transformed with respect to mean and standard deviation of NC subjects. A sequential transition of each feature from z-score of 1 to 2 and 3 represented disease progression pattern for each subtype, resulting in a series of stages. Subjects were assigned to the most probable subtype and stage by SuStaIn based on their maximum likelihood. The optimal number of subtypes was determined by the lower Cross-Validation Information Criterion (CVIC) calculated through 10-fold cross validation. Demographic comparisons between NC, MCI, and dementia groups were conducted using two-sample t-tests and chi-squared tests (Table 1). Pearson correlation analysis was performed to examine the correlation between the SuStaIn Stage and cognitive scores.

Results: The model with two subtypes was the most stable showing the lowest variation in the log likelihood (Fig. 1A). Among 137 subjects, 77 were classified as subtype 1 and 60 as subtype 2 (Fig. 1B). All patients were assigned to each subtype with high probability (>50%, Fig. 1C). Each subtype was characterized by distinct patterns of sequential increases in BBB permeability and cortical thinning (Fig. 1D and E). For subtype 1, both biomarkers become abnormal simultaneously, whereas dysfunction of BBB precedes cortical thinning for subtype 2. In subtype 1, significant correlations were found between SuStaIn stage and MMSE and CDR-SOB, but not in subtype 2 (Fig. 2).
Conclusions: In the present study, we revealed two different spatiotemporal trajectories of dementia using two crucial imaging biomarkers. Each subtype displayed a different relationship with clinical features. Further studies analyzing crucial factors, including various cytokines, NfL, and other biomarkers related to BBB permeability and neuronal injury, are needed.

References
Poster No 1390

L2C-FNN: Longitudinal to Cross-sectional FNN for Generalizable AD-dementia Progression Prediction

Chen Zhang¹, Lijun An¹, Naren Wulan¹, Csaba Orban¹, Kim-Ngan Nguyen¹, Pansheng Chen¹, Christopher Chen¹, Juan Helen Zhou¹, B. T. Thomas Yeo¹

¹National University of Singapore, Singapore, Singapore

Introduction: Alzheimer’s disease dementia (AD-dementia) is a neurodegenerative disorder with a prolonged prodromal phase and limited therapeutic options post-dementia onset, emphasizing the importance of early detection for timely and effective intervention (Scheltens et al., 2016). Hence, predicting longitudinal disease progression of individuals is of substantial interest (Ghazi et al., 2019; Nguyen et al., 2020). However, the absence of cross-cohort assessments in previous studies have raised concerns about clinical applicability (Wang et al., 2022) due to the cohort disparities. In this study, we introduce the Longitudinal to Cross-sectional Feedforward Neural Network (L2C-FNN), a robust model designed to mitigate cohort differences and demonstrate its superior generalizability against strong machine learning baseline models across three separate unseen cohorts.

Methods: L2C-FNN and baseline models underwent training on ADNI (N=2421; Jack et al., 2010) followed by evaluation of generalizability on external test cohorts: AIBL (N=862; Ellis et al., 2010) from Australia, MACC (N=700; Hilal et al., 2020) from Singapore, and OASIS (N=1378; LaMontagne et al., 2019) from North America. ADNI participants were randomly divided into training, validation, and test sets (ratio of 18:1:1) for model fitting, hyperparameter tuning and within-cohort evaluation. The trained models were adapted to AIBL, MACC, and OASIS for cross-cohort evaluation, with 20 repetitions to ensure result stability (Figure 1A). Care was taken to ensure non-overlapping test sets, covering the entirety of the ADNI cohort across the 20 data splits. Utilizing multimodal inputs (e.g., cognitive state measurements, cortical and/or subcortical ROI volumes) from the first 50% of timepoints of each participant, we predicted clinical diagnosis, ventricular volume, and cognitive state for the second 50% of timepoints, projecting up to 10 years into the future. All continuous variables (e.g., ROI volumes) underwent normalization through GaussRank transformation, a special form of quantile normalization (Zhao et al., 2020), with a Gaussian reference distribution. L2C-FNN (Figure 1B) is a deep feedforward neural network featuring a specialized longitudinal-to-cross-sectional format transformation, which involves computing summary statistics such as the rate of change, maximum, and minimum of each input modality from historical timeseries data. The L2C transformation offers an advantage by eliminating the reliance on error-prone recursive techniques like RNN commonly used in disease progression modeling (Fan et al., 2019). Baseline approaches included Frog, an XGBoost-based model, and MinimalRNN (Nguyen et al., 2020) an RNN-based model, which were 1st and 2nd place winners in the TADPOLE international challenge for longitudinal AD-dementia progression prediction (Marinescu et al., 2021).
Results: Figure 2A demonstrates the comparable performance of L2C-FNN with strong baseline methods (Frog and MinimalRNN) for within-cohort (ADNI) clinical diagnosis, cognitive state, and ventricular volume prediction. Notably, L2C-FNN clinical diagnosis and MMSE prediction outperformed all baselines numerically. Figure 2B shows cross-cohort evaluation in three external cohorts (AIBL, MACC, and OASIS), highlighting the superior performance of L2C-FNN over all baseline models, underscoring its robust generalizability. Particularly noteworthy is L2C-FNN’s consistent achievement of significantly lower MMSE prediction errors across all test cohorts compared to the baseline methods.

Conclusions: Our findings demonstrate the superiority of the L2C-FNN model over baseline algorithms in longitudinal AD-dementia progression prediction when trained and tested on ADNI dataset. Crucially, this strong performance extended to previously unseen cohorts with significantly diverse populations from the training set, including AIBL, MACC, and OASIS, as confirmed by cross-cohort evaluation, emphasizing the model’s superior generalizability.

References

Poster No 1391

Explainable Deep Learning for Alzheimer’s Disease Diagnosis and Mild-Cognitive Impairment Prognosis

Sophie Martin¹, Francesca Biondo², Florence Townend³, An Zhao¹, Frederik Barkhof⁴, James Cole¹

Introduction: Deep learning provides innovative solutions for predicting Alzheimer’s disease (AD) before significant cognitive decline, a key challenge of the modern era. In this work, we address two limitations of existing studies: Many studies are biased by relying only on large, curated, homogenous research datasets to train and evaluate models, limiting generalisability (Martin et al., 2023). Models are also often limited by a lack of transparency, hindering integration with existing diagnostic pipelines. Here, we leveraged a non-harmonised, multi-site dataset and the use of explainable AI methods to overcome these issues.

Methods: 3,060 3D T1-weighted MRI scans from the National Alzheimer’s Coordinating Center were used to train and evaluate the models on held-out test sets. Minimal pre-processing was applied: each scan was affinely registered to the MNI152 template using EasyReg (Hoffmann et al., 2022; Iglesias et al., 2021). We used MRIqc image quality metrics and visual assessment to remove any poorly quality scans (Esteban et al., 2017). The dataset is described in Figure 1a. We implemented two state-of-the-art neural networks, a ResNet (He et al., 2015; Wightman, Touvron, et al., 2021) and Vision Transformer (ViT) (Dosovitskiy et al., 2020; Steiner et al., 2021), to classify AD dementia patients versus healthy controls (diagnosis). To overcome the challenges of training 3D ViTs on small datasets, we investigated the use of an ensemble approach, by fine-tuning 2D models pretrained on ImageNet (Wightman, Ha, et al., 2021) using single slices along three planes: axial, sagittal and coronal. A triplanar ensemble model was produced by training a multi-layer perceptron using the outputs from each single-plane model. Additionally, we explored the combination of imaging-model based probabilities with non-imaging features in a Random Forest (RF) to assess whether this improved performance. These models were benchmarked against a 3D ResNet, as well as a RF with only non-imaging features. We also evaluated each model on whether participants diagnosed with mild cognitive impairment (MCI) at baseline will progress to AD within 3 years (prognosis) to examine whether the learned features are transferable to an unseen, more challenging task. To explain the models, we applied several post-hoc explanation methods to visualise the most important features.

Results: Figure 1c shows that triplanar models provide a small improvement in the diagnostic balanced accuracy (BACC) +0.8% and +0.1% for the ViT and ResNet respectively. However, the 3D ResNet achieved a BACC 83.4%, highlighting the importance of contextual information across the brain volume. Combining the output of the imaging models with non-imaging data increased the diagnostic BACC to 95.3%, whilst balancing precision and recall better than using only non-imaging features. The advantage of including imaging data is most apparent in the absence of a bed-side screening tool for Alzheimer dementia (MMSE score). Moreover, for MCI prognosis, the multi-modal RF model with ResNet outputs showed a clear improvement in performance compared to non-imaging features alone, increasing the BACC from 65.5% to 73.1%.
ABSTRACTS

Figure 1. A) Demographics of the NACC dataset. Due to missing data, we report the sample size for each variable. Group-wise statistics are given in parentheses, respectively. B) Classification performance for the imaging-based deep learning models. Highest values are shown in bold. C) Classification performance for the Random Forest models based on tabular features only. Highest values are shown in bold. D) Classification performance for the multi-modal Random Forest models trained by including the probabilities associated with the imaging-based models with non-imaging features. Highest values are shown in bold.

AD = Alzheimer’s disease. CN = cognitively normal. MCI = mild-cognitive impairment (remained MCI for at least 3-years from baseline scan date). pMCI = progressive mild-cognitive impairment (progressed to AD after 3-4 years from baseline scan date). p = proportion. APOE4 positive is defined as at least one copy of the APOE-e4 allele. MLP = multi-layer perceptron.

Figure 2. A) Heatmaps for three AD participants using four explanation methods and the best performing imaging-based model. B) Most important features according to the multi-modal Random Forest model with the best performance.
Conclusions: Deep learning models trained on more representative and heterogeneous datasets can still produce high diagnostic performance. A model trained only on healthy controls and AD patients was able to predict MCI conversion with a BACC of 75.3%, which is comparable with previous studies trained directly on this task. Vision Transformers achieve comparable diagnostic performance to ResNets with fewer parameters (5M and 11M respectively) but did not generalise as well to the prognosis task. Explanation methods can be used to identify salient brain regions and highlight the utility of neuroanatomical information over non-imaging features (Fig 2). Heatmaps were most consistent across methods for the ResNet model and highlighted relevant features such as ventricular atrophy.

References

Poster No 1392

Multi-domain and Uni-domain Fusion for domain-generalizable fMRI-based phenotypic prediction

Pansheng Chen1, Lijun An1, Naren Wulan1, Chen Zhang1, Shaoshi Zhang1, Leon Ooi1, Ru Kong1, Jianxiao Wu2, Sidhant Chopra3, Danilo Bzdok1, Simon Eickhoff4, Avram Holmes5, B. T. Thomas Yeo1

1National University of Singapore, Singapore, 2Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany, 3Yale University, New Haven, CT, 4McConnell Brain Imaging Centre (BIC), Montreal Neuro, McGill Universitygyiological Institute (MNI), Montreal, Quebec, 5Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, North Rhine–Westphalia Land, 6Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ

Introduction: Resting-state functional connectivity (RSFC) is widely used to predict phenotypes in individuals. Due to unavoidable small sample size issues, recent work has sought to translate models trained from large-sized neuroimaging datasets to predict phenotypes on small target datasets. However, predictive models may fail to generalize to new datasets due to differences in population, data collection, and processing across datasets. Here we proposed a method named Multi-domain and Uni-domain Fusion (MUF) to enhance model generalizability, which outperformed 4 strong baselines on 6 target datasets.

Methods: We used 419 X 419 RSFC matrices to predict phenotypes from 7 datasets: UK Biobank, ABCD, GSP, HBN, eNK, HCP-YA and HCP-Aging. We did a leave-one-dataset-out test on each dataset, except UK Biobank as we need the largest dataset and for training. Each dataset was iteratively used as the target dataset and all others were used as source datasets (Fig 1A). Predictive models trained from source datasets were adapted to K participants (K-shot) in the target dataset to predict target phenotypes. The adapted models were evaluated in the remaining test participants. This procedure was repeated 100 times for stability. We compared MUF against 4 baselines (Fig 1B): classical Kernel Ridge Regression (KRR), meta-matching with stacking, and our previous work: meta-matching with dataset stacking and multilayer meta-matching. Classical KRR models were trained on K-shot to predict target phenotypes. For meta-matching with stacking, a feedforward deep neural network (DNN) was trained on UK Biobank to predict 67 phenotypes. The base DNN was applied to K-shot and DNN predictions were used as features to train a KRR model on K-shot to predict target phenotypes (i.e. stacking). Meta-matching with dataset stacking extends meta-matching with stacking by training separate KRR/DNN models for each source dataset and then performing stacking on K-shot to predict target phenotypes. To resolve the sample size imbalance across source datasets, multilayer meta-matching gradually applied stacking from larger source datasets to smaller datasets to boost prediction accuracies. These predictive models then underwent another round of stacking using K-shot to predict target phenotypes. Of note, the above 4 baselines trained base models independently on each dataset. Fig 1C shows our new proposed MUF method, which combines both cross-domain and intra-domain training to learn domain-general and domain-specific information. On the basis of multilayer meta-matching, we also employed a multi-domain strategy that trains a joint...
multi-task DNN using all source datasets together, enabling it to offset site differences to some extent and thus generalize better on unseen datasets. Predictions from the above joint DNN were concatenated together with predictions from the multilayer meta-matching method and then used as features of the stacking model to predict target phenotypes.

Results: Fig 2 shows the prediction accuracy (Pearson's correlation) in 6 target datasets. All reported p values survived a false discovery rate of q < 0.05. We found that original meta-matching with stacking\(^5\) was not better than classical KRR on some datasets (e.g., HBN), but our proposed methods improved it by incorporating more diverse source datasets. In all test datasets, MUF consistently outperformed all other baselines, indicating that MUF can better generalize from different source datasets and is more robust on new target datasets. Using Wilcoxon signed-rank test, MUF was better than meta-matching with dataset stacking\(^9\) (p < 0.02 for all K) and multilayer meta-matching\(^9\) (p < 0.02 for K > 20).
Conclusions: We propose a method using both multi-domain and uni-domain training, to translate phenotypic prediction models from multiple source datasets to small-sized target datasets. We found that our MUF performed the best on 6 test datasets.

References
1. Eickhoff, S. B. (2019). Neuroimaging-based prediction of mental traits: Road to utopia or Orwell?. PLoS biology, 17(11), e3000497

Poster No 1393

Accurate Detection of Mental Fatigue with LSTM Network using fNIRS

Mengshan Li12, Wenchao Zhang12, Jiayu Xu12, Zaichen La12, Huiling Zhou12, Zhao Yan12, Yonghuan Feng12, Guanya Li12, Yang Hu12, Yi Zhang12

1Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China, 2International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China

Introduction: Long-term cognitive tasks easily lead to mental fatigue, usually manifested in decreased attention, slower reaction time, and increased aversion to tasks, resulting in increased accident incidence1. To cope with these adverse but preventable consequences caused by mental fatigue, accurate detection of mental fatigue is required. Several ways including electroencephalography and functional Near-infrared Spectroscopy (fNIRS) have been employed, however, they used multiple channels covering the whole brain2-4, which is less efficient and inconvenient in applications5. Thus, it is necessary to identify the specific regions that are closely related to mental fatigue. In the current study, multi-channel fNIRS signals covering the frontal and parietal brain regions were measured on participants with normal and mentally fatigued states, respectively. Then, the individualized mental fatigue detection model was constructed and the contribution channels for fatigue detection were determined.

Methods: Seventeen healthy students were recruited from Xidian University to participate in the study. The Shimadzu LABNIRS device was employed to measure the fNIRS data of participants during the sustained cognitive tasks inducing mental fatigue (Figure 1A), and optrodes were arranged on the frontal-parietal brain regions according to the international 10-20 system, with a total of 46 channels (Figure 1B). Resting - state fNIRS data were measured for each participant before and after the sustained cognitive task, and their mental fatigue levels were assessed using the Karolinska Sleepiness Scale (KSS, Figure 2A). Each subject participated in the experiment twice. The two five-minute resting-state datasets before and after the sustained cognitive task were categorized into normal and mental fatigue states. A sliding window with a length of 6s and a shift of 1.5s was applied to segment the fNIRS data into 196 normal and mental fatigue samples for each participant in each experiment respectively. For each participant, a detection model based on the Long Short-Term Memory (LSTM) network was trained with the samples from the first experiment, and the samples from the second experiment were used to test the model (Model 1). The shap interpreter was employed to evaluate the weights of channels6, and the top 20% of channels contributing most to the classification were selected as mental fatigue-related channels. Then, the detection model was retrained and tested with the selected channels (Model 2). In addition, paired t-tests were performed to test the difference in Amplitude of Low Frequency Fluctuations (ALFF) between normal and mental fatigue states for each channel, and channels with significant differences were chosen to retrain the detection models again for each participant (Model 3, Figure 1C).
Results: The KSS score was significantly increased along with the sustained task progress ($P < 0.001$, Figure 2A). The average accuracy of the Model 1 was 91.93%. Channels with high contributions were located in Brodmann’s area 5 (BA5) and BA7 (parietal area and somatosensory association cortex), BA6 and 9 (frontal area), and BA40 (superior temporal gyrus, Figure 2B). Model 2 used the above mental fatigue-related channels and achieved an average accuracy of 91.06%, with no significant decrease compared with Model 1. The group-level statistic method identified channels corresponding to BA8, BA9, and BA40. However, the detection model with these channels (Model 3) only yielded an accuracy of 50.64%, which was significantly lower than that of Model 1 ($P < 0.001$, Figure 2C).

Conclusions: This study identified mental fatigue-related channels within the frontal-parietal network based on individualized mental fatigue detection models, reducing the number of required optrodes without compromising detection accuracy. This study is helpful to the practical application of mental fatigue detection based on fNIRS.
References

Poster No 1394
Developing Replicable model for Real-World Functional Neuroimage
Jiaqi Ding1, Tingting Dan1, Ziquan Wei1, Guorong Wu1
1University of North Carolina at Chapel Hill, Chapel Hill, NC

Introduction: Neuroimaging techniques have revolutionized our capacity to understand the neurobiological underpinnings of behavior-in-vivo1. Leveraging an unprecedented wealth of public neuroimaging data, there is a surging interest to answer novel neuroscience questions using machine learning techniques. Despite the remarkable successes in existing deep models, current state-of-the-arts2 have not yet recognized the potential issues of experimental replicability arising from ubiquitous cognitive state changes, which might lead to spurious conclusions and impede generalizability across neuroscience studies. In this work, we first dissect the critical (but often missed) challenge of ensuring prediction replicability in spite of task-irrelevant functional fluctuations. Then, we formulate the solution as a domain adaptation where we devise a cross-attention mechanism with discrepancy loss in a Transformer backbone.

Methods: In our domain cross-attention Transformer8, as shown in Figure 1, first, we introduce the cross-attention layer, an alternating module comprising self-attention in the source domain and cross-attention based on source and target domain. The integration of cross-attention (shown in the top right corner of Figure 1) facilitates the model’s ability to relate source domain information to the target domain. Specifically, suppose the output of target domain’s previous-layer constitutes the query QT, while the outputs from the source domain form the key KS and value VS, so that the model achieves enhanced information exchange and contextual representation between the two domains and minimizes the inter-domain dependencies. Then, we propose an adjusted discrepancy loss that can align the predicted probability vectors from the source and target domains, ensuring that they exhibit similar patterns in a shared feature space. We first propose a novel mathematical approach to update the correspondence between the predicted vectors of the two domains within the same batch. Then, we compute the mean discrepancy loss between the predicted probabilities in the source domain and the updated probabilities in the target domain.
Results: We have evaluated the cognitive task recognition accuracy and consistency on both test and retest functional neuroimages from the Human Connectome Project. Our working memory dataset is part of the HCP-Task dataset\(^7\), it provides valuable insights into the brain's activity during working memory tasks, including two distinct scanning sessions referred to as test data (scan 1) and retest data (scan 2). In experiments, our primary objective was to delve into the model replicability. To this end, we employed the bidirectional validation framework. Initially, we train the model on the test data and test on the retest data (i.e., test-retest experiment). This process was then reversed (i.e., retest-test experiment). By assessing the divergences in the outcome distribution patterns between these distinct scans, we aimed to unravel the model's capacity to equivalently discern the inherent features of both datasets, enabling us to make sure whether it indeed grasped the task-specific features in the disparate scans. Figure 2 (last column, whole brain) shows the task recognition accuracy (for a total of eight tasks) by different methods\(^3\). It is clear that our method outperforms all the comparison methods (at a significant level \(p<0.0001\)) in bidirectional validation situations.
Conclusions: We bring attention to a critical issue of model replicability in consistently linking dynamic neural activity with cognition and behaviors. Upon identifying the prominent obstacle of limited generalizability within existing deep models used in fMRI research, we present a practical solution to address the replicability issue using a novel cross-attention transformer for test-retest scans of multi-session fMRI data, indicating great applicability of our data-driven approach in various neuroscience studies.

References

Poster No 1395
BrainGET: Decoding Brain Dynamic Functional Connectivity Implicated in ADHD Subtypes
Deepank Girish1, Yi Hao Chan1, Jing Xia1, Sukrit Gupta2, Jagath Rajapakse1
1School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore, 2Department of Computer Science and Engineering, Indian Institute of Technology, Ropar, India

Introduction: Subtype-specific differences in functional connectivity (FC) have been well-documented for ADHD1. Recent studies have revealed strong associations between dynamic FC (dFC) changes and behavioral/cognitive functions2-5. While static FC has been thoroughly investigated in this regard, more needs to be done to study the subtype-specific changes in dFC. We propose BrainGET (Graph neural network Ensembles with Transformers) architecture to capture different extents of spatiotemporal relationships in dFC. BrainGET outperforms state-of-the-art models in ADHD detection and GNNExplainer was used on BrainGET to generate potential subtype-specific biomarkers from the ADHD-200 dataset.

Methods: ADHD-200 contains rs-fMRI scans from 279 individuals diagnosed with ADHD and 488 age-matched typical controls, collected from 4 sites: NI, NYU, OHSU and PKU. Also, there are 3 subtypes of ADHD: Hyperactive-Impulsive, Inattentive and Combined (Figure 1c). DFC matrices were generated using a sliding window approach and used as inputs to our proposed model. BrainGET integrates Graph Convolutional Network (GCN) and Graph Isomorphism Network (GIN) in an ensemble framework, then uses Transformers to capture temporal dynamic patterns (Figure 1a). GCN and GIN differ in how node information is spatially aggregated, while Transformers provide an effective way of capturing temporal dynamics from FC. Using an ensemble allows the model to learn the optimal way of combining these spatiotemporal representations.

Results: We compared BrainGET’s site-specific classification performance (healthy vs ADHD) to current state-of-the-art dFC models based on GNNs and Transformer architectures, including: DGCN8, ST-GCN9 and STAGIN4 (Figure 1b). Our model was statistically significant (with paired t-test p-value < 0.05) and outperformed existing methods due to the combined expressive power of GCN and GIN. For model explainability, attention scores were used to find salient sliding windows from both GCN and GIN component of BrainGET, for each subtype across all 4 sites. We subsequently applied GNNExplainer to generate saliency scores which reveal the contribution of each node to the classification task. Saliency scores derived from the GCN and GIN components were combined using the same weights as utilized in the ensemble of classification predictions. Decoding was done for each site, but analysis and figures exclude site NI due to small sample size. We found that the connection between insula and extra-nuclear is most salient for both sites NYU and OHSU (Figure 2). Notably, it is not present in PKU, possibly due to different races (Western vs Chinese). Additionally, its presence in both combined and inattentive subtypes and absence in hyperactive subtype suggests that it could be an FC feature specific to the inattentive subtype. While the combined and inattentive subtypes have distinct salient connections, the involvement of insula and extra-nuclear regions, known for their role in consciousness and cognitive functions within the brain, aligns with findings from prior ADHD studies15. When saliency scores are consolidated at the level of brain modules, we find significant similarities between the combined and inattentive subtypes (with all p-values < 0.05): Person’s r = 0.97 for NYU, r = 0.84 for OHSU and r = 0.71 for PKU.

References
Correlations between combined and hyperactive subtypes were moderate ($r = 0.45$ for NYU, $r = 0.73$ for OHSU), correlation between inattentive and hyperactive subtypes were even lower.

Conclusions: Put together, our results from decoding BrainGET suggest that the combined and inattentive subtypes share significant similarities in dFC (in particular, connections between insular and extra-nuclear regions), both at the level of ROIs and brain modules. This could suggest that combined subtypes are dominated by inattentive traits, or that dFC does not differentiate these clinically derived subtypes.

References

Brain age pre-training for prediction of Alzheimer’s disease diagnosis and progression

Trevor Wei Kiat Tan1,2,3,4,5, Kim-Ngan Nguyen1,2, Chen Zhang1,2,4,5, Ru Kong1,2,4,5, Susan Cheng1,2,3,4, Fang Ji1,2,4, Joanna Su Xian Chong1,2,4, Eddie Jun Yi Chong6,7, Narayanaswamy Venketasubramanian8, Christopher Chen6,7,3, Juan Helen Zou1,2,3,4, B. T. Thomas Yeo1,2,3,4,5

1Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, Singapore, 2Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, Singapore, 3Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore, Singapore, 4Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore, Singapore, 5N1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore, Singapore, 6Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore, Singapore, 7Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, Singapore, 8Raffles Neuroscience Centre, Raffles Hospital, Singapore, Singapore, 9Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, Singapore

Introduction: An individual's brain age, predicted by a machine learning algorithm using structural MRI, holds vital clinical importance. Brain age higher than chronological age is linked to cognitive decline1, mortality2, and brain disorders3. Age data is widely available across MRI datasets. Therein lies a theoretical advantage in training brain age models on larger and diverse datasets and applying these pre-trained brain age models for downstream prediction on smaller clinical samples via transfer learning4. We aim to investigate if pre-trained brain age models outperform models trained-from-scratch to diagnose Alzheimer’s disease (AD) and predict mild cognitively impaired (MCI) progression to AD.

Methods: The study employed three datasets – Alzheimer’s Disease Neuroimaging Initiative (ADNI), Australian Imaging, Biomarkers and Lifestyle (AIBL) study, and Singapore Memory Aging and Cognition Centre (MACC) Harmonization cohort – for AD diagnosis and MCI progression tasks. Both tasks involved binary classification and used the same nested cross-validation method. Models were compared using Area Under the Curve (AUC) on test set and resampled t-tests with FDR correction. No participant overlap occurred between the two tasks. Models shared a common network architecture with a pre-trained brain age model4. Feature-extracted pre-trained models processed structural MRI and generated 64-dimensional features per participant, which were used for logistic regression label prediction4. Finetuned models retrained all layers and replaced the last age prediction layer with a binary prediction layer. AD diagnosis distinguished between AD and non-cognitively impaired (NCI) individuals, using 856 ADNI, 156 AIBL, and 260 MACC participants. Three models were compared – trained-from-scratch model (Direct-scratch), feature-extracted brain age pre-trained model (Indirect-brainage), and finetuned brain age pre-trained model (Indirect-brainage-finetune), with training + validation set sizes ranging from 50 to 997. Indirect-brainage and Indirect-brainage-finetune were initialized with a state-of-the-art pre-trained brain age model4. MCI progression distinguished stable from progressive MCI, using 478 ADNI, 20 AIBL, and 78 MACC participants. Two models were compared – feature-extracted Indirect-brainage-finetune (Indirect-brainage-finetune-AD), and feature-extracted Direct-scratch (Direct-AD), with training + validation set sizes ranging from 50 to 448.

Results: Figure 1 shows the relationship between the model's AD diagnosis test AUC and the training + validation set sizes for three models – Indirect-brainage, Indirect-brainage-finetune, and Direct-scratch. Direct-scratch outperformed Indirect-brainage significantly from size 400 or greater up to the largest size of 997. However, there were no significant differences between Direct-scratch and Indirect-brainage-finetune across all training and validation set sizes. Figure 2 shows the...
relationship between the model’s MCI progression test AUC and the training + validation set sizes for two models – Indirect-brainage-finetune-AD and Direct-AD. Notably, there were no significant differences in test AUCs between the two models across all training and validation set sizes.

Conclusions: For AD diagnosis, finetuning the pre-trained brain age model significantly improves prediction versus feature extracting the pre-trained brain age model. Interestingly, a model trained-from-scratch significantly outperforms a feature extracted pre-trained brain age model at a training and validation sample size equal to 400 or greater. Hence, for smaller sample sizes (less than 400), using the less computationally intensive feature extraction from the pre-trained model is more beneficial than training a model from scratch. For MCI progression, there is no significant difference in performance between brain age pre-training versus random initialization, when both models feature-extracted AD diagnosis weights, from 50 to 448 sample sizes.

References

ABSTRACTS

Poster No 1397

Adapted 3D deep learning model for Parkinson’s disease classification based on white matter changes

Hyewon Shin, Yong Jeong

Korea Advanced Institute of Science & Technology, Daejeon, Republic of Korea

Introduction: Parkinson’s disease (PD) is the world’s second most common neurodegenerative disease, caused by dopaminergic neuronal loss in the substantia nigra due to the deposition of misfolded α-synuclein. As α-synuclein pathology has been suggested to cause early axonal changes that later result in neuronal degeneration, multiple previous studies have shown that diffusion tensor imaging (DTI), as an in vivo imaging technique, is capable of characterizing early detectable white matter (WM) changes in PD. However, another recent study suggested that DTI-based analyses may not be best suited for PD classification, as their binary support vector machine (bSVM) and multiple kernel learning (MKL) model demonstrated low accuracy. Recent advancements in the field of deep learning have given rise to models such as ResNet, designed specifically for image classification, with specialized convolutional layers and residual connections that handle grid-like data in a more efficient manner without the need for manual feature engineering. Therefore, we wondered whether we would be able to generate a DTI-based PD classification model demonstrating high classification accuracy if the machine learning technique itself was deeper and able to learn more complex baseline features. In this study, we generated a novel 3D deep learning classification model with a whole brain fractional anisotropy (FA) map in input to classify Parkinson’s disease patients from healthy controls with comparable accuracy to other recent state-of-the-art classification models.

Methods: 625 healthy control (age, 61.4 ± 11.3; female, 37.3%) and 1402 cognitively unimpaired PD patient (age, 63.4 ± 9.4; female, 34.8%) data were selected from the PPMI database for training, validating and testing our model at a 7:2:1 ratio. The DTI and T1-weighted images were preprocessed using MRtrix3, FMRIB Software Library (FSL) and Advanced Normalization Tools (ANTS). The response function, estimating the signal expected in each voxel, was returned for each subject using the Dhollander algorithm. Using the returned response functions, we estimated the fiber orientation distributions (FODs) for each voxel, where the response function was used as a kernel in a contained spherical deconvolution operation. Using these FODs, we were able to estimate the fractional anisotropy (FA) values in each voxel. The returned 3D FA brain map acted as the input into the proposed 3D ResNet-34 PD classification model composed of novel skip connection structures in tandem with SE blocks. Pre-trained 2D ResNet-34 was converted into 3D by duplicating the 2D filters into the third dimension, and transfer learning was employed to reduce training time. Other layers were adjusted to match the 3D filters. Furthermore, the Taguchi method was employed to optimize the performance and improve the robustness of the model.
Results: Our proposed model demonstrates a validation accuracy of 99.74% and a validation loss of 0.0418. Moreover, when evaluated on the test data set, the model demonstrated an accuracy of 95.35% and an AUC value of 0.98. Compared to most recent studies, which exhibit a range of accuracies between 49.4% and 98.2%, our model shows high accuracy, precision and recall. Furthermore, the model holds its own merits over other state-of-the-art models with higher classification accuracy in that it does not require multi-modal imaging data and manual feature extraction, which can easily increase computational cost and information loss.

Conclusions: We propose a novel 3D deep learning PD classification model with an accuracy that can compete against other state-of-the-art models. The main difference this model holds is its lack of need for manual feature extraction and multi-modal analysis to raise model accuracy. Furthermore, the proposed model has a strong advantage in that it can be applied to any other task with a 3D input, extending its value to characterizing other pathological changes and accommodating other imaging modalities.
ABSTRACTS

References

Poster No 1398

Predicting Mental and Neurological Illnesses Using Cerebellar Heterogeneity

Milin Kim¹, Nitin Sharma², Esten Leonardsen³, Saige Rutherford⁴, Geir Selbæk⁵, Karin Persson⁶, Nils Eiel Steen⁶, Olav Smeland⁷, Torill Ueland⁸, Geneviève Richard⁹, Aikaterina Manoli⁹, Sofie Valk⁹, Christian Beckmann⁹, Andre Marquand¹⁰, Ole Andreassen¹¹, Lars Westlye¹², Thomas Wolfers¹⁴, Torgeir Moberget¹⁵

¹Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, Oslo, Norway, ²University of Tübingen; German Center for Mental Health (DZPG), Tübingen, Germany, ³NORMENT; University of Oslo, Oslo, Norway, ⁴Radboud University, Nijmegen, Netherlands, ⁵Oslo University Hospital; The Norwegian National Centre for Ageing and Health, Oslo, Norway, ⁶NORMENT; Division of Mental Health and Addiction, Oslo University Hospital & University of Oslo, Oslo, Norway, ⁷Norwegian Centre for Mental Disorders Research (NORMENT), Oslo, Norway, ⁸Norwegian Centre for Mental Disorders Research (NORMENT), Netherlands, ⁹University of Oslo, Norway, ¹⁰Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, ¹¹Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, NL, Nijmegen, Netherlands, ¹²Radboud University Nijmegen, Nijmegen, Gelderland, ¹³NORMENT, Oslo, Norway, ¹⁴Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway, ¹⁵Laboratory for Mental Health Mapping, University of Tübingen, Tübingen, BW, ¹⁶Norwegian Centre for Mental Disorders Research (NORMENT); OsloMet, Oslo, Norway

Introduction: The cerebellum has been associated not only with motor coordination but also with cognitive and emotional processing, extending its relevance to a broad spectrum of clinical conditions. As the case-control model overlooks individual-level variability, normative models have been used to map normative development and aging across the lifespan. The normative model is analogous to a paediatric growth chart used to examine how individuals develop and age. Therefore, we predicted mental and neurological illnesses, including autism spectrum disorder (ASD), mild cognitive impairment (MCI), Alzheimer’s disease (AD), bipolar disorder (BD), and schizophrenia (SZ), using the cerebellar lobular and voxel-wise normative modelling features. By assessing the predictive performance of the machine learning models, we investigated the impact of various feature categories.

Methods: We employed cerebellar volume and voxel-wise normative models that were introduced in (Kim et al., 2023) which trained on more than 27k individuals across 132 scanning sites, with an age range spanning from 3 to 85 years. The test set comprised more than 26k individuals without a diagnosis, along with clinical sets of 1,757 (Figure 1A). The cerebellar volume normative model utilised ACAPULCO (Han et al., 2020) algorithm, a convolutional neural network-based algorithm that divides the cerebellum into 28 lobules and voxel-wise model used SUIT (Spatially Unbiased Infratentorial Toolbox) (Diedrichsen et al., 2009) toolbox (Figure 1B). The spatial precision normative models enabled integration with existing cerebellar atlases, including 28 anatomical cerebellar regions, 10 regions of interest from the multi-domain task battery (MDTB) (King et al., 2019), and 17 regions of interest from resting-state connectivity (Buckner et al., 2011; Yeo et al., 2011). Here, we developed different machine learning models using raw scores, median and percentage of extreme deviation (threshold at |z| > 1.96) from the normative model mapped onto existing atlases as features (Figure 1C). Deviation score assess how an individual deviates from individuals without diagnosis at each lobule or voxel in the cerebellum. We assessed the diagnostic accuracy using the
Results: In our investigation, the voxel-wise models yielded slightly higher ROAUC performance compared to volumetric models (Figure 2A). The ROAUC values that surpassed chance levels are displayed in the figure. In the voxel-wise models, methods that used extreme negative percentage of deviations as features outperformed extreme positive percentage of deviations in the all three atlases. Notably, ASD, MCI and SCZ model predictions were better than BD and AD. Shapley Additive Explanation (SHAP) showed that regions important for predictions, where Figure 2B displays the extreme deviation of SHAP values.
Conclusions: We discovered that voxel-wise models that utilize percentage of extreme negative deviation exhibited superior performance in classifying mental and neurological disorders, while across atlases showed similar performance. We demonstrated the advantages of implementing normative modelling features in the classification. This underscores the constraints posed by anatomical boundaries of the cerebellum and highlights the importance of employing a functional map of the cerebellum.

References

Poster No 1399

Multi-modal predictors of fMRI-identified brain states

Karl-Heinz Nenning¹, Arielle Tambini¹, Eduardo Gonzalez-Moreira¹, Ting Xu², Takuya Ito³, Francisco Castellanos⁴, Stanley Colcombe¹, Alexandre Franco¹, Michael Milham²

¹Nathan Kline Institute, Orangeburg, NY, ²Child Mind Institute, New York, NY, ³IBM Research, Yorktown Heights, NY, ⁴NYU Grossman School of Medicine, New York, NY

Introduction: Human behavior and attentional focus vary over time. Functional magnetic resonance imaging (fMRI) is well-suited to track associated dynamic and spatial patterns of widespread network interactions, referred to as brain states¹. Previous work has shown that fMRI-identified brain states are related to fluctuations in ongoing behavior and may be promising markers of psychiatric disorders². However, practical challenges of high-quality fMRI data collection (extensive infrastructure, cost, challenges for patient populations), especially at large scales, fundamentally limit its utility. In contrast, pupillometry or electroencephalography (EEG) are readily available less expensive methods that are better suited for large-scale data collection and clinical applications. Here, we examine the utility of non-fMRI-based signals (pupillometry, EEG) to characterize and predict fMRI-identified brain states to bridge the gap between sensitive fMRI markers and more accessible physiological measures.

Methods: We studied an openly available dataset that includes the simultaneous collection of fMRI, EEG, eye tracking, and other physiological measures⁵. Data from 22 individuals were acquired across two sessions while participants performed multiple tasks including resting-state, flickering checkerboard, and naturalistic movie viewing paradigms, allowing us to characterize brain states associated with activity across stimulus-driven task conditions and task-free states. Co-activation pattern (CAP) analysis⁶ was used to characterize fMRI-identified brain states across task conditions. We first examined whether the strength of each CAP (i.e. graded measure of brain state) cross-correlated reliably with non-fMRI signals (i.e. pupil diameter, PD) at varying temporal lags. We next adapted a previously introduced regression framework to establish pupillometry and EEG predictors of time-varying fMRI-identified brain states⁶. The fMRI-identified CAP strength was used as a target in the regression framework, and for each time-point, non-fMRI features within a preceding time-window were used to train the coefficients of the prediction model. We performed cross-subject prediction (i.e. leave one participant out) to test the generalizability of non-fMRI predictors, and quantified performance with Pearson’s correlation between predicted and actual data.

Results: Temporal clustering of the fMRI data yielded 4 pairs of CAPs, comprising distinct modes of time-varying brain states: one CAP strongly weighted the visual network, another reflected internal vs. external focus (differentially weighting the default mode vs. dorsal attention network), and others weighted frontoparietal networks. Preliminary results of the cross-subject regression framework revealed that PD was predictive for visual CAPs during the checkerboard stimulus (r=0.3) and the internal-focus CAP during movie watching (r=0.25), but less reliable during rest (r<0.05 for all CAPs). Preliminary results using single electrode EEG prediction revealed reliable predictive performance (r>0.5) for all tasks and CAPs. Preliminary
analyses indicated that the electrodes associated with CAP-specific spatial patterns exhibited the most reliable predictions, demonstrating the feasibility of the approach.

Conclusions: Our preliminary findings suggest the feasibility of bridging the gap between sensitive fMRI markers of dynamic brain states and more readily scalable physiological measures such as EEG and pupillometry. A generalizable model could have practical implications, enhancing the value of more accessible physiological measures. Further research is necessary to identify the most sensitive non-fMRI features and their optimal predictive potential.

References

Poster No 1400

A Robust Pipeline For Personalised Localisation of Brain Regions Using Image Quality Transfer

Ying-Qiu Zheng1, Harith Akram2, Stephen Smith1, Saad Jbabdi3

1University of Oxford, Oxford, Oxfordshire, 2UCL Queen Square Institute of Neurology, London, UK, 3Oxford University, Oxford, United Kingdom

Introduction: Accurate identification and localisation of brain regions in individual subjects is increasingly important in both neuroscience research and clinical practice. In functional neurosurgery, e.g. deep brain stimulation, targeting precision is essential for symptom relief in various neurological and psychiatric disorders. However, this task is hampered by the lack of distinct contrast for many target brain structures on conventional medical images and significant variability in individual brain anatomies. A common practice is to rely on standardised atlases, but this often fails to account for inter-individual variations1-3. Advancements in neuroimaging have enabled brain region localisation in individual brains. For instance, a popular approach is the use of connectivity-based functional localisation with tractography or resting-state connectivity, alongside prior knowledge of a region’s connectional fingerprint. This however requires high-quality diffusion/functional MRI data, limiting application in clinical settings with scan-time constraints. To address this challenge, we developed LOCALISE, a tool that enables individualised delineation of brain regions. The main purpose of this tool is to enable connectivity-based localisation in low-quality datasets. Using Image Quality Transfer (IQT) techniques4-10, LOCALISE transfers anatomical information from large-scale high-quality MRI (e.g. HCP data) enabling functional localisation on clinical-quality data. Here, we focus on the ventral intermediate nucleus of the thalamus (Vim), a key DBS target for the treatment of tremor in Parkinson’s patients, to demonstrate LOCALISE’s capabilities, with ongoing work to incorporate more brain structures.

Methods: Localising Vim illustrates the idea behind LOCALISE. In theory, Vim can be found using literature-based connectional information, namely the connections to M1 and the contralateral Cerebellum. However, these connections cannot be robustly extracted. Instead, LOCALISE creates a large number of more “robust” connectional features, and learns to segment Vim using these features and the high-quality prior-based segmentation as a target “ground truth”. This mapping is then used on low-quality data where the direct prior-based method fails. To train LOCALISE for Vim, we used high-quality diffusion MRI data from the Human Connectome Project (HCP) to generate Vim locations and trained an IQT model10 to locate Vim in surrogate low-quality datasets based on their connectivity profiles. The segmentation model employs a Conditional Random Field (CRF)10 to map high-quality Vim labels to low-quality features. This CRF model is optimised to maximise the likelihood of correct HQ-Vim label assignments based on voxel-wise connectivity profiles. The trained model was then applied to left-out low-quality subjects and evaluated against their high-quality counterparts.
Results: Using Vim localisation as an example, LOCALISE’s accuracy was evaluated using the Dice coefficient and centroid displacement, the latter a measure of distance between the centroids of predicted and actual clusters. LOCALISE outperformed two established methods, the (original, simple) connectivity-driven and atlas-based approach, on HCP surrogate low-quality datasets, showing higher overlap with high-quality “ground truth” and greater reliability across varying data quality and scanning sessions. Notably, when applied to UK Biobank low-quality datasets, LOCALISE, trained on HCP data, generalised effectively, surpassing alternative methods in Vim localisation.
Conclusions: LOCALISE offers robust localisation of brain regions even when using clinical-standard data, and has the potential to enhance targeting accuracy in neurosurgical procedures. Its adaptability to diverse data conditions makes it a valuable tool in settings where high-quality MRI is unavailable or inappropriate for certain cohorts. The tool can be found in https://git.fmrib.ox.ac.uk/yqzheng1/python-localise.

References

Poster No 1401
Enhancing Alzheimer’s disease prediction using genetic-guided brain volumetric phenotype network
Yonghyun Nam1, Jakob Woerner1, Sang-Hyuk Jung1, Erica Suh1, Haochang Shou1, Li Shen1, Dokyoon Kim1
1Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA

Introduction: Genetic predispositions related to brain volumetric phenotypes are known to be associated with complex brain-related traits, including Alzheimer’s disease (AD), which often involves significant brain volume reduction. Recent genome-wide association studies (GWASs) have shown that brain imaging-derived phenotypes (IDPs) are phenotypically and genetically associated with AD. However, existing AD risk prediction models, primarily based on conventional polygenic risk scores (PRSs), are limited in capturing the complex relationships between IDPs and AD. To address these limitations, we have developed a network-based risk scoring model to enhance AD risk prediction ability.

Methods: We propose the BrainNetScore, a novel AD risk scoring model that quantifies genetic impacts of associations among multiple brain IDPs and AD incidence. First, a brain connectivity network was constructed using genetic correlations from the UK Biobank GWAS summary statistics across 96 regional brain volume IDPs. Subsequently, this network was expanded into a heterogeneous BrainNet graph, comprising 96 IDPs and their associated 12,043 common variants (SNPs), by attaching significant SNPs (P-value < 5e-8) to each brain IDP. The set of SNPs in BrainNet were then used to obtain individual genotype information from independent cohorts, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Next, label propagation algorithms were applied to generate individualized predicted scores for each IDP, leveraging genetic correlations and SNP effect directions. To provide a comprehensive view of risk factors with respect to AD, logistic regression was utilized to aggregate the predicted scores for the IDPs, denoting these aggregated scores as BrainNetScore.

Results: To build the BrainNet, we obtained the GWAS summary statistics of 96 brain volume IDPs for UK biobank European participants downloaded from the Brain Imaging Genetics Knowledge Portal (Big-KP). Individual genotype data for 914 samples (550 AD cases and 364 cognitive normal controls) were collected from ADNI and ADNI-WGS-2 with ADSP Follow-Up Study after excluding samples involved in International Genomics of Alzheimer’s Project (IGAP) consortium. To demonstrate the utility of BrainNetScore in predicting AD status compared to conventional risk models, PRSs, as a baseline model, were calculated using pruning and thresholding (PRS P+T, P-value threshold as 1e-6) with GWAS summary statistics from IGAP. We assessed the predictive performance of three models: a singleton scoring model, an additive model incorporating covariates (sex, age, and APOE), and a combined model integrating PRS and BrainNetScore. Across 10-fold cross-validation, the combined PRS + BrainNetScore model yielded an average AUC of 0.684 ± 0.034, surpassing both the PRS only model (0.595 ± 0.075) and the BrainNetScore only model (0.666 ± 0.029). Models with sex as a covariate further enhanced the predictive utility of BrainNetScore in predicting AD status compared to conventional models.
robustness of the combined model (0.684 ± 0.030). Additionally, when integrating APOE genotypes into the combined model, the predictive accuracy further increased (0.778 ± 0.043), suggesting the significant role of genetic factors in AD risk assessment (Figure 1).

Conclusions: The study demonstrates the enhanced predictive ability of the BrainNetScore model for AD risk, particularly when combined with conventional PRSs. These findings underscore the value of incorporating network-based approaches and comprehensive genetic information in improving AD risk prediction models. The enhanced predictive capability of the combined model shows promise for personalized medicine and early intervention strategies in AD and brain-related traits. Future research should focus on expanding the model’s applicability to a wider range of populations.

References

Poster No 1402

Unsupervised Learning for Lesion Detection on 7T Brain MRI in Patients with Focal Epilepsy

Soumen Ghosh1,2, Viktor Vegh1,2, John Phamguyen1,3, Shahrzad Moinian1,2, David Reutens1,3

1Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia, 2ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia, 3Royal Brisbane and Women’s Hospital, Brisbane, Australia

Introduction: The localization of a focal epileptogenic lesion on MRI by visual inspection is often challenging and even when a lesion is identified its delineation using current approaches can be incomplete. These considerations motivated the development of automated methods for lesion identification based on machine learning approaches.

Methods: The study was approved by the Human Research Ethics Committee Queensland (HREC/17/QRBW/284), and focal epilepsy patients were recruited from the Epilepsy Clinic at the Royal Brisbane Women’s Hospital (Brisbane, Australia). MRI scans were performed in-house at the Centre for Advanced Imaging, The University of Queensland. 3D GRE-MRI flow compensated scans were obtained using a 7T ultra-high field whole-body MRI research scanner (Siemens Healthcare, Erlangen, Germany) equipped with a single channel transmit and 32 channel receive head coil (Nova Medical, Wilmington, USA) using voxel size = 0.75 × 0.75 × 0.75 mm3. MP2RAGE data with the same resolution were also acquired. 7T MRI scans of the brain were acquired in patients with focal epilepsy and in healthy controls. Pre-processing of the T1 and T2-weighted images comprised skull stripping using SPM (Version 7.4) followed by the creation of an FSL brain mask (Version 6.0.7) and
registration to the MNI 1 mm³ brain template using MIPAV (Version 10.0.0). A one-class support vector machine (oc-SVM) was the constructed. Figure 1 shows two basic building blocks: unsupervised learning-based feature representation and anomaly detection. The first block extracts a latent representation of the patch from brain MRI using a Siamese autoencoder consisting of convolution and deconvolution layers. We implemented the state-of-the-art (SOA) method, and two machine learning methods, all of which use images patches as the input: • SOA: 2D patch-based autoencoder with input size 15×15×2 comprising two 15×15 obtained from T1 and T2-weighted MRI. • 2D patch-based autoencoder: Same as SOA with static (i.e., epoch independent) regularization incorporated into the loss function. • 2.5D patch-based autoencoder: SOA with static regularization and increased the input patch dimension to 15×15×6. Here, T1 and T2-weighted MRI patches are added from the other two orthogonal dimensions to increase the number of patches at the input from 2 to 6. In this case the autoencoder is able to extract information based on 3D brain information. The anomaly detection module employs an oc-SVM trained using the 64-entry feature vector extracted from either the SOA, 2D and 2.5D Siamese autoencoders. An oc-SVM model was trained and tested for each image voxel coordinate. Training utilised data from 62 healthy subjects by taking patches from two different healthy subjects at the same time. Data from 5 epilepsy patients were used for testing. The output was a score map of abnormal voxels. Model performance was evaluated by comparing the score map with the ground truth MRI, delineated on MRI by an expert neurologist aided by clinical findings, SPECT, and PET images. Lesion detection accuracy was calculated using Positive Predicted Value (PPV), Dice Index Score (DSC) and Jaccard Similarity Index between the predicted lesion and Ground Truth.

Results: All models were tested on five patients, and all models detected a lesion in four patients. For the four positive lesion patients, Figure 2 depicts the 7T brain MRI, the ground truth, and lesions identified by the SOA and 2D implementations. Lesion detection accuracy for the four patients is summarized in Table 1. Generally, the 2.5D model outperformed the 2D implementation and the SOA method.
Conclusions: The proposed 2.5D lesion detection model may provide an automated way to identify MRI-positive focal epilepsy lesions using T1 and T2 weighted MRI.

References

Poster No 1403

Revealing distinct neuroanatomical subtypes of Major depression disorder and Schizophrenia

Yinghan Zhu1, Norihide Maikusa1, Kiyoto Kasai1, Shinsuke Koike1

1The University of Tokyo, Tokyo, Tokyo

Introduction: Prior neuroimaging studies primarily focused on investigating neuroanatomical abnormalities in mental disorders such as major depression disorder (MDD) or schizophrenia (SCZ) use binary case-control approach. Brain structural abnormalities such as cortical thinning and subcortical volume increasing were reported in MDD or SCZ compared to healthy controls (HCs). We investigated neuroanatomical subtypes in multi-disorder, multi-site multi-protocol, using semi-supervised machine learning methods heterogeneity through discriminative analysis (Varol et al., 2017) to discover variations of anatomical alterations within disorders.

Methods: T1-weighted structural brain MRI scans from patients with MDD (n=544), SCZ (n=176), and 1,819 HCs, were obtained from 9 sites. Regional cortical thickness (CT), surface area (SA) and subcortical volumes (SV) served as features in building the classifier differentiating disorder subtypes from HCs. We used traveling subjects dataset to harmonize measures of CT, SA and SV data. Next, we fitted general additive models to only the HC data (n=1148) to estimate non-linear effects of age and sex for every structural feature; then we applied the fitted GAMs to obtain non-linear age- and sex-corrected features. Individuals those who were younger than 65 years old (MDD, n=445; SCZ, n=158) and HC (n=599) data served as training, test, and external validation datasets.

Results: Two distinct neuroanatomical subtypes were found for MDD and SCZ (Figure 1). In differentiating Subtype 1 or subtype 2 from HCs, the accuracy of each classifier was higher than those built for disorder without subtypes (MDD subtype1 vs HCs 79%; MDD subtype2 vs HCs 76%; MDD vs HCs 67%; SCZ subtype1 vs HCs 83%; SCZ subtype2 vs HCs 86%; SCZ vs HCs 75%). Indicating that by identifying subtypes of MDD and SCZ improved the performance in differentiating those from HCs.

Conclusions: Discovering of neuroanatomical subtypes of MDD and SCZ may be helpful to identify their prognosis and underlying neuropathological processes. Future prospective studies are required about whether the classifier could be actually helpful in the clinical settings.
ABSTRACTS

References

Poster No 1404

Junifer and Julearn: From Neuroimaging to Machine Learning models without expert-level coding skills

Federico Raimondo1,2, Synchon Mandal1,2, Sami Hamdan1,2, Shammi More1,2, Leonard Sasse1,2,3, Vera Komeyer1,2,4, Amir Omidvarnia1,2, Simon Eickhoff1,2, Kaustubh Patil1,2
1Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany, 2Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, 3Max Planck School of Cognition, Leipzig, Germany, 4Department of Biology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany

Introduction: Thanks to big data and computational power, the study of brain-cognition relationships using neuroimaging and machine learning (ML) has gained significant popularity1. Importantly, decisions in data processing2 and predictive modeling3 strongly impact the results. Also, misconceptions about ML procedures can distort or invalidate findings4, hence escalating the neuroimaging reproducibility crisis5. These decisions and implementations can become increasingly complex, posing challenges for early-career researchers: they require proficiency in diverse skills to deal with large-scale datasets, algorithms, and complex ML set-ups, while they also require domain-specific knowledge for experiment design and interpretation. To mitigate these issues, we introduce two complementary instruments: Junifer, a feature-extraction tool that does not require coding, and Julearn, an easy-to-use ML library. These tools aim to create a bridge between preprocessed neuroimaging data and ML-based analysis by emphasizing ease-of-use and maintainability.

Methods: ML-based neuroimaging analysis entails four steps: 1) preprocessing (e.g. using FreeSurfer, fMRIPrep, CAT, AFNI, ANTS, SPM, etc., 2) feature extraction, 3) ML model building and benchmarking, and 4) post-hoc model analysis (e.g. evaluate features importance)6. All steps entail technical and conceptual challenges. However, steps 2 and 3 are more vulnerable due to the complexity of the required code or scripts. We here propose to facilitate step 2 with Junifer, and step 3 with Julearn. Junifer (https://juaml.github.io/junifer) is a no-code tool that allows parametrizing each step of a feature extraction pipeline in a text file, using the simple YAML syntax specification. By specifying the dataset (or its structure) and a list of markers to compute, the user can easily compute all the features required for their ML models. And with a just a few more lines of text, all the processing can be done in computational clusters. Among Junifer’s most prominent features are a vast list of built-in datasets, parcellations, masks and markers, as well as processing in native and standard spaces (various MNI). Feature extraction is transparent and reproducible, as the full pipeline configuration is stored within each output file. Julearn (https://juaml.github.io/julearn) is created for building and evaluating ML models. Built on top of the highly influential scikit-learn7, Julearn offers a robust interface to build complex ML pipelines in a user-friendly way suitable also for novice programmers. It allows users to evaluate and compare ML models in a CV-consistent manner, minimizing the risks of leakage and overestimation of results. Further features include neuroimaging specific models, corrected statistical test for ML models’ comparisons8, interactive results visualization, and inspection tools to link to post-hoc analysis.

Results: To exemplify, we aimed at evaluating the performance of a ML-model to predict chronological age from cortical and subcortical functional connectivity (FC) in native space. The 34-lines long text file allows us to compute the FC for all the participants and resting state recordings (N=4800) in the HCP-YA dataset, combining a cortical and a subcortical parcellation (Figure 1-A). With 42 more lines of Python code, we can evaluate the performance of the neuroimaging specific Connectome-Based Predictive Modelling (CBPM)9-based linear regression model, using nested cross-validation and hyperparameter tuning (Figure 1-B).

Conclusions: Junifer and Julearn enable researchers to easily and correctly bridge neuroimaging and ML models. Junifer provides the tools to process large-scale neuroimaging datasets and extract tabular features for ML applications. Julearn allows users to build and compare ML models from any tabular dataset minimizing the code complexity, lowering the coding skills required to perform advanced ML-based analysis.
Reference

Poster No 1405
Structure-function coupling of the brain using Graph Neural Network
Yeongjun Park1, Mansu Kim2, Bo-yong Park3,4,5

1Department of Computer Engineering, Inha University, Incheon, Republic of Korea, 2Graduate School of Artificial Intelligence, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea, 3Department of Data Science, Inha University, Incheon, Republic of Korea, 4Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea, 5Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea

Introduction: One of the core assumptions in neuroscience is that brain structure and function are strongly intertwined. Previous neuroimaging studies proposed methods for predicting functional connectivity from structural connectivity.
ABSTRACTS

information based on eigenvector decomposition approaches\(^1\) and neural network-based techniques\(^2\). However, the predictive performance has not been optimized at an individual subject level. In this work, we propose a model that integrates eigenvector decomposition and graph neural network (GNN) methodologies, which appropriately infers relationships of the latent features embedded based on the graph structure among different brain regions\(^3\).

Methods: We obtained preprocessed diffusion-weighted imaging (DWI) and resting-state functional magnetic resonance imaging (rs-fMRI) of 974 young, healthy subjects from the Human Connectome Project database (age = 28.76 years; 54.93% female)\(^4\).\(^5\). We constructed the structural connectivity via diffusion tractography and built the functional connectivity by calculating inter-regional correlations of functional time series, and the matrices were mapped onto the Schaefer atlas with 200 parcels\(^6\). We estimated the low-dimensional representations of the structural connectivity (i.e., structural gradients) using nonlinear dimensionality reduction techniques, and used these gradients for predicting the functional connectivity matrix. We built a prediction model using GNN, composed of three graph attention network (GAT) layers and one fully connected layer\(^7\), to predict the functional connectivity matrix from the structural connectivity matrix (Fig. 1). The parameters of GAT layers were set as follows: the number of output channels = 30; the number of heads = 2. We randomly divided the data into training (n = 624), validation (n = 155), and test datasets (n = 195). The model was trained using the training data and validated using the validation dataset. The performance of the model was assessed using the test dataset based on the Pearson correlation between the upper triangular elements of the original and predicted matrices. Additionally, we re-performed the above processes based on the five-fold cross-validation instead of the holdout validation approach.

Results: Our model showed high performance in predicting functional connectivity at an individual level. The mean ± standard deviation correlation coefficients were 0.843 ± 0.037 across individuals. It outperformed previous approaches based on the Riemannian optimization approach, which showed a performance of 0.776 ± 0.052\(^1\), as well as the previous deep learning-based approach, which showed 0.55 ± 0.1\(^1\). When we performed the five-fold cross-validation, the performance was 0.843 ± 0.003 across the cross-validation folds, and it outperformed the Riemannian optimization approach based on the three-fold cross-validation (0.775 ± 0.049).

Conclusions: In this study, we proposed an integrated model for predicting the functional connectivity matrix from the structural connectome information. We confirmed that the proposed model outperformed previous state-of-the-art methods. Our approach may provide a new direction in structure-function coupling studies in neuroscience.

References

Acknowledgements

This study was funded by the National Research Foundation of Korea (NRF-2021R1F1A1052303; NRF-2022R1A5A7033499), Institute for Information and Communications Technology Planning and Evaluation (IITP) funded by the Korea Government (MSIT) (No. 2022-0-00448, Deep Total Recall: Continual Learning for Human-Like Recall of Artificial Neural Networks; No. RS-2022-00155915, Artificial Intelligence Convergence Innovation Human Resources Development (Inha University); No. 2021-0-02068, Artificial Intelligence Innovation Hub), and Institute for Basic Science (IBS-R015-D1).
Human functional connectome fingerprinting using resting-state dynamic functional connectivity

Amin Ghaffari1, Yufei Zhao1, Jason Langley1, Xu Chen1, Xiaoping Hu1
1University of California, Riverside, Riverside, CA

Introduction: Resting-state functional connectivity (FC) networks have distinct, personalized connectivity patterns that could act as a unique fingerprint for individual identification (Kazeminejad, A. (2019)). Prior work on functional connectome fingerprinting relied on static FC patterns and considered a single functional connectivity map across the whole data collection session for subjects for individual identification (Finn, E.S. (2015)). However, the brain is a dynamic system that switches between multiple metastable states rather than staying in a single state (Fox, M.D. (2005)), and each of the metastable states could represent a different FC map that has unique information for each individual. Based on this understanding, incorporating dynamic FC information may improve identification accuracy in FC fingerprinting.

Methods: In this paper, we use resting state data from the Human Connectome Project (HCP) with a sample size of 100 subjects to evaluate the performance of our dynamic states-based brain fingerprinting method. Regions of Interest (ROIs) are extracted based on the 268-node functional parcellation map of (Shen, X. (2013)). Using the time series of each ROI and a sliding time window of 20 time points, we develop a framework for the analysis of dynamic functional connectivity of the subjects and corresponding individualization. Initially, at each time window, we calculate the Pearson correlation coefficients between pairs of regions and obtain the functional connectivity maps. By subtracting the mean of all of the FC maps across all subjects and time windows, we obtain the demeaned version of FC networks. We consider each brain to go into 3 dominant connectivity states within the scan session, and utilize the K-Means clustering methods twice to obtain these states. To achieve this, first, we apply a data reduction technique on the FC maps in which we sum all correlation coefficients for each ROI and call that the correlation strengths (Ou, J. (2013)). Then, we perform K-Means (K=30) clustering on correlation strengths and calculate the centers of clusters for each individual. Next, we place all of those clusters’ centers from all subjects into a pool of correlation strengths and acquire the main dominant states by computing the 3 main cluster centers. By calculating the correlations between each individual’s correlation strength at each time window with the dominant brain states, we obtain the average representation of the 3 states for each subject. Finally, by normalizing and concatenation of those representations, we achieve a final vectorized representation for the individuals, and using the Pearson correlation coefficient between these vectors, we identify subjects’ scans from the rest of the group.
Results: Our results demonstrate a notable enhancement in identification accuracy with dynamic states-based fingerprinting. More specifically, incorporating dynamic functional connectivity patterns for identification resulted in an accuracy of 100% when identifying day 2 scans based on day 1 data, and 98% when identifying day 1 scans using day 2 data, surpassing the performances based on the whole-brain static functional connectome, which is below 95% (Finn, E.S. (2015)).

Conclusions: Our results indicate that for more accurate individualization of the human functional brain map, it is beneficial to consider the effects of dynamics in the resting state network. Considering the average functional connectivity map reduces the differentiation power between subjects and is associated with more misidentified samples because it neglects the inherent dynamics of the functional connectivity pattern of the brain. In contrast, looking at representations of different brain states by each subject has a better “fingerprinting” ability and therefore is a better method of identification.

References
Poster No 1407

Deep neural networks predict future overweight/obesity and obesity-related major psychiatric disorder

Heehwan Wang1, Yoonjung Joo2, Eun-Ji Lee1, Bo Gyeom Kim1, Gakyung Kim1, Jiook Cha3

1Seoul National University, Seoul, Other, 2Sungkyunkwan University, Seoul, Other, 3Seoul National University, Seoul, Seoul

Introduction: Childhood overweight/obesity is a global health issue affecting life-long risks for chronic diseases and mental health. Although the role of the brain in the development of overweight/obesity is well recognized, the potential of the brain as a predictor for future childhood overweight/obesity remains unclear. We hypothesize that the brain structure can accurately predict whether children become overweight/obese within 1 and 2 years via deep neural networks.

Methods: We used brain structural MRI data and behavioral assessment data of 11,316 children (ages 9 to 10 years) from the Adolescent Brain Cognitive Development (ABCD) study. We calculated Body Mass Index standard deviation score (BMI-sds) of children based on the Growth Chart released by the Center for Disease Control and Prevention, used for an index of weight status at the baseline year. We respectively assigned children who were in the normal weight status at the baseline year but became overweight/obese and excessively gained weight (the change of BMI-sds > 0.2) within 1-year follow-up and 2-year follow-up to become overweight within 1 year and become overweight within 2 years group. If children did not satisfy those requirements, they were assigned to still normal group. We employed transfer learning approach to predict future overweight/obesity. We pre-trained deep neural networks to predict BMI-sds at the baseline year from brain structure MRI at the baseline year and respectively fine-tuned them to predict whether children become overweight/obesity within 1-year follow-up and 2-year follow-up based on brain structure MRI at the baseline year. Furthermore, we employed explainable AI (XAI) algorithms to investigate brain structures attributing to deep neural networks’ predictions, i.e., the combination of SmoothGrad and Integrated Gradients. Using XAI-driven attribution scores, we performed clustering analysis and statistical analyses to test the difference in polygenic risk and the development of behavioral problems between children who became overweight/obese. To investigate the utility of deep neural networks and transfer learning approach, we fine-tuned those pre-trained model, learned to predict BMI-sds at the baseline year from brain structure MRI at the baseline year, to predict the diagnoses of major psychiatric disorders which are frequently comorbid with obesity, such as Major Depressive Disorder and Anxiety disorders.

Results: Our results showed that deep neural networks accurately predict current weight status ($R^2 = 0.49 \pm 0.01$; Mean Squared Error = 1.97 ± 0.06) and transfer learning approach significantly improved future overweight/obesity prediction within 1 year (ACC = 0.64 ± 0.03; AUROC = 0.70 ± 0.02) and 2 years (ACC = 0.61 ± 0.01; AUROC = 0.66 ± 0.03). When investigating brain structures attributing to the prediction of current weight status and future overweight/obesity, we found the brain stem, the pituitary gland, the cerebellum, various temporal lobe regions, and the amygdala were important for deep neural network’s prediction. Additionally, XAI-driven the amygdala subnuclei attribution scores for future overweight/obesity revealed individual differences in the development of CBCL anxiety problem (Cohen’s $d = 0.14$, FDR corrected p value < 0.05). One step further, we investigated the potential of pre-trained deep neural networks for current weight status by demonstrating significant improvements in classifying current diagnoses of major psychiatric disorders frequently comorbid with obesity, such as Major Depressive Disorder (ACC = 0.60 ± 0.04; AUROC = 0.67 ± 0.05).
Conclusions: We showed the utility of deep neural networks and transfer learning approach in early detection of childhood overweight/obesity. Using XAI algorithms, we revealed the individual differences in the development of anxiety problems. One step further, we also demonstrated the potential of our novel transfer learning approach in psychiatric research.

References

Poster No 1408

Predictability of phenotype information from functional connectivity in large imaging datasets

Jessica Dafflon¹, Dustin Moraczewski¹, Eric Earl¹, Gabriel Loewinger¹, Patrick McClure², Adam Thomas¹, Francisco Pereira¹
¹National Institute of Mental Health, Bethesda, MD, ²Naval Postgraduate School, Monterey, CA

Introduction: One of the ultimate objectives of neuroimaging research is to create predictive models that can reveal the connection between patterns of functional connectivity and observable characteristics or behavior, often called phenotypes. Previous studies have shown that models trained to predict behavioral features from the individual's functional connectivity have modest to poor performance. One possible reason is that brain-behavior models have focused on meticulously chosen individual phenotypes scrutinized in isolation. Previous research has shown predicting latent phenotypes, i.e., a decomposition from the phenotypes obtained using dimensionality reduction algorithms, can yield better performance than predicting individual phenotypes. The results were, however, mainly evaluated on one dataset. To address this gap, we compare the predictive performance obtained from untransformed phenotypes and latent phenotypes, and also assess the model's performance with and without regressing out covariates.

Methods: We analyzed the reliability and predictability of phenotypes and latent phenotypes components within two large neuroimaging datasets, the Human Connectome Project (HCP; N=964; development set N=856; test set N=108⁶ and the Philadelphia Neurodevelopmental Cohort (PNC; N=973; development set N=864; test set N=109⁴. We chose phenotypes that span behavioral domains of cognition and personality. We extracted corresponding singular value decomposition (SVD) representations of these phenotypes, and assessed if the latent phenotypes are more predictable than the original phenotype variables. For the prediction experiments, we used a Ridge regression model, estimating result variability over 100 bootstrap samples. We also assessed the impact of regressing out age and sex and their squared interaction from the phenotypes and how these impacted the prediction performance. Additionally, we explore how removing unreliable phenotypic information from the targets of the training data changes the model's performance and evaluate if there is a significant change in predictive performance using a critical difference analysis.

Results: If not accounted for, the covariates can inflate the prediction results; this is particularly visible, in the relation between the phenotypic variable “strength unadjusted” and sex in the HCP dataset (r=0.6 before; r=0.1 after adjustment). Even after accounting for the covariates, prediction performance is low in both datasets. To assess if latent phenotypes were more
predictable than individual phenotypes, we computed the SVD of the phenotypes on both datasets. Remarkably, we observed that only the loadings of the first 4-6 SVD components obtained from the phenotypes were reliably identified when the same experiment was repeated on different splits of the same dataset (Fig 1). Finally, we examine how removing unreliable phenotypic (cutoff 30/100 in our reliability analysis) information from the targets of the training data changes the model’s performance. We observed that reconstructing the phenotypes using only the first five components achieved a very similar performance as using all components, indicating that most of the information relevant to prediction is present in the first components and the remaining can be filtered out without harm to the predictive performance (Fig 2).

Figure 1: Latent phenotypes reliability for both datasets HCP (in green) and PNC (in blue). The loadings of the first 5 SVD components were reliable (HCP - 1st: 96/100; 2nd: 96/100; 3rd: 89/100; 4th: 89/100; 5th: 32/100) and (PNC - 1st: 94/100; 2nd: 95/100; 3rd: 97/100; 4th: 46/100; 5th: 38/100) of the 100 permuted repetitions. The colorbar represents the number of times the component loadings could be matched between SVDs from each half of the dataset over the 100 repetitions (i.e., the darker the color means that the component was more often identified as having the highest correlation). The results show all the components that explain 95% of the variance.

Figure 2: Predictability of phenotype variables in the test set, quantified by the correlation between predictions and true values, for HCP (a) and PNC (b). Each plot has six prediction curves, each corresponding to the performance of a model trained using reconstructions of the phenotype measures using the first 1 through 5 components obtained from the SVD, as well as all of them. The data points and connecting lines depict the mean prediction performance, and the shaded regions represent its standard deviation across multiple resamplings. Critical difference diagrams for the HCP (c) and PNC (d), showcase if there is a significant difference in the model’s performance when using all components or a fraction of them. For the HCP data, there was no significant difference in the model’s performance when using 2, 4, or all components. For the PNC dataset, there was no significant difference when using all or 5 components. A look-up table for the phenotype acronyms is provided here (https://bit.ly/othm202tables).
Conclusions: If not accounted for, covariates can inflate the performance of predictive models. We observed that apart from the first latent phenotypes the remainder were not reliably identified over repetitions of the same dataset. Highlighting the fact that most of the predictive information is present in the first components, we showed that removing the remaining components did not significantly impact the model’s performance (Fig 2). In summary, our study sheds light on the intricate relationship between resting state functional connectivity, predictability, and reliability of phenotypic information.

References

ABSTRACTS

Poster No 1409

Disentangled Representation Learning for Capturing Individualized Atrophy of Alzheimer’s Disease

Zhuangzhuang Li¹, Yibao Sun¹, Kun Zhao¹, Yong Liu¹

¹School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China

Introduction: Alzheimer’s disease (AD) is a highly heterogeneous neurodegenerative disease, characterized by cognitive decline, irreversible memory loss, psychiatric symptoms, and brain atrophy. Capturing individualized pathological changes from healthy controls (HC) to AD is critical for early diagnosis and targeted treatment. However, existing studies focus on the group averages, assuming homogeneity between AD patients. We proposed a novel deep disentangled generative model (DDGM) for capturing individualized neuroanatomical alterations. The proposed method disentangles AD into “realistic” healthy counterfactual images and residual maps. The residual map can localize hypothetical abnormalities within a normal brain image that may cause it to be diagnosed with AD.

Methods: DDGM is composed of two encoder-decoder branches and a decoder branch. One encoder-decoder branch generates pseudo-healthy images by adversarial training, and the other is for synthetic disease residual maps. The decoder branch is for facilitating the training process. From Fig.1B, we can see that an input image can synthesize a realistic pseudo-healthy image, reconstruct the input image, and produce a residual map. The residual map indicates the underlying abnormal changes with disease progression.

Results: Preserving the healthiness and subject identity of pseudo-healthy images for medical image translation tasks is important. The biological validity of synthetic pseudo-healthy images was evaluated by longitudinal data (HC convert to AD) from the ADNI database. We calculated the structural similarity index (SSIM) between synthetic pseudo-healthy images and longitudinal HC images to guarantee healthiness when AD images are fed into DDGM. The generated pseudo-healthy images and longitudinal HC images have a similar image structure (SSIM: 89.98% ± 0.04, Fig. 1C). To preserve the subject identity, we computed the SSIM values between synthetic pseudo-healthy images and original images across the testing subjects. The mean SSIM values between synthetic HC images produced by AD and longitudinal HC images are 98.04% ± 0.13. The generated HC images and original HC images have a similar image structure (SSIM: 98.71% ± 0.20, Fig. 1D) when HC images are fed into DDGM. The residual maps generated by DDGM can reflect the brain atrophy patterns of AD individuals. Finally, we used the ADNI dataset to explore the brain atrophy patterns of each condition in the human brain, such as HC, PMCI, SMCI, and AD. As shown in Fig. 1E, it is observed that AD, PMCI, SMCI, and HC showed an increasing trend of brain atrophy. The regions with the most severe gray matter atrophy were found in the hippocampus, amygdala, and part of the temporal lobe regions by AD abnormal residual maps.

Conclusions: We proposed a novel DRL-based model for capturing individualized neuroanatomical alterations. The proposed model can synthesize realistic healthy counterfactual images and produce saliency residual maps to indicate the underlying abnormal regions for interpretation. The saliency residual maps can help neurologists to understand the changes in disease progression. We believe that our proposed method will open new avenues for improving individualized diagnosis and the development of precision medicine for clinical intervention.
Enhanced Functional Connectivity Representation by Contrastive Learning for Brain Disease Diagnosis

Wonsik Jung', Heung-Il Suk

'Korea University, Seoul, Republic of Korea

Introduction: Deep learning models utilizing resting-state functional magnetic resonance imaging (rs-fMRI) have been widely used for diagnosing psychiatric conditions like major depressive disorder (MDD) and autism spectrum disorder (ASD). However, the high costs of data collection and the inherent complex, high-dimensional nature of rs-fMRI data limits its availability, affecting both the statistical power and generalizability of these models in clinical settings. To overcome these issues, existing studies focus on two main strategies: i) data augmentation and ii) transfer learning. The objective of this work is to introduce a novel framework combining multi-view region masking with a self-supervised learning approach, leveraging these strategies to enhance the diagnosis and analysis of brain disorders.

Methods: As depicted in Figure 1(a), our proposed framework is structured into two phases: i) the pretext model, which serves as the backbone network using an autoencoder (AE)-based architecture. This model is designed to learn enriched functional representation through functional connectivity (FC) from unlabeled fMRI data and ii) a fine-tuning model trained on labeled (unseen) fMRI data for brain disorder-specific tasks. To be specific, for the pretext model, we employ a random ROI-level masking strategy to augment the FC matrices and then feed into the shared networks for inter-regional relation learning in a self-supervised learning manner. Henceforth, this model undergoes fine-tuning to refine functional representation for brain disorder-specific diagnosis and analysis.
Results: We compared our proposed framework with AE-based approaches\(^2\) and state-of-the-art methods\(^{6,7,8}\). Our method achieved superior results in 5-fold cross-validation, with an average accuracy of 73.38% (±3.01) and an AUC of 0.778 (±0.045) on the ABIDE dataset, and similarly, an accuracy of 75.95% (±2.64) and an AUC of 0.830 (±0.035) on the REST-MDD dataset, surpassing all competing methods. Furthermore, to validate the generalizability of our approach, we implemented an ablation study, which involved altering the ratio of random ROI-level masking (as shown in Figure 1(b)) and conducting cross-site classification. Lastly, we applied layer-wise relevance propagation\(^9\) to obtain insights into the interconnections across multi-institutional datasets. As depicted in Figure 2, we observed statistically significant representative regions between groups, colored red for \(p<0.05\) (SOG.L, MOG.L, SPG.R, ANG.R, PCUN.L, PCUN.R, PAL.R, CRBL6.R, IFGoperc.L), yellow for \(p<0.01\) (SMA.R, OLF.R, REC.R, ACG.L, ACG.R, HIP.L, CAL.L, FFG.L, SMG.R, CRBL9.L), and green for \(p<0.001\) (MFG.R, PAL.L). Notably, among them, specific regions (e.g., the superior occipital gyrus (SOG), middle occipital gyrus (MOG), superior parietal gyrus (SPG), angular gyrus (ANG), precuneus (PCUN), hippocampus (HIP), anterior cingulate gyrus (ACG), middle frontal gyrus (MFG)) have been confirmed to be associated with autism.

Conclusions: We introduce a novel deep learning framework for diagnosing psychiatric disorders using fMRI, effectively addressing the challenges of high data collection costs and data complexity. Our framework, integrating multi-view region masking with self-supervised learning, consists of a two-phase approach: an AE-based model for training from unlabeled data and a fine-tuning model for specific brain disorders. Through extensive experiments conducted on two multi-institutional datasets, our method demonstrated the superiority of accuracy and generalizability compared to comparative methods, with layer-wise relevance propagation providing further insights into critical brain regions for diagnosis.
Results: SVM outperformed RF and LDA reaching a high accuracy of 82.69% with GCOR robustly across several K values (Figure 1). LDA achieved slightly lower, while RF had the poorest performance with prominent fluctuation (Figure 1).
Classification based on EC maps presented analogous results with maximum accuracy 80.29% using SVM. All algorithms were improved with dimensionality reduction independently of the input maps. To identify and visualize the contributing features to the SVM classification the minimum K voxels required were retrieved and reshaped back to the three-dimensional brain for both GCOR (K = 33000) and EC (K = 27000) (Figure 2). The mask is estimated as the intersection of features (voxels) selected at each iteration of LOGOCV SVM classification with SelectKBest (Figure 2).

Conclusions: SVM classification accurately differentiated the STN-DBS ON and OFF states and revealed specific brain patterns with predominant area the temporal lobe. GCOR and EC maps exhibited equivalent classification accuracy with significantly overlapping selected regions. The selected attributes that detected brain connectivity modifications in STN-DBS may present an essential signature for refining DBS in PD.
Predicting Cognitive Abilities with Graph Signal Processing Metrics

Mikkel Schöttner¹, Thomas Bolton², Jagruti Patel³, Patric Hagmann²

¹University of Lausanne, Lausanne, Vaud, ²Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland, ³CHUV, Zurich, Not Specified

Introduction: Predicting behavior from neuroimaging data comes with the prospects of selecting an optimal treatment, detecting mental illness at an early stage, or forecasting cognitive development (Wu et al., 2023). As a notable example, cognitive features have been predicted from functional connectivity (FC) through kernel ridge regression (KRR) (He et al., 2020). However, KRR does not allow direct inference about which brain networks drive the prediction, as it uses the whole feature vector for training. Graph signal processing (GSP) is a multimodal framework that expresses functional brain time series in terms of a basis of connectome harmonics that contrast structural brain features across spatial frequencies (Huang et al., 2018). Advanced GSP measures like the structural decoupling index (SDI) (Preti & Van De Ville, 2019) enable efficient fingerprinting (Griffa et al., 2022), and might prove useful for behavioral prediction as well. Here, we explore how GSP metrics, combined with an elastic-net regression scheme, compare to the FC/KRR approach in predicting a factor reflective of cognition. We also pinpoint optimal parameter choices for this task.

Methods: We used 847 subjects from the Human Connectome Project (HCP) dataset (Van Essen et al., 2012). As a predictive target, we chose one of four factors that optimally summarize the behavioral variables from the HCP dataset (Schöttner et al., 2022): cognition. For each subject, using T1-weighted and diffusion-weighted imaging data, deterministic fiber tracking was performed with Connectome Mapper 3 (Tourbier et al., 2022), and a structural connectivity (SC) matrix was created using the Lausanne 2018 atlas (Cammoun et al., 2012) at scale 3 (R=274 regions) with normalized fiber density as edge weight. Resting-state functional magnetic resonance imaging (fMRI) data were detrended, regressed for six motion parameters and their derivatives, and parcellated using the same atlas. Finally, the regional time series were z-scored. Two GSP features were computed: the SDI, which measures how much the functional signals are constrained by the underlying structural connectivity (higher values = less constrained) (Preti & Van De Ville, 2019), and the power spectral density (PSD) of the fMRI signals across spatial frequencies. As graph shift operator (GSO, the quantity that connectome harmonics are derived from), we compared the normalized Laplacian and the modularity matrix (Petrovic et al., 2020). For the SDI, a cutoff frequency separating low and high frequencies must be chosen. This can involve (1) a half-half split (i.e., cutting at R/2), (2) choosing the frequency that splits cumulative PSD in half for each time point (individual cumulative sum), (3) using the mode over time points (cumulative sum), or (4) following (2) on the mean PSD spectrum over time (mean cumulative sum). For prediction, an elastic-net regression was evaluated using nested cross-validation with 10 repeated random splits in the inner and outer loops, placing members of the same family in the same split. As a measure of prediction accuracy, we considered the coefficient of determination (R²). The same evaluation scheme was used for FC/KRR as a baseline.

Results: Both PSD and SDI yielded a median predictive performance close to the baseline with the right parameters (Fig. 1A). In terms of GSO, the normalized Laplacian seemed to work better for PSD and the modularity matrix for the SDI, for which splitting the signal by half was also the optimal choice. Fig. 1B shows the absolute values of the beta coefficients mapped to the brain surface for the best-performing model using the SDI. The largest coefficients were in the left and right superior parietal cortex, and the right inferior parietal cortex.

Conclusions: GSP-derived metrics enable similar predictive performance as FC to predict a factor reflective of cognition, with the added benefit of allowing the direct investigation of what regional features drive the prediction in the case of the SDI.
ABSTRACTS

Poster No 1413

Predictive Coding Theory Inspired Brain Informer Model for Deciphering Mental States Across Subjects
Zi-Han Wang1,2, Chao-Gan Yan3

1Institute of Psychology, Chinese Academy of Sciences, Beijing, Beijing, 2Department of Psychology, University of Chinese Academy of Sciences, Beijing, China, 3Institute of Psychology, Chinese Academy of Sciences, Beijing, Beijing

Introduction: Decoding the mental states of the brain across diverse subjects through neural activity using non-invasive resting-state functional magnetic resonance imaging (fMRI) has always been a challenging task. Inspired by the predictive coding theory (Eslami 2018; Friston 2018; Ryskin 2023), which bears a resemblance to the way the large-scale language models, such as GPT-4, generate coherent text by predicting the next word when processing text, we proposed a mental state classification model based on the spatial-temporal Brain Informer. Our model simulates the brain’s cognitive prediction...
process by continuously predicting fMRI trajectories and deciphers mental states across diverse subjects based on a multi-task learning model.

Methods: In this work, we utilized 4 datasets. The CoRR dataset (Zuo 2014) comprises the rest fMRI data from 450 subjects. The Rumination dataset (Chen 2020) includes the fMRI of 41 healthy participants guided by a rumination paradigm in 4 mental states: resting, autobiographical memory, rumination, and distraction (Figure 1A). The Rumination_Suzhou dataset (Jia 2023) involves fMRI from 57 healthy subjects and 62 Major Depressive Disorder (MDD) patients during the rumination task. We also employed the DIRECT phase II dataset (Chen 2023), which contains data from 1216 healthy participants, 1502 MDD patients, 205 Bipolar Disorder (BD) patients, and 314 Schizophrenia (SCZ) patients. Our Brain Informer model (Figure 1B), a Transformer-based time series forecaster using Prob Attention (Zhou 2021), learns time series information for multi-step predictions. We enhanced Informer with a spatial Attention Map to understand interactions between brain regions. The model was pretrained on the CoRR dataset for predicting fMRI time series. We then employed multi-task learning, fine-tuning the model with the Rumination dataset, concurrently handling fMRI time series prediction and mental state decoding as parallel tasks. Subsequently, we validated its cross-subject decoding capability with an independent Rumination_Suzhou dataset. Finally, we used the DIRECT phase II dataset to examine predictive patterns in different patient groups during resting states, aiming to understand the relationship between mental states and mental disorders.
Results: Experimental results indicate that our model competently predicts fMRI time series (Figure 2A). Incorporating a classification task into the model enables the differentiation of mental states, while also improving the prediction of fMRI time series (Figure 2D). Additionally, integrating spatial attention helps capture interactions between brain regions in the fMRI time series, benefiting both prediction and classification tasks (Figure 2C, 2D). To demonstrate the model’s capability for cross-subject mental state classification, we tested on a wholly independent dataset (Figure 2E, 2F). The prediction correlation reached 69.10%, the accuracy for time segments classification reached 71.72%, and the cross-subject classification accuracy rose to 82.47%, which substantiates its generalizability and robustness. Under the validation of a big dataset, we found that patients with depression exhibit more autobiographical memory and rumination behaviors (Figure 2B). This discovery confirms previous research findings. Using our model to classify the mental states of participants can, to some extent, assist in the diagnosis of mental diseases.

Conclusions: We developed a predictive coding-based fMRI classification model, akin to language models like GPT-4, for decoding brain mental states. It successfully predicts fMRI time series, and classifies mental states, aided by spatial attention mechanisms. Validated with the independent dataset, our model manifested appreciable generalization performance for practical application. Our study links rumination, memory, and MDD, showing more memory and rumination in depression. Future work aims to enhance its capabilities using larger datasets and detailed emotional and linguistic decoding.
Methods: AutoML-multiverse framework Our innovative AutoML-Multiverse framework, building on prior work\(^3\) efficiently searches a prediction space formed from thousands of ML pipelines. It distills high-dimensional data to a low-dimension configuration space that can be efficiently sampled using Bayesian Optimisation. Instead of identifying a single best pipeline, this approach constructs fully data-driven ensembles, combining complementary information from different pipelines to improve predictions. For our initial analyses, we leveraged a configuration space crafted from 20,000 ML pipeline instances across 64 OpenML datasets, as per\(^1\), and initiated our test dataset’s interaction with the pre-existing autoML-system with a warm start. Objective and Analysis Our primary aim was stratification across three diagnostic categories: (i) Cognitively normal (CN) vs. Alzheimer’s disease (AD); (ii) AD vs. mild cognitive impairment (MCI) vs. CN; and (iii) distinguishing stable MCI (sMCI) from fast progressive (pMCI). We compared our autoML framework against nine separate ML models and a stacked ensemble of these models. Each task was run twice: first with only neuroimaging features and secondly with only age, sex, and MMSE scores. Data We used volumetric data extracted from T1-weighted structural MRI (sMRI) scans and clinical data sourced from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Volumetric features were ventricles, hippocampus, whole-brain, entorhinal, fusiform, and mid-temporal regions. Data were ICV corrected and standard scaled. We had n = 606 (303 CN and 303 AD) for task 1, n = 1930 (760 CN, 867 MCI, and 303 AD) for task 2, and n = 369 (224 sMCI and 145 pMCI) for task 3.

Results: The results are depicted in Figure 1 using the holdout test dataset. Standalone ML models demonstrated limited predictive capability, while the stacked ensemble model exhibits a marginal performance improvement compared to individual models. The autoML ensemble models consistently performed with higher accuracy across the tasks. Additionally, our findings highlight the utility of neuroimaging (sMRI) data, particularly in differentiating sMCI from pMCI, with the autoML ensemble 73% accuracy in discriminating between these categories. This emphasizes the clinical relevance of leveraging sMRI-based methodologies, providing valuable insights for precise stratification in clinical settings.
Conclusions: The preliminary results yield three insights: firstly, autoML ensemble exhibit superior predictive capabilities compared to individual pipelines, highlighting their efficacy in predictive modelling. Secondly, the autoML-multiverse approach, assembling ensembles of pipelines in a data-driven manner, circumvents biases and arbitrary decision-making. Thirdly, the integration of neuroimaging with autoML emerges as a potent and clinically relevant tool, particularly evident in tasks such as distinguishing slow and fast progressors, suggesting potential applicability in future clinical trials. These initial results are promising, encouraging rigorous further analysis and experimentation to affirm their robustness and generalisability.

References

Poster No 1415
Investigating survival in ALS patients using machine learning and Deformation-Based Morphometry
Isabelle Lajoie¹, Sanjay Kalra², Mahsa Dadar³
¹McGill University, Montréal, QC, ²University of Alberta, Edmonton, Alberta, ³McGill University, Montreal, QC

Introduction: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with no known cure, leading to progressive loss of motor function and ultimately the death of the patient. Relationships between brain-related changes in ALS, symptoms and survival outcomes remain unknown. Deformation-based morphometry (DBM) is an MRI-based technique that can quantify regional atrophy (Ashburner, 1998). Here, we used DBM to localize cross-sectional and longitudinal disease-related brain changes and investigate whether ALS-specific brain changes detected by DBM can improve the performance of machine learning survival models.

Methods: Data includes T1-weighted and clinical assessments of 192 ALS patients and 163 healthy controls from the Canadian ALS Neuroimaging Consortium (CALSNIC) study (Kalra, 2020) acquired longitudinally across multiple centers. 104 ALS patients were classified as either short (N=42) or long (N=61) survivors based on the time between disease onset and outcomes (within or more than 24 months). Survival outcome was defined as death or requirement of permanent assisted ventilation for at least 22 hours. All T1-weighted MRIs were preprocessed and quality controlled. DBM maps were obtained by computing the Jacobian determinant of the estimated non-linear deformation fields to the ICBM152 template (Fonov, 2009). DBM values greater than one indicate localized expansion whereas values smaller than one indicate atrophy. To investigate the disease-related brain changes, age and sex were regressed out from the voxel-wise DBM maps of ALS patients based on the estimates of matched controls (Dadar M, 2020). A voxel-wise linear mixed-effects (LME) model was then employed with intercept and follow-up time as variables of interest to evaluate cross-sectional and longitudinal brain changes, respectively.
Patients’ ID and scanner site were included as categorical random variables. To investigate cross-sectional differences between short and long survival, an additional LME was employed with a categorical fixed variable contrasting survival groups. All results were corrected for multiple comparisons using False Discovery Rate with a threshold of 0.05. To assess how much the DBM features contribute to prognostic accuracy, the features that were significant predictors of survival in Cox univariate analysis were first identified from an initial set of features comprising 1064 regional DBM values (from Schaefer (Glen, 2021), Allen (Hawrylycz, 2012) and JHU (Wakana, 2007) atlases) and 14 clinical features. A logistic regression model was trained and tested on i) regional DBM features, ii) clinical features, and iii) clinical and DBM features combined. Nested cross-validation was employed for hyperparameters optimization and evaluation of performance generalization.

Results: Figure 1.A shows significant cross-sectional bilateral atrophy in the motor cortex, the corticospinal tract (CST), along with an overall pattern of ventricular enlargement in ALS. Figure 1.B shows additional longitudinal changes in the somatomotor region as well as ventricular and sulcal enlargement. Figure 1.C and 1.D show cross-sectional changes in short and long survival groups, respectively, with more atrophy (such as in CST and corpus callosum) and ventricular enlargement observed in short survival. Figure 1.E shows that a portion of the corpus callosum is significantly more atrophied when comparing short to long survivors. Figure 2 shows mean area under the curve (AUC) and mean accuracy (ACC) for the respective set of features: A) AUC=0.86±0.14; ACC=81±10%, B) AUC=0.77±0.17; ACC=67±14% and C) AUC=0.84±0.14; ACC=80±16%. The results demonstrate that the regional DBM features enhance the accuracy of survival prediction and reduce result variability.
Conclusions: This study supports the utility of DBM features in localizing brain volume changes in ALS and improving prognostic accuracy, offering a deeper understanding of the mechanisms underlying disease progression, survival, and clinical disability.

References

Poster No 1416
Brain-based classification of 17 diagnostic groups in the UK Biobank
Ty Easley¹, Lexi (Xiaoke) Luo¹, Kayla Hannon¹, Petra Lenzini¹, Janine Bijsterbosch¹
¹Washington University in Saint Louis, Saint Louis, MO

Introduction: Many studies have trained machine learning classifiers on features derived from non-invasive structural and/or functional neuroimaging data to differentiate between cases and healthy controls in a range of diseases¹. However, the vast majority of published diagnostic classification efforts are single-disease studies performed in disease-specific cohorts. As such, a comprehensive analysis across diseases in population data is lacking. This work uses the UK Biobank (UKB) dataset to systematically compare brain-based classification models across 17 different ICD-10 diagnostic groups.

Methods: The 17 ICD-10 diagnostic groups were derived from Chapter V (mental and behavioral disorders) and Chapter VI (diseases of the nervous system) of the ICD-10 at two different levels of the hierarchy depending on sample size. Only ICD-10 diagnostic groups with N≥125 case participants were included, resulting in 17 diagnostic groups (see x-axis in Fig. 1). In total, this work included N=5,861 unique cases, each with healthy controls matched on sex, age, and resting state head motion out of a pool of UKB individuals with no ICD-10 labels in either Chapter V or VI. Random forest classification models with rigorous shuffle-splits² were adopted to predict case versus control labels separately for each diagnostic group, while estimating stability as well as accuracy of case-control classifications. In addition to the separate diagnosis-specific case-control classifications, we performed a multiclass classification. Multiple separate classification models were trained using 20 different feature sets comprising either neuroimaging or socio-demographic features. Neuroimaging features were derived from both structural (surface and volume) and resting-state functional data (network amplitudes and functional connectivity). Diagnostic classification accuracies were benchmarked against age classification (oldest vs. youngest) from the same feature sets and against additional classifier types (K-nearest neighbors and linear support vector machine). Statistical significance of classification was computed as the empirical probability of classifying above chance accuracy (0.5).
Results: Structural neuroimaging data features failed to classify 16 out of 17 diagnostic groups significantly more accurately than chance ($p > 0.25$); only the Demyelinating diseases ICD-10 diagnostic group (G35-37) was classified significantly above chance ($=0.63, p=0.013, n=248$). After incorporating functional neuroimaging and sociodemographic feature sets into classification, only the Depression ICD-10 diagnostic group (F32) was classified significantly above chance ($=0.58, p=3.5e-3, n=2692$) after correcting for multiple comparisons (Fig. 1). Both sociodemographic and functional neuroimaging features significantly classified patients in the Depression (F32) group, but prediction accuracies still remained low. Multiclass classification accuracies were low for all but the largest class sizes (Fig. 2a), and true positive rate was nearly deterministically predicted by class size ($R^2_{\text{pseudo}}=0.989, p=6.14e-12$; Fig. 2b). As a contrasting benchmark, age classification showed high accuracy in both large ($=0.94, p=1.4e-66, n=2676$) and small ($=0.90, p=1.3e-15, n=246$) sample sizes.

![Figure 1](image1.png)

Figure 1. Summary of classification accuracy distributions across all 17 diagnostic groups for structural, functional, and sociodemographic classification features. In each classification group’s swarm plot, the accuracy distribution of the best-performing feature is shown in color; the rest are shown in gray. Of the diagnostic groups, only the depression group (N=2,692) was classified significantly above chance after multiple comparison correction. Depression was significantly classified by sociodemographic features and three functional MRI features (full network connectivity matrices for the Schaefer parcellation, full network connectivity matrices for ICA parcellation at rank 150, and at rank and 300). Benchmark results for age (youngest versus oldest) classifications in both a large (matching the largest diagnostic group) and small (matching the smallest diagnostic group) group are shown on the right, and approximate an upper bound on diagnostic classification accuracy in terms of effect size vs. sample size.

![Figure 2](image2.png)

Figure 2. (a) Confusion matrix of the multiclass classification for all 17 ICD-10 diagnostic groups along with healthy controls. Most subjects are misclassified into one of the two largest groups. (b) Plot of sensitivity (true positive rate) vs. proportional group size with exponential curve of best fit. The exponential curve fits well ($R^2_{\text{pseudo}}=0.989$). The “Demyelinating diseases” group (G35-37) has a large proportional residual; this is consistent with its larger classification effect size in comparison to other groups.
Conclusions: We showed that most ICD-10 diagnostic groups were not classified above chance from neuroimaging or sociodemographic features in the UK Biobank. In particular, our findings shed light on the limited validity of the ICD-10 diagnostic ontology. Consistent with other research pointing to the limited reliability of diagnostic coding systems including the ICD-101 and DSM-V1,5, we demonstrate that these labels are suboptimal clinical targets for machine learning models and may impede meaningful biomarker discovery1,7. Our findings highlight the importance of sample size and effect size of drivers of diagnostic classification accuracy, and provide an important benchmark for future work in the UKB and beyond.

References

Poster No 1417

Inference of structural alterations in AD from resting-state EEG and whole-brain network model

Yunier Pieur-Coloma1, Felipe Torres1, Mónica Otero Ferreiro2,1, Alejandro Weinstein1, Wael El-Deredy1,3,4

1Brain Dynamics Laboratory, Universidad de Valparaíso, Valparaíso, Chile, 2Universidad San Sebastián, Santiago de Chile, Chile, 3ValgrAI: Valencian Graduate School and Research Network of Artificial Intelligence, Valencia, Spain, 4Department of Electronic Engineering, School of Engineering, Universitat de València, Valencia, Spain

Introduction: Alzheimer’s disease (AD) causes 60-80% of dementia cases and is the most common neurodegenerative disorder (Zheng et al., 2023; Miltiadous et al., 2023). Identifying AD using non-invasive neuroimaging methods like electroencephalogram (EEG) requires selecting distinctive features. Zheng et al., 2023, found differences in spectrum features, complexity, and synchronization in resting-state EEG (rsEEG) of AD in contrast to Control subjects. Here, we relate these dynamic features to biophysical parameters in a whole-brain Kuramoto model.

Methods: We fit each subject EEG spectrum to a point in the model’s parameter space by correlating the EEG spectrum with model spectra. We calculate spectra using Welch’s method with a Hann window of 5 seconds, achieving a frequency resolution of 0.2 Hz. We correlate the spatial average spectrum in the frequency range from 0.5 Hz to 44 Hz. EEG recordings: We use recordings from AD and control subjects provided by Miltiadous et al. 2023. The EEG recordings were collected using 19 electrodes while the subjects had their eyes closed. Each record lasted around 13.5 minutes at a sampling rate of 500 Hz. They removed artifacts and filtered the signal between 0.5 Hz and 45 Hz. We removed the EEG’s aperiodic component by multiplying by f^{γ}, where γ is the logarithmic slope of the average spectrum between 1 Hz and 35 Hz. Model: We use a whole-brain model that consists of a network of delayed Kuramoto oscillators with coupling corresponding to an anatomical brain atlas. The used atlas is the Automated Anatomical Atlas with 90 regions, and we employed 40 Hz as the intrinsic frequency for all the oscillators (Cabral et al., 2014). Our simulations last 200 seconds for each set of parameters with a time step of 1×10^{-3} s. In addition, Miltiadous et al. 2023 also performed a cognitive and neuropsychological assessment. They employed the Mini-Mental State Examination (MMSE) (Creavin et al., 2016). Starting at 30 points, as lower the MMSE score, the more severe the cognitive decline. The MMSE score for the AD group was 17.75±4.5 and for the control group was 30. The point of best correlation between rsEEG and model spectra corresponds to a value of global coupling K and mean delay MD in the parameters space. For each pair of (K, MD) also corresponds a value of spectral entropy (SE) and Kuramoto Order Parameter (KOP). SE is a metric of metastability of the model signals dependent on the spectrum, while KOP is a metric of global synchrony.

Results: The results show the distributions of structural connectivity parameters from 36 AD subjects and 29 Control subjects across corresponding spectral entropy values. AD subjects exhibit lower K [3.77 SD(1.39)] than Control subjects [4.74 SD(1.08)] (Wilcoxon rank-sum test, *p<0.01). However, both groups exhibit similar MD [AD: 22.5 ms SD(5.42); Control: 20.37 ms SD(4.58)]. The structural connectivity parameters of AD subjects correspond to lower metastability ($p>0.09$) and synchrony ($p<0.01$) than the Control subjects. These findings align with Zheng et al., 2023, using the same database. No significant correlation was found between K, MD, SE, or KOP and MMSE scores for AD subjects. This was expected as in the Control group all K, MD, SE, and KOP values correspond to MMSE = 30.
Conclusions: The spectrum, synchrony, and metastability of AD rsEEG differ from Control. We provide quantitative metrics of the dynamic features by correlating the EEG’s average spectrum with spectra from a whole-brain model. Fitting with the model, we also extract structural connectivity features, aligning with literature findings of connection loss in AD subjects. In addition, Control subjects show less spread in the parameter space, and there are no AD subjects fitting close to the average point \(K = 4.74, \text{MD} = 20.37 \text{ms} \). Therefore, we propose that fitting far from that point suggests a requirement for diagnosing brain disorders. Additional research is necessary to establish the extent of deviation from that point.

References

Poster No 1418
Using Interpretable Deep Learning to Predict Age with Cortico-Hippocampal Functional Connectivity
Yifei Sun1, Marshall Dalton2,3, Fernando Calamante1,3,4, Jinglei Lv1,3

1School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2School of Psychology, The University of Sydney, Sydney, New South Wales, 3Brain and Mind Center, The University of Sydney, Sydney, New South Wales, Australia, 4Sydney Imaging, The University of Sydney, Sydney, New South Wales, Australia

Introduction: Exploring healthy brain aging sets a baseline to understand aging related brain diseases and can help develop targeted interventions. Among various brain circuits, cortico-hippocampal connectivity is reported to be associated with age-related cognitive decline (Dennis et al. 2014). However, the impact of aging on the cortico-hippocampal connectivity requires more research. Our study uses convolutional neural networks (CNN) to predict age with the seed-based cortico-hippocampal functional connectivity (FC). We also generated saliency maps of CNN on the cortex to explain the regional variability of contribution to age prediction.
Methods: We used the minimally preprocessed (Glasser et al. 2013) resting-state functional magnetic resonance imaging (rs-fMRI) data from the Human Connectome Project Aging dataset (Bookheimer et al. 2019) (720 subjects, aged 36-100 years). After applying spatial smoothing and temporal filtering, we calculated the seed-based cortico-hippocampal FC. To test our method specificity, we divided the hippocampus into anterior and posterior seeds and computed two additional sets of FC maps. We trained three 3D CNN models to predict age with the same architecture to minimize the mean absolute error (MAE) using the whole, anterior, and posterior hippocampal cortical FC, respectively. 5-fold cross-validation was used to avoid overfitting. We then used Layer Class Activation Mapping (LayerCAM) (Jiang et al. 2021) to interpret models and identify age-predictive brain regions by generating high-resolution saliency maps. We also explored differences between the anterior and posterior hippocampal FC models through one-way t-test on saliency maps.

Results: CNN models predicted age with MAEs of 6.9, 7.1, and 6.8 years for whole, anterior, and posterior hippocampal FC, respectively. Peak prediction accuracy (MAE of 4.4 years) was observed in subjects aged 55-60 (Fig. 1A). While another study, focusing on a narrow age range (40-69), achieved a prediction MAE of 4.8 years using whole brain FC matrices (He et al. 2020), our study involves a wider age span and whole brain voxel-wise hippocampal FC for finer spatial resolution. The mean saliency map from the whole hippocampal cortical FC based model (Fig. 1B) presents hotter (redder) regions with higher contribution of the connectivity to the prediction, e.g. precuneus, retrosplenial cortex, and occipital lobe. These areas align with known aging relevant regions. The precuneus is vulnerable to Alzheimer’s disease (AD) (Zhang et al. 2021) and hippocampal-retrosplenial cortex FC relates to tau accumulation in the medial parietal region (Ziontz et al. 2021). The occipital lobe atrophy was also found in healthy old adults (Harrison et al. 2019). Mean saliency maps from anterior and posterior hippocampal cortical FC models (Fig. 2A-B) show distinct patterns. One-way t-tests identify significant differences (Fig. 2C-D, z-score>1.645). Specifically, FCs between the anterior hippocampus and lateral occipital cortex, precuneus, and medial prefrontal cortex were more influential on age prediction than their posterior hippocampus connections. Conversely, posterior hippocampal FC with medial occipital and posterior parahippocampal had a greater prediction effect. These disparities may due to different functional roles of the anterior and posterior hippocampus (Moser et al.1998), and aging may differently affect anterior and posterior FC.
Conclusions: We trained a 3D CNN model that can predict age using cortico-hippocampal FC, with LayerCAM to aid interpretation. Key regions impacting predictions are consistent with brain regions known to be affected during aging. Further fine-grain analysis showed differences in the contributions from anterior and posterior hippocampal FC to age prediction, indicating our method’s specificity to hippocampal subregions. Future efforts will aim to enhancing performance, validate results, and explore clinical applications.

References
Exploration of brain-based prediction of early developmental outcomes using deep learning

Haitao Chen1,2, Jonathan Stubblefield3, Xiuzhen Huang4,3, Emil Cornea5, John Gilmore5, Wei Gao1,2

1Biomedical Imaging Research Institute (BIRI), Cedars-Sinai Medical Center, Los Angeles, CA, 2Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, 3Department of Computer Science, Arkansas State University, Jonesboro, AR, 4Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 5Departments of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC

Introduction: One major goal of developmental neuroimaging research is to build imaging-based models to predict later developmental outcomes so we can identify risks at the earliest timepoint for better intervention. In this study, we aimed at exploring the possibility of predicting 1-/2-year Mullen composite and 4-year IQ scores from earlier/concurrent resting-state functional connectivity maps during the first four years of life using deep learning approaches, specifically AlexNet-based 3D convolutional neural networks.

Methods: 623 subjects from the Early Brain Development Study (EBDS, 587 with 1-year Mullen composite (MCOMP_1) score, 479 with 2-year Mullen composite (MCOMP_2) score and 364 with 4-year IQ score (IQ_4)) with successful resting-state functional MRI (rsfMRI) scans on at least one of the four timepoints (i.e., three-week (MCOMP_1: n=347; MCOMP_2: n=274; IQ_4: n=229), one-year (MCOMP_1: n=348; MCOMP_2: n=269; IQ_4: n=202), two-year (MCOMP_1: n=256; MCOMP_2: n=244; IQ_4: n=167) and four-year (MCOMP_1: n=138; MCOMP_2: n=135; IQ_4: n=125)) were retrospectively identified and included in this study. All rsfMRI datasets underwent standard preprocessing including global signal regression and scrubbing for motion correction. All datasets were registered to the same two-year-old template space for analysis. Ten seed-based functional-connectivity (FC) maps were generated from preprocessed rsfMRI BOLD signals for each age group and served as the input for prediction of later behavioral outcomes (1-year/2-year Mullen composite or 4-year IQ) separately. Behavioral outcomes were classified into 3 classes: High class (score>mean+std), Low class (score<mean-std) and Middle class (the rest). Each task group was split into 3 parts with balanced demographics, where two-thirds of the sample served as training set and one-third served as testing set. AlexNet-based 3D convolutional neural network (Figure 1) was then trained on the training set using default hyperparameters (batch size=16, learning rate=.001) for 400 epochs for the classification task, and then evaluated on the testing set. Specifically, this model was adapted from AlexNet structure, where several convolutional layers with batch normalization layers, ReLU activations and max pooling layers were followed by flatten layer and several fully connected dense layers with dropouts.

Results: Among all prediction tasks (neonates/one-year-olds FC for MCOMP_1, neonates/one-year-olds/two-year-olds FC for MCOMP_2, neonates/one-year-olds/two-year-olds/four-year-olds FC for IQ_4) using ten brain functional-connectivity networks separately, four classification tasks showed relatively strong prediction power (testing set balanced accuracy >= 0.60 and/or AUC >= 0.60): visual-two brain network in neonates predicted 1-year Mullen composite score, sensory-motor brain network in neonates predicted 2-year Mullen composite score, visual-three brain network in two-year-olds correlated 2-year Mullen composite score, and visual-two brain network in two-year-olds predicted 4-year IQ score. Detailed training/testing curve, confusion matrices and testing metrics are shown in Figure 2 for these four classification tasks. Note that Low and High classes were combined as Outlier class only in calculating testing metrics to obtain more cases in Outlier class.
Conclusions: This study explored the possibility of predicting later behavioral scores from earlier/concurrent fMRI-based functional-connectivity maps using 3D convolutional neural networks. The preliminary results showed reasonable prediction power of visual / sensory motor functional-connectivity maps, revealing the potential of predicting later IQ / behavioral capabilities from earlier/concurrent brain functional-connectivity topologies in first years of life. Future steps may include adapting deep learning model and employing other models like graph neural networks to explore if better prediction can be achieved beyond the shape and topology of functional network maps.

References

Poster No 1420
EEG-based VR Cybersickness Detection Using Domain Adversarial Deep Learning Model
Woosok Hyung¹, Jung-Hwan Kim¹, Hyunsub Kim¹, Chang-Hwan Im¹

¹Hanyang University, Seoul, Republic of Korea

Introduction: Virtual reality (VR)-induced cybersickness can cause negative effects like dizziness, nausea, and vomiting. Since these effects can be a barrier to some users wearing a VR head-mounted display (HMD) headset, detecting VR-induced cybersickness is becoming an important issue in the popularization of VR services. In this study, we propose a deep learning (DL) architecture for improved EEG-based cybersickness detection in a VR environment.
Methods: Thirty-five participants (19 males, 16 females, 20 to 35 years old) with normal or corrected-to-normal vision were recruited for this study. Each participant watched 360-degree, 15-minute VR rollercoaster video once, while wearing VR-HMD headset. The video consisted of three stages, each lasting five minutes. In the first stage, VR rollercoaster moves slowly and statically, causing little or no cybersickness. In the second and third stages, VR rollercoaster moves faster and more dynamically to cause cybersickness intentionally. EEG signal was measured from 32 electrodes with a 2,048Hz sampling frequency. For EEG signal preprocessing, 512Hz-downsampling, 4-55Hz third-order Butterworth bandpass filtering, and common average referencing were applied. The preprocessed signal was segmented by a 2-second window with 1-second sliding. First stage was categorized as ‘non-cybersickness’, second and third stages as ‘cybersickness’ for binary classification. Simulator sickness questionnaire (SSQ) was used before and after the experiment to monitor the participant’s cybersickness triggered by the video. Three participants were excluded from the analyses due to low SSQ difference, and four participants were excluded due to bad EEG signal quality. For the subject-independent cybersickness classification, we propose a model to classify cybersickness robust to subjects, and compared the performance with conventional deep learning models. In our proposed architecture, feature extractor from TSCpection extracts temporal and spatial features, and the classifier determines cybersickness based on the features. Subject discriminator from Domain Adversarial Neural Network (DANN) was trained adversarially to the subject domain by gradient reversal, making feature extractor extract subject-irrelevant features.

Results: To verify the performance of the subject-independent model, leave-one-subject-out cross-validation of the proposed model and an existing EEG-based classification model was conducted. Proposed model outperforms other existing EEG-based classification models in terms of accuracy and F1-score, and that the proposed model shows fewer instances of poor performance comparing to conventional models.
Conclusions: In this study, we proposed a subject-independent DL model for EEG-based cybersickness classification in VR environment. Discriminator was used and trained subject adversarially in this model to train feature extractor robust to subject. The proposed model showed highest accuracy and F1-score compared to the established models.

References

Poster No 1421

Predicting Individual Cognitive Functions through Integrated Structural-Functional Connectivity

Eunku Bae¹, Kwangsun Yoo², Song E Kim³, Chang-hyun Park³, Hyang Woon Lee³
¹Ewha Womans University, Seoul, ²Sungkyunkwan University, Seoul, Korea, Republic of, ³Ewha Womans University, Seoul, Korea, Republic of

Introduction: Investigating the delicate interplay between structural and functional brain connectivity (structure-function coupling) is crucial to understand individual differences in cognitive and behavioral capacities. Building on this premise, our research aimed to develop MRI-based predictive models, with a special emphasis on the integration of structural and functional brain connectivity patterns derived from MRI data. This model is designed to predict individual cognitive functions, considering the variances in cognitive traits not only among individuals but also across different socio-demographic factors, including sex, education, and racial differences. The resulting model is tailored for enhanced prediction accuracy within specific populations, providing a novel approach to cognitive function prediction in the realm of structural and functional brain connectivity studies.

Methods: The study involved 191 healthy subjects aged 17 to 80 years old, who underwent both structural and functional MRI, alongside a battery of neuropsychological tests including executive functions, verbal and spatial memory. For structural MRI analysis, high resolution 3-dimensional T1 MR images with the FreeSurfer 6.0 was utilized to quantify cortical thickness and volumes. Functional connectivity was analyzed to extract salient features for developing predictive models using the Connectome-based Predictive Modeling (CPM) framework¹. This process included creating individual connectivity matrices², selecting features for modeling, and building a predictive model for validation on new subjects.

Results: We measured multivariate brain connectivity models based on both structural and functional MRI and evaluated them for various cognitive variables among subjects to predict the individual cognitive capacities. The predictive model based on structural and functional MRI dataset showed distinctive patterns as substantial efficacy in forecasting individual cognitive functions. Notably, feature selection varied across different cognitive tests, suggesting a specific link between brain networks and specific cognitive functions.

Conclusions: Our study demonstrates the potential of employing integrated brain structural and functional connectivity models to predict individual cognitive levels. Furthermore, it underscores the prospect of developing normative models capable of distinguishing between healthy individuals and patients as we recruit more subjects with certain neuropsychiatric diseases, thereby providing a comprehensive tool for assessing cognitive functions. This approach highlights the utility of population-specific models in the realm of cognitive function prediction and brain connectivity research.

References

Acknowledgements
This study is supported by the National Research Foundation of Korea (NRF) (No.2020R1A2C2013216, 2019M3C1B8090803, 2019M3C1B8090802, and RS-2023-00265524), Institute of Information & Communication Technology Planning & Evaluation (IITP) grant (No. RS-2022-00155966) by the Korea government (MSIT), and BK21-plus FOUR and Artificial Intelligence Convergence Innovation Human Resources Development programs of Ewha Womans University.
Graph neural networks for MDD classification using functional and structural MRIs

Jiwon Lee1, Ye-Eun Kim2, Mikhail Votinov3, Lisa Wagels4, Ute Habel5, Sun-Young Kim6, Munseob Lee7, Han-Gue Jo6

1Kunsan National University, Gunsan-si, Jeollabuk-do, 2Kunsan National University, Kunsan, Jeollabuk do, 3Institute of Neuroscience and Medicine (INM-10), Research Centre Jülich, Jülich, Germany, 4RWTH Aachen University Hospital, Aachen, Germany, 5Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University Hospital, Aachen, North Rhine-Westphalia, 6Kunsan National University, Gunsan, Jeollabuk-do, 7Electronics and Communication Research Institute (ETRI), Deajeon, Deajeon

Introduction: Graph neural network (GNN), a deep learning-based method known for their effectiveness in analyzing graph-structured data, is inherently suitable for the examination of the complex brain network. GNN can operate on non-Euclidean domains, employing convolutions on graphs by leveraging input node features and the relationships between nodes to produce novel features. Recent studies showed that GNN is suitable for analyzing the connectome of functional magnetic resonance imaging (MRI) and can identify the functional network alteration of major depressive disorder (MDD) patients. However, previous GNN studies mainly focus on the brain network derived from one modality, either functional imaging or structural imaging, potentially leading to the observed shortcomings in model accuracy. In this current study, both functional and structural MRIs are combined and analyzed for MDD classification. Specifically, GNN models were formulated to leverage various types of node attributes derived from functional MRI, structural MRI, or their combination. These distinct node features were performed using graph convolutional network (GCN) and graph attention network (GAT) models.

Methods: GCN and GAT underwent training for classification using resting-state functional and structural MRI scans from a cohort of 775 participants (153 with MDD and 622 healthy controls). For constructing the graph, a whole-brain functional connectivity matrix was utilized, representing Fisher transformed correlation coefficients among BOLD time series across 100 atlas-based Schaefer’s cortical brain regions. Node features were characterized in three ways: i) a nodal functional connectivity vector comprising 100 node features derived from functional MRI, ii) six structural parameters encompassing grey matter volume, fractal dimension, gyrification, Toro GI20, sulcal depth, and thickness extracted from structural MRI, or iii) a combination of both resulting in 106 node features. The fitting procedure and evaluation of predictive models were carried out using a 5-fold cross-validation technique.

Results: The performance of GNN models was highly depend on the node feature type. GCN and GAT achieved the highest accuracies (73.23%±0.04 and 77.65%±0.05, respectively) when the node features were combined with both functional and structural MRI data. Node features with functional MRI alone showed accuracies of 64.84%±0.02 and 75.27%±0.03 for GCN and GAT, respectively. Node features only with structural MRI exhibited the lowest performance, with accuracies of 62.26%±0.06 and 52.35%±0.07 for GCN and GAT, respectively. The impact of the number of GNN layers and hyperparameters was also tested, but it did not change the effect of the node feature type.

Conclusions: This study explored the application value of using both brain functional and structural information in modeling GNN and differentiating patients with MDD from healthy controls. Our proposed multi-modal method achieved prediction results of 77% on a large-sample dataset. These findings highlighted the benefits of incorporating structural information into functional MRI in the development of GNN model for classifying MDD brain networks. Notably, GAT demonstrated better performance compared to the GCN, revealing that within GAT – a model that operates attention mechanism to address important nodes in a neighborhood – the impact of node feature types was relatively diminished. This observation suggests for the integration of functional and structural information, not solely in node features but also about designing the graph architecture in a way that facilitates the fusion of both types of information.

References
Unsupervised anomaly detection and segmentation in brain MRI: a comparative study

Junhyeok Lee¹, Won Hee Lee¹

¹Kyung Hee University, Yongin

Introduction: Unsupervised anomaly detection (UAD) plays a crucial role in identifying anomalies by learning the distribution of normal data without relying on labeled anomalies. These methods are widely used in various industries, including manufacturing damage detection, financial fraud detection, cyber intrusion, and medical diagnosis (Chandola et al., 2009). A previous study showed the effectiveness of UAD algorithms in detecting chronic infarction, suggesting their potential for brain MRI applications (van Hespen et al., 2021). However, limited research exists on the performance of UAD algorithms in the context of brain tumor detection and segmentation (Baur et al., 2021). To address this gap, this study aims to conduct a comprehensive evaluation of various UAD algorithms specifically for brain tumor detection and segmentation.

Methods: We used T2-weighted MRI data from two different datasets: 272 patients diagnosed with glioma from the multimodal brain tumor segmentation challenge 2020 (BraTS2020; age range 19 – 87 years) and 252 healthy individuals from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN; 126 females; age range 18 – 88 years). We compared the performance of seven UAD methods on anomaly detection and segmentation. These methods included memory bank approach CFA (Lee et al., 2022), the reconstruction-based method DRAEM (Zavrtanik et al., 2021), the patch distribution-based method PaDiM (Defard et al., 2021), the normalizing flow-based methods CS-Flow (Rudolph et al., 2022), and FastFlow (Yu et al., 2021), and the knowledge distillation-based methods STFPM (Wang et al., 2021), and RD4AD (Deng et al., 2021). To assess the performance of these UAD methods, we used the area under the receiver operator curve (AUC) at image-level for anomaly detection and pixel-level for segmentation.

Results: Figure 1 displays the performance of various UAD methods for anomaly detection and segmentation in brain MRI. The normalizing flow-based models (CS-Flow and FastFlow) achieved the highest detection performance (image-level AUC = 99.47 – 99.78). However, these methods showed the lowest segmentation performance (pixel-level AUC = 81.47 – 83.18) and led to an increased rate of false positives in segmentation tasks (Figure 2a). STFPM and DRAEM, while having the lower detection performance (image-level AUC = 87.51 – 88.55; pixel-level AUC = 96.35 – 96.43), had better segmentation performance compared to the flow-based models. FastFlow, CS-Flow, DRAEM, STFPM showed a substantial performance gap between detection and segmentation, with differences ranging from 7.80 to 18.31. In contrast, RD4AD and CFA exhibited a small difference between detection and segmentation performance ranging from 1.82 to 2.06. RD4AD and CFA achieved superior segmentation performance (pixel-level AUC = 97.67 – 98.18). However, we found that RD4AD and STFPM had a tendency to misidentify the lateral ventricle areas in normal samples as abnormal regions (Figure 2b).
Conclusions: Our comparative evaluation of various UAD methods for brain MRI reveals their potential applicability. Our results indicate that UAD methods can be adapted for brain anomaly detection and segmentation, while emphasizing the need for optimal model tuning and refinement to improve the performance of the UAD methods. Moreover, the experimental results indicate the potential for improved UAD performance by improving the model’s understanding of normal anatomical structures with similar intensities to abnormal regions in MRI scans. Incorporating anatomical information into the learning process may be a key strategy for achieving enhanced performance, offering more reliable support in the clinical diagnosis and monitoring of brain pathologies.

References

Poster No 1424
Exploring the Predictive Value of Structural Covariance Networks for the Diagnosis of Schizophrenia

Clara Vetter1,2,3,4, Annika Bender5, Dominic Dwyer6, Anne Ruef7, Lana Kambeitz-Ilankovic8, Linda Antonucci9, Stephan Ruhrmann8, Joseph Kambeitz10, Anita Riecher-Rössler11, Rachel Upthagrove12, Raimo K. Salokangas13, Jarmo Hietala13, Christos Pantelis15, Rebecca Lencer15, Eva Meisenzahl16, Stephen J. Wood17, Paolo Brambilla18, Stefan Borgwardt19, Peter Falkai7, Alessandro Bertolino20, Daniel Rückert21, Nikolaos Koutsouleris22,23

1Max Planck Institute of Psychiatry, Munich, Germany, 2Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany, 3Munich Center of Machine Learning (MCML), Munich, Germany, 4Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany, 5Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Bavaria, 6Orygen, the National Centre of Excellence for Youth Mental Health, Melbourne, Victoria, 7Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany, 8University of Cologne, Cologne, Germany, 9University of Bari Aldo Moro, Milan, Italy, 10Department of Psychiatry and Psychotherapy,
ABSTRACTS

University of Cologne, Cologne, Germany, 1st Faculty of Medicine, University of Basel, Basel, Basel, 2nd Institute of Mental Health, University of Birmingham, Birmingham, United Kingdom, 3rd Department of Psychiatry, University of Turku, Turku, Finland, 4th Melbourne Neuropsychiatry Centre, Carlton, Victoria, 5th Institute for Translational Psychiatry, University Münster, Münster, Germany, 6th Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, 7th Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia, 8th Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy, 9th Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany, 10th Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Bari, 11th Technical University Munich, Munich, Germany, 12th Max Planck Institute for Psychiatry, Munich, Germany, 13th Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom

Introduction: Structural Covariance Networks (SCNs), reflecting coordinated neurodevelopmental processes, offer insights into brain reorganization associated with aging and diseases such as schizophrenia. Despite group-level alterations in SCNs among patients, individual-level analysis has been hindered by a lack of established methods. This study addresses this gap by comparing two individual SCN computation methods using structural MRI-derived gray matter volumes (GMV) for the classification of schizophrenia.

Methods: In this study, we investigated the predictive value of two single-subject SCN computation methods derived from regional gray matter volumes (GMV) measured by structural MRI for classifying patients with schizophrenia within a sample comprising patients and healthy controls (NPAT = 154, NHC = 366). The first SCN method leveraged a reference sample (N = 627) and quantified a single subject’s contribution to the reference group’s SCN. The second approach defined a subject’s SCN from the single image using a symmetric version of KL divergence. To assess the additional predictive value of SCNs compared to regional GMV, we employed a stepwise analysis using linear support vector machines within a nested cross-validation framework. Initially, each modality (the two SCNs and regional GMV) was separately analyzed. Subsequently, we evaluated their complementary predictive value through stacked generalization. To address various model design choices, we systematically varied the granularity of the cortical parcellation atlas used (100 vs. 200 parcels), the feature dimensionality reduction technique employed (LASSO-regularization vs. principal component analysis (PCA)), and, for the two SCN modalities, the type of network features used (pairwise structural covariance, i.e., SCN edges, vs. network summary metrics). This resulted in a total of 28 models, all externally validated in an independent sample (NPAT = 71, NHC = 74). For the best-performing model in each modality, global model explainability analyses were conducted to identify the most contributing features. Additionally, derived risk scores were analyzed for their differential relationships with clinical variables.

Results: Machine learning models trained separately on individual SCNs and regional GMV demonstrated consistent classification capability for distinguishing patients with schizophrenia from healthy controls, regardless of cortical parcellations and dimensionality reduction techniques. Among the unimodal models, the LASSO-regularized model trained on the edges of reference-sample-SCNs, computed using the 200-parcel cortical atlas, achieved the highest balanced accuracy (BAC) in the discovery sample (67.03%). Notably, this model outperformed all other unimodal SCN-based models but did not surpass the performance of LASSO-regularized regional GMV models. Decisions in regional GMV models were driven by the somatomotor network, default mode, frontoparietal control, visual, and limbic networks. In SCN-based models, discriminative pairwise structural covariance primarily involved the ventral attention, default mode, frontoparietal control, visual, and somatomotor networks. Stacked generalization revealed that combining SCN modalities and regional GMV significantly improved model performance compared to models trained on individual modalities alone (BAC = 69.96%). Similarly, the highest external validation performance was observed in the multimodal, stacked model using principal component analysis for dimensionality reduction (BAC = 67.10%). No associations were found between models’ decision scores and the clinical variables assessed.

Conclusions: In conclusion, individual SCNs, whether derived from normative samples or KL-divergence, contribute valuable information for schizophrenia classification beyond regional GMV. However, the study did not establish direct links between the identified structural information and clinical phenotypes.

References

Predicting individual differences from task-evoked effective connectivity

Shufei Zhang¹², Kyesam Jung¹², Robert Langner¹², Esther Florin³, Simon Eickhoff¹², Oleksandr Popovych¹²

¹Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Germany. Jülich, Nordrhein-Westfalen. ²Institute of Systems Neuroscience, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Nordrhein-Westfalen. ³Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Germany

Introduction: In the research field of predicting individual behavior and phenotypes from functional magnetic resonance imaging (fMRI) data, recent studies¹² have demonstrated that task-evoked functional connectivity (FC) may perform better at predicting individual traits as compared to resting-state FC. However, it remains largely unknown whether task-modulated and intrinsic effective connectivity (EC) that allows for causal inferences on the brain possess distinct properties in predicting individual behavior, which we explored in this study. We investigated this issue for a variety of data-processing conditions involving different designs of the general linear model (GLM), applications of Bayesian model reduction (BMR) and self-connectivity (SC)³⁴ as well as for a few cross-validation (CV) schemes, whose impact on the EC-based prediction of behavioral scores has been underexplored in the literature yet. In this study we therefore considered task-evoked EC as calculated by dynamic causal modeling (DCM)⁵ for the machine-learning prediction of individual reaction time (RT) in the stimulus-response compatibility (SRC) task⁶ and age.

Methods: Task-evoked EC during performance of the SRC task was calculated by DCM from the task fMRI data for 271 subjects (123 females, 18-85 years old, mean age: 52.6 ± 16.5 years) recruited from the subject pool of the 1000BRAINS project⁷. The parameters of intrinsic EC (I-EC, matrix A of DCM) and task-modulated EC (M-EC, matrix B of DCM) of individual subjects were used in a least absolute shrinkage and selection operator (LASSO) regression to predict RT and age in training sets and test sets of unseen subjects (Fig. 1). The features were selected based on the results of the group-level and behavior-related Parametric Empirical Bayes (PEB) analyses for the training sets. We considered several conditions that were assumed to influence predictive performance: cross-validation schemes of 5-fold, 10-fold, or leave-one-out CV (LOOCV), event-related vs. block-based GLM designs, application of BMR and self-connectivity (SC). In addition, we compared prediction results with those of the full task-evoked and task-residual FC patterns.

Results: We observed differences in predictive performance (correlation between empirical and predicted behavioral scores) between I-EC and M-EC, as well as between event-related (trial-based) and block-based GLM designs (Fig. 2). There were few differences in prediction accuracy across different CV schemes (but see LOOCV in Fig. 2), and with respect to the application of BMR and SC. For the 5-fold CV, we found statistically significant prediction results for the event-related GLM design, but not for the block-based GLM. For the event-related GLM, M-EC outperformed I-EC in RT prediction ($r = 0.26$ vs $r = 0.09$, Cohen’s $d = 3.17$), but was somewhat less effective in age prediction ($r = 0.22$ vs $r = 0.28$, Cohen’s $d = 1.09$). The considered task-evoked and task-residual FC patterns showed higher prediction accuracy for age than EC ($r = 0.34/0.37$ vs. 0.28) but were behind task-evoked EC in predicting RT ($r = 0.13/0.22$ vs. 0.26).
Conclusions: Our results showed that task-modulated and intrinsic EC may capture different behavioral attributes, where M-EC showed higher predictive accuracy for individual RT than I-EC, but I-EC was better predictive of individual age than M-EC. The predictive performance was notably affected by the choice of GLM design for task-fMRI data modeling, and using the event-related GLM design may improve the predictive accuracy for individual RT and age. The selection of EC types for predicting individual differences and the choice of the optimal data processing during DCM estimation of EC should thus be made with care, where our results may guide further research on employing task-evoked EC for the prediction of individual behavior.

References

Poster No 1426
Diagnosis-informed neuro-subtyping of autism spectrum disorder
Zehua Chen¹, Peilun Song¹, Yaping Wang¹, Xiujuan Geng²
¹Zhengzhou University, Zhengzhou, ²The Chinese University of Hong Kong, Hong Kong

Introduction: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with heterogeneous symptoms and neurobiological features, which becomes a major hindrance on accurate diagnosis and treatment⁶. Clustering ASD subjects into subtypes with more consistent neural features in each group has practical implications to overcome these obstacles. However, existing findings of neural-subtyping are preliminary and diverse. Moreover, it is unclear whether the degree of deviation from the normal population can be used for ASD subtyping. We aimed to investigate reliable ASD subtypes by clustering methods utilizing diagnosis labels and functional connectivity (FC) as neural features⁴.

Methods: Datasets used in this study were from ABIDE I & II, consisting of 1877 subjects including 1030 healthy controls and 847 ASD subjects. Data was the preprocessed following the standard processing pipeline. The FC was estimated followed by Fisher transform between pairs of 116 regions defined by AAL. To reduce the effect caused by non-ASD factors, age, sex and site information were regressed out before sending FC values for clustering. We first conducted dimension reduction based on two types of methods. One is an orthogonal extension of projective non-negative matrix factorization (OPNNMF), a data-driven method for extracting biologically interpretable and reproducible feature representations⁸. The other approach
ABSTRACTS

is based on depicting FC profiles on a network level, i.e., computing the within- and between-network connectivities instead of ROI-based FC. A total of 78 network-level connectivities (12 within- and 66 between-network FCs) were used. After feature reduction, we performed both semi-supervised, Heterogeneity through Discriminative Analysis (HYDRA), and unsupervised k-means clustering for comparison. When conducting HYDRA, both the input features and diagnostic labels (controls or ASD) were used to detect multiple SVM classifiers for hyperplanes to separate the disease samples from controls, and meanwhile assist in assigning each disease sample to a different cluster. Therefore, a total of four approaches were carried out: OPNNMF feature reduction and HYDRA clustering; OPNNMF and k-means; network-based feature reduction and HYDRA; and network-based reduction and k-means. Two cluster validity indices Silhouette Coefficient (SC) and Calinski-Harabasz (CH) were used for performance validation. SC calculates the pairwise difference between the inter- and intra-cluster distances. CH is the ratio of all inter-cluster dispersion to the sum of the intra-cluster dispersion. To evaluate the reliability, we conducted clustering 100 times. Under each repetition, 90% of subjects were randomly stratified for clustering. The adjusted rand index (ARI) and label accuracy (ACC) were used to evaluate the reliability across 100 times. ARI quantifies the similarity between different clustering results. ACC measures label consistency of clustering results across each iteration.

Results: The number of components for OPNNMF was searched from 1 to 1877 by a stepsize of 5. The number of clusters was looped from 2 to 8. Our experimental results show that, the optimal value of the number of components with OPNNMF was 1195 (Fig.1 (a) & (b)). Two clusters show the best performance under all 4 clustering approaches (Fig.1 (c)-(f)). OPNNMF together with HYDRA produced the best performance out of the 4 methods. The average clustering accuracy was above 90% under the semi-supervised method. We further examined the FC matrices under each approach. All methods generated distinct FC patterns for each cluster (Fig.2). Feature reduction with OPNNMF produced similar sub-group FC patterns regardless of the clustering methods.

Fig. 1. Performance evaluation and comparison of each type of subtyping methods. (a)-(b). Selection of number of components and clusters. Performance of top three numbers of components were plotted using Calinski-Harabasz (CH) (a) and Silhouette Coefficient (SC) (b). (c)-(f). Comparison of four different approaches using index of CH (c), SC (d), adjusted rand index (e), and accuracy (f).

Fig. 2. Average functional connectivity matrices across two subtypes after four different clustering methods.
Conclusions: With a large cohort of ASD subjects, our results show that diagnosis-informed subtyping method performed better in terms of generating more distinct and reliable subtypes compared to unsupervised methods.

References

Poster No 1427
Confound-free hand grip strength prediction: Synergy of advanced machine learning and neuroimaging
Vera Komeyer1,2,3, Simon Eickhoff1,2, Jan Kasper1,2, Christian Grefkes4,5, Kaustubh Patil1,2, Federico Raimondo1,2

1Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Duesseldorf, Germany, 2Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Center Juelich, Juelich, Germany, 3Department of Biology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany, 4Department of Neurology, University Hospital Düsseldorf, Goethe University Frankfurt, Frankfurt, Frankfurt am Main, Germany, 5Department of Neurology, University Hospital Cologne and Medical Faculty, University Cologne, Cologne, Germany

Introduction: Hand grip strength (HGS) not only reflects overall strength, but is also closely related to physical disability, cognitive decline and mortality2,8,9. Recognized by the WHO as a key marker for vitality in aging populations1, HGS is a cost-efficient and reliable measure in clinical practice. Despite its ubiquity, the neural mechanisms governing HGS remain unclear. Our study systematically developed and evaluated the combination of neuroimaging-derived features with machine learning models to predict HGS. The aim was to identify models that are solely driven by brain information free from confounding factors such as sex, age and body composition, of which particularly sex but also age strongly correlates with HGS. Such confound-free models are essential to shed light on the neural basis of HGS.

Methods: We predicted HGS from 9 feature categories in the UK Biobank3 (N = 22554-33136) including gray matter volume (GMV)10, functional fALFF, LCOR, GCOR7 (each 1088 ROIs), cortical thickness, white surface area, white matter hyperintensity (WMH) with PSMD9, gray white contrast and a collection of 6 white matter microstructural characteristics (Fractional Anisotropy (FA), Mean Diffusivity (MD), free water volume fraction (ISOVF), orientation dispersion index (OD), intra-cellular volume fraction (ICVF), diffusion tensor mode (MO)). For each of the 9 categories 80% data were used to train seven algorithms in a 5-fold (nested) cross validation (CV) (Fig. 1A). Features were univariately, linearly adjusted for six confounder setups (Fig. 1B) in a CV-consistent manner. A final model was trained on the entire training data for out of sample (OOS) predictions on 20% held-out test data. Because of the particularly high influence of sex on linear predictions but less on non-linear predictions (Fig. 1B), we additionally classified sex with a XGBoost classifier with and without linear sex-adjustment to investigate the residual non-linear sex information after confound removal. The same analyses were performed on sex-split data. Six most successful sex-split and age-regressed models underwent SHAP analysis8 to investigate relevant features for successful models.

Results: The sex-mixed sample analysis identified GMV, white surface, fALFF and white matter as most predictive features (Fig. 1B). Predictability decreased noticeably when adjusting for sex and age, but didn’t drop further when removing more confounders (Fig. 1B). Non-linear algorithms performed better than linear ones in the sex-age-adjusted scenario (Fig. 1B purple vs. blue). Classifying sex with and without linear removal of sex suggests that non-linear algorithm superiority is driven by residual non-linear sex information in the features (Fig. 1C). Nonetheless, non-linear approaches also showed superior performance in “sex-split” models, even after controlling for age (Fig. 1D). GMV, fALFF and white matter were most resilient for this very stringent confounder control (Fig. 1D). For these three feature categories XGBoost excelled other non-linear algorithms, leading to the six (3 per sex) best models: r(m)GMV = 0.18, r(f)GMV = 0.20; r(m)fALFF = 0.18, r(f)fALFF = 0.23; r(m)WM = 0.21, r(f)WM = 0.23 (Fig. 1F). Interpretative SHAP analyses suggested GMV’s importance in anterior globus pallidus (Fig.
2A, B) and microstructural characteristics of sensory input bundles to the thalamus and thalamo-cortical tracts (Fig. 2E, F) as neural correlates for successful, confound-free HGS predictions.
Conclusions: Our exhaustive evaluation of ML models and features from diverse MRI modalities identified six effective models for predicting HGS under stringent confounding constraints. Such strict constraints allow us to conclude that the successful models rely on neural information independent of any sex and linear age signal in the features. Further investigations will delve into feature collinearities and the intricate interplay of feature modalities to gain a better understanding of the underlying biology.

References
1. Afable, S. B. (2022), 'Normative values of hand grip strength of older Filipinos aged 60 to 85 years', Aging Health Research, vol. 2, no. 4, p. 100108.
Poster No 1428
Decoding Neuronal Dynamics: Chaotic Deep Learning for Major Depressive Disorder Classification
Yi-Ju Lee¹,²
¹Institute of Statistical Science, Academia Sinica, Taipei City, Taiwan, ²Smart Healthcare Project, Academia Sinica, Taipei City, Taiwan

Introduction: Navigating the intricacies of Major Depressive Disorder (MDD) proves challenging due to its roots in diverse neurotransmitters, neural circuits, and hormonal systems, making reliance on subjective self-reported symptoms for diagnosis difficult. In the realms of physical statistics, artificial intelligence (AI), and medical research, the amalgamation of complexity science emerges as a robust avenue for extracting vital health insights from intricate medical data, particularly within psychiatry. Innovations such as ChaosNet, an AI model rooted in chaos theory, show promise in faithfully simulating human neuronal firing patterns at a network scale. Concurrently, power law scaling serves to quantify the complexity of brain signal dynamics. In this research, leveraging fMRI data, we aim to scrutinize classification models for MDD diagnosis, integrating the concept of complex systems at different stages of the model analysis process. This comprehensive approach seeks to advance MDD diagnosis by embracing a holistic perspective grounded in the principles of complex systems.

Methods: Participants with structural and fMRI images, demographic and clinical data were selected from the Strategic Research Program for Brain Sciences (SRPBS) cohort. Brain imaging data of 400 age and sex-matched, right-handed MDD patients (age mean = 40.21 ± 7.35; male = 49.5%) and 400 health adults (age mean = 39.46 ± 8.01) were retrieved. The functional images were pre-processed. The power-law scaling of brain activity of each voxel was extracted and transformed into a heatmap for model training. The images were split randomly in the ratio of 8:1:1 for the training, testing, and validation data set. We use ChaosNet and DenseNet 121 as model backbone, and they were trained using Python 3.8 for 500 epochs with 1 Nvidia DGX A100 (40G) GPU.

Results: In contrast to using typical fMRI BOLD signal as input to DenseNet 121, our result has suggested that the complexity-transformed image data with ChaosNet show significant decreased training time from 48.3 hours to 1.12 hours with similar classification results. In the best-performing model, the average testing accuracy is 92.3. We also identified the key brain regions that is related to MDD, such as prefrontal cortex, hippocampus and amygdala. under Bonferroni correction.

Conclusions: This study presents robust biological evidence surpassing previous methods in identifying MDD. We employ signal complexity within chaotic-based models to detect abnormal brain activities in MDD patients, necessitating expertise in statistical science, computer science, and neurosciences. The observed alterations in pathological hemodynamics in MDD suggest a significant loss of brain signal complexity, potentially contributing to precise clinical diagnosis. Our approach harnesses the unique properties of chaotic neurons, proving more efficient than alternative models. The future work will require exploring the integration of genetic data to subtype MDD patients, aiming to enhance our understanding of this complex disorder.

References
ABSTRACTS

Poster No 1429

Stacking models of brain dynamics improves prediction of subject traits in fMRI

Ben Griffin¹, Christine Ahrends², Fidel Alfaro Almagro³, Mark Woolrich⁴, Stephen Smith⁴, Diego Vidaurri⁵

¹Oxford University, Oxford, Oxford, ²Aarhus University, Aarhus, Aarhus, ³WIN FMRIB - University of Oxford, Oxford, Oxfordshire, ⁴University of Oxford, Oxford, Oxfordshire, ⁵Aarhus University, Aarhus, Aarhus C

Introduction: Beyond structural and static brain measures, brain dynamics can add important information when investigating individual cognitive traits¹. One way to look at dynamics is through the Hidden Markov Model (HMM), a probabilistic model of temporal dynamics of functional connectivity, which can be combined with machine learning models to generate subject-specific trait predictions¹. However, there are two potential sources of variability in these predictions. First, the run-to-run variability (e.g., due to different initialisations); and second, the choice of hyperparameters (e.g., number of HMM states). We propose an approach that leverages this variability to improve prediction accuracy by combining information from different models and runs. We implement a stacked generalisation scheme³,⁴ that combines predictions from multiple models of brain dynamics to accomplish two goals: (i) produce robust predictions across multiple cognitive traits; (ii) improve prediction accuracy by combining predictions created by HMMs with varying hyperparameters.

Methods: We aimed to predict cognitive traits for subjects in the Human Connectome Project (HCP)⁵ and UK Biobank⁶ datasets using models based on their resting-state fMRI functional connectivity dynamics. To achieve this, we used a group-level HMM on surface-based node timeseries concatenated across all subjects, which were generated using 25-dimensional group-ICA surface maps¹⁷. Subsequently, subject-specific HMM parameters were “dual-estimated” using the parameters obtained from the group-level HMM, which involved generating subject-specific state-time courses, from which subject-specific HMM parameters were inferred¹. We then used the Fisher kernel method, a mathematically principled way of combining generative models (here, the HMM) with discriminative methods (here, kernel ridge regression)⁸. This method operates directly on the Riemannian manifold of the HMM parameters, capturing the natural geometry of the HMM. We are able to construct a The method constructs a subject-by-subject matrix that quantifies the similarities between subjects by examining how the HMM likelihood function varies locally with respect to the subjects’ HMM parameters. This entire process was repeated 100 times; applying the HMM 50 times with fixed hyperparameters but different random initialisations (to investigate the HMM run-to-run variability) and 50 times with varying hyperparameters (to investigate hyperparameter selection variability). Separately for each group-level HMM, Fisher kernels were computed and used with kernel ridge regression to produce subject-specific predictions, which were subsequently combined using stacking⁹.

Figure 1: Procedure for predicting subject traits from resting-state fMRI (rFMR) timeseries. (a) Generative Model. (i) HMMs are trained on the rFMR timeseries in groupICA parcellations with 25 ICs concatenated across subjects. (ii) Different HMM hyperparameters lead to different models of brain dynamics. (iii) The HMM is described by a set of model parameters (θ). (b) Fisher Kernel Method. (iv) Fisher scores are generated for each subject’s parameter set by taking the derivative of the log-likelihood with respect to each parameter. (v) The Fisher scores are vectorised for each subject and combined to form the Fisher score feature matrix. (vi) We then construct the practical Fisher kernel from all subjects’ Fisher scores to form the Fisher kernel matrix. (c) Predictive Method. (vii) The Fisher kernel matrix is used in a kernel ridge regression model to predict subject traits. (viii) This process is repeated for multiple HMMs independently and combined using stacking. (ix) This last step is carried out independently to predict multiple cognitive traits.
Results: By combining predictions generated using the Fisher kernel method from group-level HMMs, we achieve our first goal (i) of producing a robust prediction across traits. Furthermore, by varying the hyperparameters of the HMM, our second goal (ii) of improving prediction accuracy is achieved. The diversity created by varying the HMM hyperparameters enabled distinct yet complementary predictions to be generated, and stacking resulted in boosting the prediction accuracy. Stacking performs particularly well when, for a given trait, certain predictions are much better than the remaining predictions (e.g., see Figure 2b ‘Pic_Vocab_Unadj’).

![UK Biobank](image1.png)

![Human Connectome Project](image2.png)

Conclusions: For predictions to be useful (e.g., in a clinical setting), we require that they are both robust and accurate. We used the Fisher kernel method, leveraging the natural geometry of the HMM, to generated accurate predictions. To enhance robustness and accuracy further, we employed stacking, combining predictions from different HMM configurations that captured distinct patterns in the data. Looking forward, stacking predictions opens up avenues for integrating a wider variety of data or models, for example combining predictions from different brain imaging modalities, or static functional connectivity and structural information.

References
Poster No 1430

Computer-Aided Diagnosis and Treatment for Hemorrhagic Stroke

Minyue Liu¹, Hengyuan Ma², Jiawei Zhang², Tianye Jia²
¹Fudan University, Shanghai, Shanghai, ²Fudan University, Shanghai, Shanghai

Introduction: Hemorrhagic stroke is a disease caused by the sudden rupture of a cerebral aneurysm or leakage due to weakened blood vessels, leading to disturbances in cerebral blood circulation. In patients with vascular diseases, various factors can induce narrowing, occlusion, or rupture of cerebral arteries, resulting in acute cerebral hemorrhage. (Caplan et al, 2023) Clinically, this manifests as temporary or permanent symptoms and signs of brain dysfunction. Hemorrhagic stroke onset is rapid, progression is rapid, and prognosis is poor, with a mortality rate as high as 45-50% during the acute phase. About 80% of patients will leave behind significant neurological dysfunction, bringing a heavy health and financial burden to society and the patients’ families. (Thakur et al, 2022) Therefore, it is of significant clinical importance to identify the risk factors of hemorrhagic stroke, integrate imaging characteristics, clinical patient information, and clinical treatment plans to precisely predict patient prognosis and optimize clinical decisions accordingly.

Methods: The aim of this study was to utilize clinical information and imaging data from stroke patients to analyze and predict the expansion of hematomas and the progression of edema, and to reveal the correlation between treatment modalities and the degree of patient recovery. We acquired 100 CT images from the hospital, in which they were patients with the different stage of stroke with clinical data. Initially, we applied the Naive Bayes method to predict the expansion of hematomas. Concurrently, a dual-exponential model was employed to model the temporal evolution of brain edema volume in patients, serving as the basis for patient classification. The time constant in the model reflected the time-course characteristics of the two edema mechanisms, which was corroborated by clinical data. We applied grouping as a prior for non-parametric probability inference, and further discussed the correlation between different treatment modalities and edema volume groups. Additionally, we utilized ordered logistic regression to predict the clinical prognosis within 90 days based on patient population-level clinical data and initial and follow-up imaging data. Finally, we employed the LIME method for personalized clinical prognostic factor analysis, obtaining an ordering of prognostic key factors applicable to individual patients.

Results: The average accuracy of our model on the validation set just with the clinical data is 0.7400, with a standard deviation of 0.3040, indicating that our model possesses a certain degree of generalization capability. After learning, the accuracy of our model on the training set is 0.91. By integrating the model with clinical data, it was discovered that the edema in the mild group was predominantly caused by cytotoxic edema, while the edema in the moderate and severe groups was primarily due to secondary vasogenic edema. Additionally, it was found that incorporating follow-up imaging data could reduce the prediction error by 30% on the validation set, and provided conclusions consistent with existing literature and testable new clinical recommendations.
Conclusions: In our statistical prediction at the group level, certain clinical and imaging information significantly affect the 90-day mRS scores of stroke patients. However, the specific impact of each factor and the prioritization of their importance vary from individual to individual. Therefore, it is imperative to utilize big data to train statistical models at the group level and then employ the LIME method for personalized analysis at the individual level. Such an approach is essential for the prediction and diagnosis of mRS. After training the model using big data, employing personalized and interpretative methods such as the LIME method for precision medicine is also a future trend in the development of medical artificial intelligence.

References

Poster No 1431

Magnetic resonance-based eye tracking can detect subject arousal state

Rongjie Hu¹, Jie Liang¹, Yiwen Ding², Shuang Jian², Xiwen Wu¹, Yanming Wang¹, Zhen Liang², Bensheng Qiu¹, Xiaoxiao Wang¹

¹University of Science and Technology of China, Hefei, China, ²Anhui Medical University, Hefei, China

Introduction: Eye movements directly reflect human thoughts and play key roles in cognitive researches (Klein & Ettinger, 2019). fMRI combined with eye tracking provide a window into brain cognition and disease diagnosis (LaConte, Glielmi, Heberlein, & Hu, 2007). However, conventional eye tracking methods reliant on MRI-compatible equipment are expensive and intricate. Frey et al. designed an exciting CNN model ‘DeepMReye’ which performed camera-free eye tracking (Frey, Nau, & Doeller, 2021). But DeepMReye and our previous work (Wu et al., 2023) operate at interval of time of repetition (TR, in seconds), unable to fast eye movements such as blink and saccade. Therefore, we propose an eye-movement deep learning prediction pipeline, MRGazerII, which reads in fMRI slices and reports the eye movements at the interval of tens of milliseconds.

Methods: Our study employed data from the Human Connectome Project (HCP) 7T Movie release (Van Essen et al., 2013), in which subjects watched four movies with eye tracking (416 fMRI runs from 158 subjects). The eye balls were segmented by a binary morphology method, and the intermediate 6-layer slices of the eye balls were fed into the deep model. The model comprised a ResNet-CBAM backbone, a Transformer encoder and a fully connected layer for outputting slice-level eye movements (Fig 1a). Cross-individual 5-fold cross-validation was executed. Preprocessing procedures, including artifact removal, registration, and regression of 12 motion parameters and signals in ventricles (Jo, Saad, Simmons, Milbury, & Cox, 2010), were applied to HCP 7T Rest1 dataset. Poudel, Innes, Bones, Watts, and Jones (2014) has found the arousal state was correlated with long blink, thus, the subjects with eye tracking data (N=131) were separated into the high arousal group (long blink proportion < 5%, N=73) and low arousal group (long blink proportion > 5%, N=58, Fig 2a). Schaefer et al. (2017) 300 parcellations were then used to generate functional connectivity (FC). FCs-based behavioral prediction was also applied for predicting subjects list sorting score. In the feature selection step, Pearson correlation was performed between each edge and list sorting score across subjects in the training set, with top 3000 FCs being selected. Principal component analysis
Reduced the selected 3000 FCs in training set to 30 dimensions. Linear support vector machine (SVM) regression was used for prediction, with 10-fold cross validation. Beyond training and validating in all the subjects, we trained and validated the behavior prediction in high arousal group, then tested it in the low arousal group, and vice versa.

Results: The proposed model achieves an f1-score of 51.2% in classifying eye movements with f1-scores of 63%, 45%, 28% and 43% for the fixation, blink, saccade and long blink respectively, surpassing the chance level (Fig 1c). Cross-dataset testing (training on HCP 7T Movie and Wu et al. (2023)'s dataset, testing on Zhang and Naya (2022)'s) reports an averaged accuracy of 38.0% (chance level at 26.0%). FC analysis reveals significantly reduced FCs in the high arousal group compared to the low arousal group (FDR corrected p < 0.01, Fig 2d). The FC-based behavior prediction achieves a Pearson's r=0.26 using data from all subjects. While training and validating on the high arousal group, the r increases to 0.38, but fails in the low arousal group (r<0.1). Training and validating on the low arousal group resulting in r=0.42, but fails in the high arousal group (r<0.1).

Fig 1. Model for eye movement time series classification (a), a sample illustration (b) and the model's performance (c).

Fig 2. The histogram of proportion of long blinks (a); the FC of high arousal group (b) and low arousal group (c); group difference (d).
Conclusions: The proposed method, MRGazerII, can predict fixation, blink, long blink, saccade and fixation point in an acceptable accuracy at a fine interval of tens of milliseconds from fMRI data, both across individual and datasets. Eye movement based arousal grouping shows that the brain—phenotype model trained in one arousal state fails on another arousal state. This study underscores the indispensable role of eye tracking in understanding fMRI data and introduces MRGazerII as a solution.

References

Poster No 1432
Stacking pre-trained classifiers across subjects improves fMRI task decoding accuracy
Himanshu Aggarwal1, Bertrand Thirion1
1INRIA Saclay, France, Palaiseau, Ile-de-France

Introduction: Decoding refers to the process of inferring the stimuli from an individual's brain signals. In the context of task fMRI, high-dimensional voxel-wise BOLD activation patterns are used as features to decode the stimuli presented to the subject during the task. Imaging sessions are constrained by the time and resources available to researchers, resulting in a limited number of samples per subject. This leads to a suboptimal feature-to-instance ratio, causing low decoding accuracy. Many such small fMRI datasets are publicly available but hard to use due to their small sample sizes and domain-specific nature. Therefore, there is a need for methods that can leverage these data and can be used to efficiently transfer learning across subjects, tasks, and cohorts (Gu et al. 2022). In this study, we test a stacking approach for transfer learning across subjects within four small cohorts with a few trials of a given task.

Methods: In a conventional decoding setting, a classifier is trained to learn the mapping between stimuli labels and features in the voxel space. Here, we present a stacking approach where we train a classifier to learn the mapping between true stimuli labels and the stimuli predictions from classifiers pre-trained on other subjects' voxel-space features (Figure 1). This converts a high-dimensional problem (where the number of features is the number of voxels) to a low-dimensional one (where the number of features is one minus the number of subjects in the cohort). We compare the stacking approach against the conventional one in four different cohorts and tasks: BOLD5000 (Chang et al. 2019), Forrest (Hanke et al. 2015), Neuromod (Bellec and Boyle 2019), and RSVP (Pinho et al. 2020). We use trial-by-trial GLM parameter maps from each of these tasks. Each of these datasets has about 4-6 classes of stimuli to be decoded and hence has similar decoding complexity. We also compare the two decoding settings across two different feature spaces - full voxel space and 1024 modes of the DiFuMo atlas (Dadi et al. 2020) and use two different classifiers for decoding - linear SVC and random forest (Pedregosa et al. 2011). Within each cohort, we vary the size of the training set in increments of 10% of the samples available for each subject and always test the trained model on 10% of the samples.
Results: As can be seen in Figure 2 (a), the stacking approach achieves the highest average accuracy within three (Neuromod, Forrest, and RSVP) of the four cohorts. For the Neuromod dataset, the best-performing scenario at an average accuracy of 80% is that of the stacking approach using the full voxel space and linear SVC classifier (Figure 2 (a)). For this dataset, we also see a maximum average gain (accuracy of stacking - accuracy of conventional setting) ranging between 15-22% (Figure 2 (b) and (c)). In contrast, for BOLD5000 (having only 3 subjects), the stacking approach performs worse than the conventional one across all classification scenarios.
Conclusions: The stacking approach presented in this study improves decoding performance, specifically in small training samples. This demonstrates a direct application for cohorts with small samples (like Neuromod). Since the final classifier in this method encounters a low dimensional feature space (one minus the number of subjects), the performance can be further improved by using a random forest classifier instead of linear SVC. This is especially true for relatively larger cohorts (like Forrest and RSVP). While the stacking approach works as well on reduced data (as with the DiFuMo approach), the benefits are less clear in the latter case, given that overfitting risks are lower. Finally, if the number of subjects in the cohort is too low, the method performs worse than conventional, as observed in BOLD5000. Overall, this suggests that off-the-shelf classifiers can chart the space of cognitive domains, which calls for a generalization of this approach across datasets.

References

Poster No 1433
Multimodal connectivity-based graph transformer networks and its application to sex classification

Hye Won Park1, Won Hee Lee1

1Kyung Hee University, Yongin, Republic of Korea

Introduction: The integration of multimodal brain imaging data and the use of graph-based approaches have emerged as powerful tools for gaining deep insights into the complex relationships and topological characteristics of brain connectivity. The combination of structural connectivity (SC) derived from diffusion tensor imaging (DTI) and functional connectivity (FC) obtained from functional MRI (fMRI) provides a comprehensive representation of brain connectivity, encompassing both the physical connections between brain regions and their dynamic interactions. By analyzing these modalities in conjunction, researchers can uncover brain patterns that may be obscured when examining each modality in isolation. In this context, we propose a new method that leverages a graph transformer network (GTN) to fuse multimodal connectivity information, and evaluate its performance on sex classification. We also identify important nodes to provide insights into the roles of specific brain regions in the sex classification task.

Methods: We used SC and resting-state FC data of 753 healthy individuals derived from the Human Connectome Project (HCP). Cortical regions were defined based on the 400-region Schaefer parcellation. SC was computed using fiber tractography and a log transformation of stream counts was applied. FC was generated using Pearson’s correlation of fMRI signals between regions of interest (ROIs). Figure 1(a) shows the pipeline of the proposed model. For each subject, both SC and FC graphs were created, where rows and columns represent nodes and their features, respectively. The edges were derived from Euclidean distances between ROI pairs of MNI 152 centroid coordinates. A Gaussian kernel was employed to distances, retaining the top 1% of connections. Both graphs were trained with the graph transformer, followed by batch normalization and parametric ReLU. To fuse graphs, we combined the nodes of two graphs using learnable weights (θ₀ and θ₁) using weighted summation. The edges and their features in a fusion graph were trained using XGBoost (Figure 1(b)). SHAP was employed to assess feature importance, retaining the top 1% of connections. Edge features were defined by concatenating the filtered SC, FC, and centroid distances. After applying adjacency dropout, the GTN updated node features considering edge features. Concatenating pooling was applied to merge features from all nodes, followed by sex classification using fully connected layers. Salient nodes were identified using GNNEXplainer. The model was evaluated using a 10-fold cross-validation and compared to single modality-based GTN models.
Results: Our proposed multimodal connectivity model shows superior performance compared to the single modality model (Figure 2(a)). The average accuracy of our model reached 95.76%, outperforming both the single SC (88.71%) and the single FC model (90.04%). Figure 2(b) shows the top 10 brain regions contributing to the sex classification. The most salient regions in the fusion model included the left temporal, the left inferior parietal lobule, and the left temporal pole for SC, and the left temporal, the left lateral prefrontal cortex, and the left inferior parietal lobule for FC. These findings indicate the significance of integrating information from both SC and FC modalities, as different regions contribute uniquely to the sex classification task in each modality.
Conclusions: We proposed a new GTN-based multimodal fusion model that effectively integrates the FC and SC modalities to capture complex brain connectivity patterns. Our proposed model achieved high accuracy in the sex classification task and provided interpretable insights into the key brain regions contributing to the model’s decisions. This study contributes to advancing our understanding of brain connectivity and lays the groundwork for future studies aiming to enhance the robustness and interpretability of models in neuroimaging research.

References
1. Calhoun, V. D., Sui, J. (2016). ‘Multimodal fusion of brain imaging data: a key to finding the missing link (s) in complex mental illness’, Biological psychiatry: cognitive neuroscience and neuroimaging, vol. 1, no.3, pp. 230-244.

Poster No 1434

Explainable Graph Neural Network on Imaging Genetics for Schizophrenia Classification

Badhan Mazumder¹, Vince Calhoun², Dong Hye Ye¹
¹Georgia State University, Atlanta, GA, ²GSU/GATech/Emory, Decatur, GA

Introduction: Investigation into the brain’s structure and functional connections could provide vital insights into neuropsychiatric disorders like schizophrenia (SZ). Genetic markers, such as single nucleotide polymorphisms (SNP), are known to play a significant role in identifying SZ patients due to their strong heritability. In this study an explainable graph neural network (GNN) framework is introduced to classify SZ patients. By obtaining rich data embeddings from multimodal graph-structured data formed with the subject-wise functional network connectivity (FNC) obtained from resting-state fMRI (rs-fMRI), structural connectivity (SC) derived from diffusion magnetic resonance imaging (dMRI), and SNPs. Experimental outcomes showed that in contrast to unimodal methods, our multimodal approach notably enhanced the classification of SZ patients against healthy controls (HC).

Methods: Data preprocessing Subject-specific FNC matrices were obtained via the Neuromark pipeline¹. To derive SC matrices, we computed diffusion tensors with dtifit (FSL)², followed by deterministic tractography generation of the whole brain using track (CAMINO)³. To create a compatible atlas in local space, firstly we performed inverted spatial normalization to the NeuroMark atlas¹, then warped the native fractional anisotropy map onto the standard MNI space. Finally, we isolated the streams passing through each pair of atlas ROIs and counted them individually. Proposed method As depicted in Figure 1, we constructed graph structure data where the edges were formed by applying a k-nearest neighbors (KNN) graph on subject-specific SC to consider crucial connections only. Since a large fraction of SNP data is unrelated to SZ, we employed a subset of 4943 SNPs, that by the findings of the psychiatric genomic consortium have been observed for SZ risk⁴. A 1-D convolutional neural network (CNN) followed by layer-wise relevance propagation (LRP)⁶ was applied to identify the top 100 SZ-linked SNPs. Then the corresponding FNC matrix was concatenated with the selected SNPs and employed as node features. After that, we input the multimodal graph data to our GNN framework that includes 5 graph convolution (GCN)⁷ layers, a global mean pooling layer followed by a linear layer, and a softmax for classification. Additionally, to explain, we employed GNNExplainer⁸ to identify the important edges of the graph which were highly significant for SZ classification.
Results: For validation, we utilized a subset (Total:165; SZ:93, HC:72) of the Function Biomedical Informatics Research Network (FBIRN) dataset with 80:20 training-testing split ratio. We evaluated using 5-fold cross-validation against 3 different indices: accuracy, precision, and f1-score. For the k-NN graph on SC, different k values (3, 5, 10, and 20) were utilized. Among them, k=10 resulted in the highest performance. Results shown in Figure 2a indicate that compared with the unimodal (SC and FNC separately) model the multimodal (SC+FNC) model was giving higher performance which improved to 73.38% (accuracy), 75.10% (precision) and 72.79% (f1-score) when SNP was also considered. As shown in Figure 2b, from our generated explanations for SZ patients, we found significance in default mode (DMN), visual (VSN), and cognitive-control (CON) network which is consistent with the clinical findings. We also conducted a group analysis using a 2-sample T-test (p<0.05) in-between generated explanations for HC and SZ and depicted the finding in Figure 2c which also indicates the same networks.

Conclusions: We presented an explainable GNN framework that incorporates structural-functional connectomics and genetic information simultaneously, to improve SZ classification and interpret potential structural biomarkers. Obtained experimental findings showed improved performance gain in comparison to unimodal set-up which provides evidence of the robustness of our multimodal approach.
Heterogeneity and Brain Age in Depression: A HYDRA-Based Investigation of Lifestyle Exposures

Nicole Sanford¹, Yuetong Yu¹, Sophia Frangou¹

¹University of British Columbia, Vancouver, British Columbia

Introduction: Major depression is intricately linked to brain health, with depressive episodes potentially contributing to accelerated brain aging (Schiweck et al., 2020; Simon et al., 2023). Further, lifestyle factors such as diet and physical exercise may contribute to psychiatric and neurological wellbeing, although relationships are complex (Lopresti et al., 2013). The present study aimed to identify comprehensive profiles distinguishing adults with a history of depression with respect to modifiable risk factors and brain age.

Methods: The sample comprised adults from the UK Biobank (ages 44-82 years). Brain age gap estimates (brainAGE; Cole & Franke, 2017) were computed from 3T structural MRI data using support vector regression to predict biological brain age from regional cortical thicknesses, cortical surface areas, and subcortical volumes. Heterogeneity Through Discriminative Analysis (HYDRA; Varol et al., 2017) was used to identify clusters of individuals with a history of depression (n = 896; 305 males) compared to a non-psychiatric control group (n = 36,206; 17,232 males) based on 224 features encompassing diet and nutrition, alcohol use, smoking history, pastimes, relationship quality, physical exercise, and fitness, with sex and age included as covariates. The resulting clusters were compared on brainAGE and mood-related psychopathology. All group differences were identified following false discovery rate correction (p < .05).

Results: HYDRA identified four clusters (n = 253, 178, 315, and 150, respectively) which were differentiated by 39 variables comprising social support and activities, physical exercise, fitness, smoking history, alcohol use, dietary patterns, nutritional supplements, computer and TV use, sleep quality, and outdoor exposure. These clusters varied in mood-related psychopathology but not in brainAGE. Cluster 1 exhibited the lowest psychopathology and was characterized by relatively strong social support and activities, frequent physical exercise, low BMI, high grip strength, varied diet, low computer usage, and low insomnia as compared to the other three clusters. In contrast, Cluster 3 exhibited the greatest psychopathology and was characterized by relatively low social support and activities, minimal physical exercise, high BMI, high meat and salt intake, low fruit and vegetable intake, high computer and TV use, frequent insomnia, and minimal outdoor exposure.

Conclusions: This study underscores the potential of comprehensive interventions that could positively impact mental health. The uniformity in brainAGE among the identified clusters suggests that certain key aspects of neurological health may be resilient across individuals with varying lifestyle exposures and depressive histories. Further investigations in longitudinal cohorts are needed to determine how these relationships may evolve with clinical progression and medication exposure.

References

Poster No 1436

Skullstripping anatomical MRIs in AFNI using volumetric deep learning network: Preliminary results

Yamuna Narayana Swamy¹, Patrick McClure², Richard Reynolds³, Francisco Pereira³, Paul Taylor³

¹Scientific and Statistical Computing Core, NIMH, NIH, USA, ²Naval Postgraduate School, Monterey, CA, ³National Institute of Mental Health, Bethesda, MD

Introduction: Identifying the brain within an anatomical MRI (i.e., skullstripping or brain extraction) is a standard step in many neuroimaging analysis pipelines. While it is generally easy to tell by eye which voxels belong to the brain and which do not, it is surprisingly difficult to automate. There are existing tools that do this well for good quality data with standard characteristics, but the challenge is to perform this task robustly across variations in physiology, cortical thickness, or other individual features, as well as the many types of noise or image distortions such as ringing, noise, dropout, and brightness inhomogeneity. In this work we demonstrate a new 3D skullstripping tool in AFNI using a volumetric, convolutional neural network (V-net) that can estimate detailed brain masks for raw-to-minimally processed human anatomical datasets.

Methods: A V-net is a volumetric neural network that is particularly suited to whole brain classification due to its in-built 3D convolutional kernel. Milletari et. al.² applied a V-net to MRI volumes for prostate segmentation, and Bontempi et al.³ used a modified version for brain tissue classification. Here, we adopt this framework as a starting point for skullstripping, using a larger number of layers to perform a 2-channel classification problem: to identify “brain” and “non-brain”. The architecture contains both a volumetric down-sampling path and a volumetric up-sampling path. We implemented V-net in Python using PyTorch⁴. We trained it end to end to predict binary masks from T1-weighted (T1w) anatomical MRI volumes, using Sorensen-Dice loss⁵. The training dataset masks were created by using FreeSurfer⁶ on good quality T1w volumes. To increase robustness and generalizability of the V-net, we augmented the training data by using AFNI to derive volumes with the following characteristics: Gibbs ringing, gain inhomogeneity, zipper noise, strong shading and affine transforms. The output of the V-net is a softmax layer, which provides a probability map of voxels belonging to foreground or background; specifically, it is a two channel volumetric segmentation corresponding to brain and the non-brain. The training and testing data were T1w volumes (1mm isotropic voxels) from across 8 sites on 3 continents with a large age range (8-70 yrs) and different 3T scanner types⁷. Here, the network was trained for 100 epochs on 131 original plus 72 augmented datasets, and tested on 38 datasets.

Results: Most skullstripping algorithms perform well in the “core” brain region, i.e., away from the boundary. In our evaluations, we have computed the performance metrics around the brain edge where algorithms vary the most, defining an “inner” and “outer” rim, using AFNI’s 3dDepthMap (Fig 1a). The true positive rate (TPR) was computed in the inner rim (Fig 1b), and the true negative rate (TNR) was computed for the outer rim (Fig 1c). In both cases, the typical V-net results closely match the initial mask datasets. Visually checking example subjects, we can see multiple cases where differences are due to the V-net providing more accurate masks to the underlying anatomy than FreeSurfer (Fig 2), e.g., see the arrows in Fig 2a. The V-net performs well in identifying the brain region in a dataset having considerable ringing artifacts (Fig 2b).
Conclusions: The preliminary results are encouraging for this architecture to classify the brain from anatomical MRI volumes. Even with a small training dataset, the V-net shows high accuracy for standard datasets, and also shows some advantages over traditional skullstripping approaches in cases of lower data quality, such as ringing. In future work we plan to expand the training dataset size, as well as augmented sample size and variety. Finally, we also plan to expand the application to multiclass (e.g., tissue) classification.
Surface-based Middle-Fusion Attention model for Early Alzheimer's Disease Diagnosis

Quan Duong¹, Jin Kyu Gahm¹

¹Pusan National University, Busan, Busan

Introduction: Surface-based analysis offers many advantages for early Alzheimer's disease diagnosis. Cortical surface representation helps analyzing cortical atrophy patterns through quantifiable metrics such as cortical thickness, sulci depth and curvature. It also reveals regional changes in cortical functions by analyzing the PET standardized uptake value ratio. Many studies deployed graph convolutional neural network to extract features from cortical surface. However, they did not achieve state-of-the-art results, possibly due to suboptimal GCNN or not incorporating multimodal features. In this study, we propose a new middle-fusion attention model that effectively leverages multimodal cortical surface features derived from T1w MRI and FDG PET. The proposed model achieves high performances on the ADNI1, ADNI2 & ADNI3 dataset.

Methods: 1. Data Acquisition: We acquired publicly available ADNI1 datasets from the Alzheimer's disease neuroimaging initiative (ADNI). Baseline FDG PET scans were acquired for ADNI1, Amyloid PET and Tau PET for ADNI2&3 along with T1w MRI that was taken no more than two months prior. The acquired ADNI1 dataset consists of 101 CN, 208 MCI and 84 AD. ADNI2 & ADNI3 datasets comprises 258 CN, 159 MCI and 55 AD. 2. Data Preprocessing: We used FreeSurfer on T1w MRI to reconstruct cortical surface representation and generate cortical structure related metrics including cortical thickness, sulci depth and curvature. Subsequently, we employed PETSurfer on PET images as follows: registering to anatomical space, perform partial volume correction, compute SUVR and sampling SUVR onto the cortical surface. Finally, we resampled cortical thickness, sulci depth, curvature and PET SUVR onto a sixth-ordered icosphere and extract non-overlapping triangular patches. 3. Model Architecture: We designed middle-fusion attention model for effectively analyzing multimodal cortical features. The model consists of two stages: Modality-specific analysis and Inter-modality analysis. The first stage analyzes extract features from each modality through self-attention mechanism. Then features extracted from each modality are fed into the second stage, where cross-attention is performed to extract inter-modality relationship. The outputs of the second stage are concatenated and analyzed by a classifier to produce class probabilities.
Results: We evaluated the proposed model using 5-fold stratified cross-validation. Area under the ROC curve was used as the evaluation metric. For ADNI1 dataset, the model achieved 97% AUC and 81% AUC on AD diagnosis (CN vs. AD) and early AD diagnosis (CN vs. MCI), respectively. For ADNI2 & ADNI3 datasets, the model scored 95% AUC on AD diagnosis and 79% AUC on early AD diagnosis.

Conclusions: We developed a new middle-fusion attention model for early AD diagnosis. The proposed model is capable of leveraging multimodal cortical features, demonstrated by high performances on both AD diagnosis and early AD diagnosis across ADNI1, ADNI2 & ADNI3 datasets.

References

Poster No 1438

Language Activation from Naturalistic fMRI Time Series using Machine Learning

Elaine Kuan1,2, Viktor Vegh1,2, John Phamnguyen1,3, Kieran O’Brien4, Amanda Hammond4, David Reutens1,2,3
1Centre for Advanced Imaging, The University of Queensland, QLD, Australia, 2ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, QLD, Australia, 3Royal Brisbane and Women’s Hospital, QLD, Australia, 4Siemens Healthineers, QLD, Australia

Introduction: Naturalistic fMRI can overcome some limitations of traditional task-based fMRI. Due to the dynamic nature of the naturalistic stimulus, task regressors are difficult to define, which pose a challenge for conventional General Linear Model (GLM) analysis. Data driven methods, namely machine learning (ML), may provide an alternative solution as they are successful in decoding fMRI data. The aim of this study is to investigate the use of Rotation Forest (RotF) (Rodriguez et al, 2006) in classifying areas of language activation from naturalistic fMRI time series data, and to identify the segments of the naturalistic fMRI time series contributing mostly to the classification achieved by RotF.

Methods: Twenty healthy controls completed language tasks including sentence completion (SC) and watched a 15-minute in-house created video made up of segments of a quiz show with advertisements. Gradient Echo Planar Imaging (EPI) fMRI data for each paradigm were acquired using the following parameters: matrix size = 64 x 64 x 42, TR = 2s, TE = 30ms and voxel size 3 x 3 x 3 mm³. The raw EPI data were pre-processed using the SPM12 software according to the following steps: slice timing correction, realignment of volumes, co-registration and smoothing. Voxel-wise fMRI time series of the SC task were modelled with GLM (Friston et al., 1994) to obtain binarized activation maps at p < 0.001 uncorrected. Voxel-wise naturalistic fMRI time-series (frames 0 to 440) from 14 participants were extracted and labelled based on SC activation maps. Whilst we have evaluated a range of classification methods, here we provide results for Rotation Forest (RotF). The number of samples to be used for training was experimentally evaluated, resulting in 4872 single voxel time series samples. Similarly, voxel-wise time series data from six participants formed the test set, resulting in around 60,000 samples from fMRI images of each participant. The RotF based activation maps were first reconstructed and then compared with SC activation maps of each test participant. The Area Under the Curve (AUC) and Euclidean Distance (ED) between language activation peaks were evaluated. Sequential Forward Feature Elimination (SFFE) (Ferri et al.,1994) was performed 10 times on the trained RotF model using a 2-fold cross validation. The top five frames were labelled with ones while the remaining frames were labelled with zeros to produce a frame importance metric over the naturalistic fMRI time series. Addition of the importance metrics over repeated runs produced an overall frame importance for the naturalistic time series data.

Results: From Fig. 1, we deduce that the RotF method is successful at capturing fronto-temporal and temporal activation associated with language, but is not as successful in capturing Supplementary Motor Area (SMA) activation. Occipital activation, expected for a visual stimulus but not for language activation, can also be observed in all test participants using RotF applied to the naturalistic fMRI time series. Notably, HC20 had limited activation in general but occipital activation was still present, which is expected due to the visual nature of the naturalistic stimulus. The mean whole-brain AUC and mean ED across all test participants were 0.83 and 5.4mm, respectively. From Fig. 2, we observe that over 10 runs of SFFE, there are
spikes in the waveform that concentrate between the first two advertisement blocks (frames 202 to 367), indicating that the naturalistic fMRI time series within those time points are important for the classification performed by RotF.

Conclusions: With its success in identifying language activation corresponding to SC activation, RotF can potentially be used to identify language activation from naturalistic fMRI data. The application of SFFE further enhances the use of RotF, in allowing informative time points within the naturalistic fMRI time series to be identified, which can be translated to the stimulus to facilitate stimulus designs.

![Figure 1: The overlap between SC activation and RotF activation for six test participants (Black – overlap, Yellow – SC activation, Red – RotF activation)](image)

Figure 2: The green plot shows the weighting for frame importance obtained from running the SFFE 10 times. The blue blocks show the frames corresponding to advertisement segments and the orange blocks are the frames over which questions are shown during the quiz show (i.e., in the naturalistic stimulus).

References

Poster No 1439

Classification of migraine with aura based on grey matter structure within the visual networks

David Niddam¹, Kuan-Lin Lai², Shuu-Jiun Wang²

¹National Yang Ming Chiao Tung University, Taipei, Taiwan, ²Taipei Veterans General Hospital, Taipei, Taiwan

Introduction: Migraine auras are transient neurological symptoms that typically occur before a headache attack. The occipital cortex is thought to have a pivotal role in the initiation of visual auras, as cortical spreading depression, the mechanism underlying visual auras, arises within this region (Hadjikhani et al., 2001). Interictal changes in resting-state functional connectivity and grey matter structure within the occipital cortex has also been observed in migraine with visual auras (Karsan et al., 2023; Niddam et al., 2016). Previous neuroimaging studies on migraine auras have primarily used mass-univariate analyses in which each voxel is considered as a spatially independent unit. Multivariate pattern analysis is a complementary approach in which information contained jointly among multiple voxels is taken into account at once. Multivariate pattern classification can identify distributed patterns of voxels which can be used to differentiate groups of participants and to make predictions about diagnoses at the individual level. Since the occipital cortex is involved in the generation of visual aura and may exhibit altered interictal grey matter structure and functional connectivity, we hypothesized that grey matter within the functionally defined resting-state visual networks contains discriminative information that can be used to differentiate migraine patients with visual auras (MA) from migraine patients without visual auras (MO) and healthy controls (HC).
Methods: Structural and functional resting-state MRI images were obtained from 50 MA patients, 50 MO patients and 50 HCs. All patients were in the interictal state and had low-frequency episodic migraine. Independent component analysis with 40 components was first used in each of the three groups to identify the functional visual networks (see Figure). The resulting images were thresholded and binarized. These binarized images were then used to constrain the structural images. The masked images entered a multivariate analysis in which Gaussian process classification was used to generate pair-wise models (see Figure). The performance of the models was indexed by the balanced accuracy (BA) and the area under the receiver operating characteristic curve (AUC). Generalizability was assessed by 5-fold cross-validation and non-parametric permutation tests were used to estimate significance levels. Only results passing a false discovery rate corrected threshold for the multiple models set up were considered significant.

Results: Five functional networks were identified within the occipital cortex. Of these, one corresponded to the occipital visual network and one corresponded to the lateral visual network (Laird et al., 2011). The remaining 3 networks covered the anterior and the posterior dorsal and ventral medial visual networks (Laird et al., 2011). The multivariate pattern of grey matter voxels within the ventral medial visual network contained significant information related to the MA diagnosis (MA vs. HC: BA=78% [P<0.001]; AUC=0.84 [P<0.001]; MA vs. MO: BA=71% [P<0.001]; AUC=0.73 [P=0.003]). Grey matter voxels with the anterior medial visual network also contained significant information related to the MA diagnosis, albeit less significant (MA vs. HC: BA=67% [P=0.004]; AUC=0.70 [P=0.005]; MA vs. MO: BA=68% [P=0.001]; AUC=0.79 [P<0.001]).

Conclusions: Migraine with visual aura is characterized by multivariate patterns of grey matter changes within the medial visual cortex that have discriminative power and may reflect pathological mechanisms. The medial visual cortex is known to processes simple visual stimuli, both static and moving (Laird et al., 2011). This is congruent with common symptoms associated with visual aura.

References

Poster No 1440

Geometric constraints on individual brain function: a deep learning approach

Mehul Gajwani1, Zachary Zendarski1, Stuart Oldham2, Trang Cao1, Mehtash Harandi1, James Pang1, Alex Fornito1

1Monash University, Melbourne, Victoria; 2Murdoch Children's Research Institute, Melbourne, Victoria

Introduction: Brain structure necessarily constrains brain function, but correlations between structural connectivity (SC; as measured by streamline count from diffusion MRI) and functional connectivity (FC; as measured by pairwise correlation of
resting-state BOLD-fMRI time-series) are relatively modest. Deep learning models can reveal a tighter relationship, predicting FC from SC with a reasonable degree of accuracy (e.g. Pearson’s $r = 0.55 \pm 0.1$ for individuals and $r = 0.9 \pm 0.1$ for group average estimates) (Sarwar et al., 2021). Recent work (Pang et al., 2023) has shown that brain geometry may contain at least as much information about function as structural connectivity. Specifically, linear combinations of the eigenmodes of cortical surface geometry are capable of reconstructing group-averaged FC (e.g. group $r = 0.7$ when using 50 modes). Here, we move beyond these linear models to evaluate the relative performance of SC and cortical geometry in predicting FC through deep learning.

Methods: We used structural, functional, and diffusion MRI data from the Human Connectome Project as previously described (Glasser et al., 2013; Oldham & Ball, 2023; Pang et al., 2023). Cortical surface meshes, SC, and FC matrices passed quality control in 967 participants; hence, we used 767 were used for training, 100 for validation, and 100 for testing. We used a fully-connected feed-forward neural network (Fig. 1B) developed in (Sarwar et al., 2021) with vectorized input to test three competing models using different input data from individuals (Fig. 1). The input of the first model input is the upper triangle of the SC matrix with 100 nodes (Fig. 1A). The input of the second model is the parcellated (Schafer et al., 2018) first 50 geometric eigenmodes (GM) calculated in fsLR-32k space as previously described (Pang et al., 2023) (Fig. 1D and E). Finally, the input of the third model is 50 connectome eigenmodes (CM) (Naze et al., 2021) generated from the graph Laplacian of the SC matrix . After training (Fig. 1C and F), one run of each model was selected by matching the model inter-prediction similarity to the empirical distribution of similarity between individuals’ FC.

Results: Model accuracy was assessed using Pearson correlation. Group level estimates were generated by averaging model predicted FC (pFC) across individuals and comparing it to the average empirical FC (eFC) across the same individuals. Across 100 individuals in the test set, the resulting correlations between the group pFC and eFC are $r = 0.98$ for the SC model, $r = 0.99$ for the GM model, and $r = 0.99$ for the CM model (Fig. 2A). Furthermore, all models accurately predict the group average even when using test sets with fewer individuals (Fig. 2B). At the individual level, the models reconstruct individual FC matrices more accurately than the previous state-of-the-art(Sarwar et al., 2021): SC $r = 0.63 \pm 0.19$; GM $r = 0.64 \pm 0.15$; CM $r = 0.65 \pm 0.17$. Results from five example individuals are shown in Fig. 2C. Models generally replicate large-scale patterns of FC, and individuals with erroneous reconstructions vary between models. Finally, paired-samples ANOVA showed no significant difference between the predictive accuracy of each model across 100 test individuals.
Conclusions: Overall, we demonstrate that structural connectivity, geometric eigenmodes, and connectome eigenmodes can reconstruct functional connectivity with comparable accuracy. Notably, the geometric eigenmodes do not directly measure any information pertaining to inter-regional connectivity; instead, they represent local variations in shape and carry an implicit distance-dependence between points that is captured by an exponential-decay rule that is known to dominate many features of cortical organization. Together, these findings suggest that cortical geometry is as informative of large-scale brain functional connectivity as inter-regional structural connectivity.

References
Machine learning-based fMRI feature extraction of major depressive disorders

Ye-Eun Kim¹, Jiwon Lee², Mikhail Votinov³, Lisa Wagels⁴, Ute Habel⁵, Sun-Young Kim⁶, Munseob Lee⁷, Han-Gue Jo⁶

¹Kunsan National University, Kunsan, Jeollabuk-do, ²Kunsan National University, Gunsan-si, Jeollabuk-do, ³Institute of Neuroscience and Medicine (INM-10), Research Centre Jülich, Jülich, Germany, ⁴RWTH Aachen University Hospital, Aachen, Germany, ⁵Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University Hospital, Aachen, North Rhine-Westphalia, ⁶Kunsan National University, Gunsan, Jeollabuk-do, ⁷Electronics and Communication Research Institute (ETRI), Deajeon, Deajeon

Introduction: Literature has demonstrated the applicability of graph neural network (GNN) in analyzing the connectome derived from functional magnetic resonance imaging (fMRI), particularly in identifying alterations within the functional networks of major depressive disorder (MDD)¹². Building upon these findings, the current study employs a data-driven machine learning approach with GNNs to uncover the fundamental features characterizing the functional brain network of MDD.

Methods: Resting-state functional MRI scans from a dataset of 821 MDDs were used to train a GNN model³. For constructing the graph, a whole-brain functional connectivity matrix was utilized, representing Fisher transformed correlation coefficients among BOLD time series across 160 Dosenbachs’ atlas-based cortical brain regions⁴. Since default mode network frequently reported to be different in MDD⁵, thirty-four regions of them were taken to represent default mode network within the matrix. The establishment of edges was achieved through the application of a k-nearest neighbors (KNN) algorithm, with the node feature set as a vector reflecting nodal functional connectivity. To decode the fundamental features characterizing the MDD brain network, a graph autoencoder (GAE) framework⁶ was employed. GAE operates through unsupervised learning on graph-structured data, utilizing a variational autoencoder to model the latent space as a lower-dimensional vector, serving as a representation of the input dataset. Once the GAE model was trained, the connections within the input matrix significantly influencing the latent vector were identified.

Results: Figure 1 illustrates the GAE architecture with seven fully-connected (FC) layers in the encoding phase, and three FC layers and four graph convolutional network (GCN) layers in the decoding phase. The first step involved training the GAE to derive the low-dimensional representation vector Z for the provided brain networks. This training process aimed to minimize the disparity between the input X and its corresponding output X'. Upon testing the training loss across various latent dimensions, it was found that eight dimensions yielded the lowest training loss. Subsequently, the investigation focused on identifying the top salient connections contributing to the latent vector of the trained GAE. By altering the connectivity strength of each input X ij, the variations in the latent vector concerning specific connections between brain regions i and j were inferred. The assessment involved calculating the average squared variance (MSE) between the latent vectors encoded by the input X and those encoded by X ij . These MSE values were then sorted, revealing the connections with higher MSE values, indicating a more substantial impact on the latent space. Essentially, these connections signify significant features that could characterize the given input X. Figure 2 demonstrates this sorting process. It revealed a cluster of three connections above 0.175 MSE (ventromedial prefrontal cortex and left superior frontal gyrus, medial prefrontal cortex and posterior cingulate cortex, and medial prefrontal cortex and left inferior temporal gyrus), which are the top features potentially characterizing the brain networks associated with MDD.

Figure 1 . The architecture of graph auto encoder. Abbreviations: GCN, graph convolutional network; FC, fullyconnected layer; Z, latent vector; MDD, major depressive disorder.
Conclusions: This study employed a data-driven GNN approach to identify the fundamental features characterizing the brain networks associated with MDD. Utilizing the autoencoder method, GAE model was trained to minimize training loss, allowing the latent vector to serve as a concise representation of the MDD brain networks. Based on data-driven analysis of a large dataset related to MDD, these findings indicate potential brain biomarkers that could be pivotal in clinical diagnosis and formulating treatment plans for psychiatric disorders.

References
1. Qin, K., Lei, D., Pinaya, W. H., Pan, N., Li, W., Zhu, Z., ... & Gong, Q. (2022). Using graph convolutional network to characterize individuals with major depressive disorder across multiple imaging sites. EBioMedicine, 78.

Poster No 1442

Whole-brain fMRI Pattern Extractor: 3D Variational Autoencoder for Sensorimotor Classification

Ji-Hye Lim¹, Jong-Hwan Lee², Hyun-Chul Kim¹

¹Kyungpook National University, Daegu, Korea, Republic of, ²Korea University, Seoul, Korea, Republic of

Introduction: By extracting representation features from whole-brain fMRI datasets and inputting them into machine learning models, it is possible to alleviate an overfitting issue in fMRI classification tasks. Since the complex brain patterns occurring in the brain are not derived from a single cause but from multiple factors, it is desirable to use 3D Variational Autoencoder (3D-VAE) that can well explain non-linearity. We hypothesize that Gaussian sampling in the latent space of 3D-VAE can produce a diverse array of plausible brain activity patterns, potentially improving classification task performance. Thus, this study aims to explore if features derived from 3D-VAE improve performance in four sensorimotor classification tasks.

Methods: Twelve right-handed male individuals (age = 25.0 ± 2.0 years) participated in four sensorimotor tasks: auditory attention, left-hand clenching, right-hand clenching, and visual stimulation. Each activity began with a 30-second period of focusing on a cross, followed by three task blocks of 20 seconds each, interspersed with 20-second periods of cross-fixation. The fMRI data were processed using a standardized protocol in SPM. Task-specific volumes (repetition time = 2 s; 30 volumes for each task; totaling 1,440 volumes across all participants) were subsequently prepared for a four-category classification task. For extracting representation features from the whole-brain fMRI data, we employed a 3D-VAE model. Subsequently, we carried out four sensorimotor classification tasks to verify the robustness of these representations using a Multi-Layer Perceptron (MLP) classifier (including two hidden layers). The classification performance was assessed for leave-one-subject-
out CV (LOOCV). More specifically, the training dataset was used to develop a 3D-VAE model featuring a 3D Convolutional Neural Network (3D-CNN), included in both encoder and decoder components. This model was designed to extract latent representations in lower-dimensional space. In particular, the representations used the z latent calculated through the reparameterization trick for backpropagation. The representation features derived from the training dataset were used to train a MLP classifier, while features from the test dataset were used to evaluate the classification performance. Also, we visualized the reconstructed fMRI pattern using the Decoder of the 3D-VAE to explore features related to the task, further enhancing implementation of the pattern captured by the model.

Results: We observed that the 3D-VAE, featuring encoder network with convolution layers of 5 and a latent space dimensions of 256, achieved a mean error rate achieved 1.81±1.66 %, using LOOCV. This represents a decrease of 0.29% in the error rate compared to the LOOCV of a 3D-CNN using whole brain data without extracting representation using 3D-VAE. Visualizing the representations extracted from each test subject with t-distributed stochastic neighbor embedding in LOOCV demonstrated effective subject identification and task-specific clustering within subjects. Furthermore, the decoded fMRI patterns based on the employed representations revealed brain patterns specific to the sensorimotor tasks.

Conclusions: We discovered that the 3D-VAE can extract crucial representations in a lower latent space from the whole-brain, and these representations have demonstrated enhanced performance in the classification of four sensorimotor tasks. Future work is warranted to investigate the efficacy of the proposed approach in different classification tasks (e.g., working memory, emotion, social, language, gambling, relational) using Human Connectome Project datasets.

References

1. Acknowledgment: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. RS-2022-00166735 & No. RS-2023-00218987).
2. References
Graph machine learning-based classification of PTSD using verbal memory task-based fMRI

Shin-Eui Park¹, Yeong-Jae Jeon²,³, Kyungmin Nam⁴, Alex Bhogal⁴, Hyeon-Man Baek²,³, Jong-II Park⁵, Jong-Chul Yang⁵

¹Gachon University, Incheon, Korea, Republic of, ²Lee Gil Ya Cancer & Diabetes Institute, Gachon University, Incheon, Korea, Republic of, ³Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea, Republic of, ⁴Centre for Image Sciences, Department of High Field MR, University Medical Centre Utrecht, Utrech, The Netherlands, ⁵Department of Psychiatry, Jeonuk National University Medical School, Jeonju, Jeonbuk

Introduction: This study aims to develop a classification model to distinguish between individuals with Post-Traumatic Stress Disorder (PTSD) and healthy controls (HC). Utilizing memory task-based fMRI data, we can seek to identify distinctive patterns in brain activity that can serve as markers for the classification of PTSD and HC individuals. The objective is to contribute to the development of a reliable and objective method for differentiating between individuals with PTSD and those without utilizing graph machine learning algorithm, potentially enhancing diagnostic precision and informing targeted interventions.

Methods: 23 healthy controls and 13 individuals diagnosed with PTSD underwent verbal memory task fMRI scans (Fig. 1.a). Graph analysis was conducted using the CONN-fMRI FC toolbox (version 21a), in conjunction with SPM12 software. Graph matrices, featuring 164 nodes as Regions of Interest (ROI), were constructed, and a connectivity matrix was derived through ROI-to-ROI correlations. Following the acquisition of the connectivity matrix, thresholding was applied to eliminate less relevant information, resulting in an adjacency matrix as part of the preprocessing. Subsequently, low-dimensional features (specifically, 10 features) were extracted from functional brain connectivity networks using the “graph2vec” graph embedding technique. Our classification approach involved employing RandomForest, XGBoost, Support Vector Classifier (SVC), Gaussian Naïve Bayes (Gaussian NB), and k-Nearest Neighbors (KNN) models to identify PTSD-related brain networks based on the aforementioned low-dimensional features (Fig. 1.b). Classification results were compared against the ground-truth to derive classification accuracy. To ensure robust prediction accuracy, we employed k-fold cross-validation with k=5.

Results: Figure 2 illustrates the classification accuracy achieved across the rest, encoding, and retrieval datasets. In the rest dataset, XGBoost exhibited the highest performance with a 73% classification accuracy at the 0.05 threshold level, while Gaussian NB and KNN models achieved a comparable accuracy of 73% at the 0.15 threshold level. For the encoding dataset, XGBoost demonstrated the most effective classification performance, achieving a 75% accuracy at the 0.25 threshold level. Finally, in the retrieval dataset, Gaussian NB emerged as the best-performing model, attaining a 70% classification accuracy at the 0.45 threshold level.
Conclusions: This study distinguishes itself from prior machine learning-based classification studies because we utilize memory tasks in the fMRI dataset for PTSD. While most machine learning studies rely on resting-state fMRI due to its stability and sufficient scan time, our approach focuses on understanding how the brain functions during memory tasks, enabling us to capture more sensitive brain activation during the memory process. Notably, verbal memory impairment is a prominent feature in PTSD. Focusing on memory tasks helps us identify unique patterns associated with memory in people with PTSD. Our study is the first to use memory task-based fMRI along with graph machine learning algorithms to identify PTSD. The different brain functional network patterns observed during memory tasks provide valuable insights for clinical understanding and identification of PTSD. In our results, XGBoost demonstrated strong performance in both the rest and encoding datasets, indicating its ability to effectively capture complex patterns associated with PTSD. On the other hand, Gaussian NB was outstanding in the retrieval dataset, highlighting its proficiency, particularly in the memory recall process. The result that different models succeeded in various datasets highlights importance of customizing machine learning methods for specific memory processing in PTSD. This comprehensive approach, incorporating memory tasks and graph machine learning, contributes to a detailed understanding of PTSD’s neural correlates and its identification.

References

Poster No 1444
Cortical Simplicial Complex Neural Networks for Alzheimer’s Disease Classification
Zhiyang Li, Seung-Yeon Son, Jae-Eun Choi, Jong-Min Lee
1Department of Artificial Intelligence, Hanyang University, Seoul, Korea, Republic of, 2Department of Electronic Engineering, Hanyang University, Seoul, Korea, Republic of, 3Department of Biomedical Engineering, Hanyang University, Seoul, Korea, Republic of

Introduction: Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease. Early and accurate diagnosis is considered crucial for intervention as treatment. There have been many 3D volumetric analysis study using CNN models on the regular voxel data structure and have been able to achieve impressive classification result. However, the intrinsic topology of the cerebral cortex is hard to preserve in such methods. On the other hand, the surface-based analysis mainly takes advantage of the geometry of the highly folded and curved cerebral cortex on the non-Euclidean space. Several works use Graph Convolutional Neural Networks or specialized Spherical Convolutional layers on the cortical surface mesh. Contrast to those works where they model the local one-ring patch vertices in each layer, we propose to model extended higher-order neighborhoods using Simplicial Neural Networks on the cortical surface mesh. To our knowledge, this is the first work that model cortical surface mesh as a simplicial complex that uses Simplicial Neural Networks for Alzheimer’s Disease classification. We show how one can model the cortical surface mesh as a simplicial complex and utilize the Message Passing Simplicial Networks on the surface in the next section.

Methods: Given a cortical surface mesh, contrary to model it as a Graph G=(V,E), where V and E present the set of nodes and edges, we model the surface mesh as a Simplicial Complex K on the set of vertices. Where σ=[[v_0,v_1,…,v_k]]∈K is a k-dimensional simplex with k+1 cardinality. In this work, it is apparent we can model vertices as 0-simplices, edges as 1-simplicies and triangles as 2-simplicies. Under such simplicial complex and with the information of connection of 0-simplicies from cortical surface file, we can subsequently calculate Boundary matrices that describes the incident relations between simplices. Given every cortical surface mesh have the same connection, only one set of boundary matrices is needed for surface mesh with 40962 nodes. But since our method also models the cortical surface with different levels of discrete icosahedron meshes, a set of boundary matrices is also precomputed from mesh with 10242 nodes to icosahedron with 42 nodes. After precomputing the boundary matrices and Laplacian matrices that required for message passing simplicial layer, the cortical surface simplicial complex can be used to learn our classification network. Figure shows one branch of our network that process each hemisphere cortical surface simplicial complex. Where we use cortical thickness as our node feature, the feature is then transfer to higher dimension by using our STEM layer using Reparameterized Convolutional Layer.
ABSTRACTS

We simply define the 1-simplices and 2-simplices feature as interpolation of their boundary nodes. Then we sequentially update the feature of each simplices to finally get a new set of 0-simplex features. After several layers of message passing simplicial layers and down sampling layers, we concatenate the global averaged feature for each hemisphere and sent it to the classifier layer.

Figure: Network branch for each side of the hemisphere

Results: We conduct our experiment of AD classification using ADNI1 dataset. More specifically, after preprocessing and quality control, 225 normal control and 184 AD subjects were selected. Under the setting of stratified 5-fold cross validation, our model achieves 90.24% accuracy with 85.40% sensitivity and 94.46% specificity. The training time for our model with 30 epoch is under 8 minutes.

Conclusions: We propose to model the cortical surface as simplicial complex and introduce a deep learning algorithm to classify Alzheimer’s Disease with T1w data. Using ADNI1 dataset for the classification task, we show the effectiveness of such approach, and the potential of further using more sophisticated networks to achieve better results on surface-based analysis.

References

Poster No 1445

Predicting post-stroke functional deficits through structural disconnection mapping

Ardalan Aarabi1, Maedeh Khalillian1, Martine Roussel1, Olivier Godefroy1

1University of Picardy Jules Verne, Amiens, Picardie

Introduction: Post-stroke deficits arise from both localized structural damage at the injury site and widespread network dysfunction caused by structural disconnection (Salvalaggio, 2020; Siegel, 2016). Recent research has leveraged alterations in functional and structural connectivity derived from lesions to predict behavioral deficits, accounting for 40–60% of variability in acute-stage stroke patients’ functional scores. In this study, we assessed the predictive power of lesion-derived structural network features, derived from structural disconnection, for predicting post-stroke motor, executive and processing speed deficits in stroke patients at the chronic stage.

Methods: Structural imaging and clinical data from 340 stroke patients (aged 63.9±10.5 years) included in the GRECogVASC study cohort, who were experiencing motor, executive function, and/or processing speed deficits, were acquired six months post-stroke at Amiens University Hospital (Barbay, 2018). Lesions for each patient were manually segmented on 3D T1w images, normalized into the MNI152 template, and binarized to generate lesion masks. For post-stroke deficit prediction,
structural features were extracted from structural disconnection maps. To this end, a probabilistic structural disconnection map was first generated for each patient using streamlines passing through the patient’s lesion mask, estimated by fiber tracking from diffusion-weighted imaging data of over 400 healthy controls (62.87 ± 13.47 years) from the Cambridge Centre for Ageing and Neuroscience repository (CamCAN, Stage 2) (Taylor, 2017). In the probabilistic maps, each voxel represented a disconnection probability (0 to 1) based on the number of healthy subjects showing a disconnection in that voxel (Thiebaut de Schotten, 2011). Additionally, a connectivity matrix was initially constructed for each healthy subject based on the number of streamlines connecting parcels using a high-resolution parcellation atlas with 1133 regions. Then, for each patient, fibers passing through the patient’s lesion were removed from the connectivity matrices of all healthy subjects and averaged to generate a group lesion-derived structural connectivity matrix for the patient. Finally, two graph metrics (degree and clustering coefficient) were calculated for each group connectivity matrix using graph analysis. Subsequently, each feature, including the lesion mask, probabilistic maps binarized at probability thresholds of 0.1, 0.3 and 0.5, lesion-derived group connectivity matrices, as well as nodal degree and clustering coefficient, underwent decomposition by PCA. The principal components explaining 99% of variance were then input into the ridge regression model using leave-one-out cross-validation across patients to predict post-stroke deficits in motor, executive function, and processing speed.

Results: Our research indicated that lesion patterns, structural disconnection maps, and lesion-derived changes in structural connection strengths outperformed connectome-based features derived from brain networks. Optimal predictions for left/right motor scores (R2: 0.92 and 0.69) and processing speed scores (R2: 0.6) were achieved using the probabilistic structural disconnection map binarized at a probability threshold of 0.5. For executive function deficits, the most effective prediction was obtained by combining the probabilistic structural disconnection map binarized at probabilities of 0.1, 0.3, and 0.5, resulting in an R2 of 0.64.

Conclusions: Our results indicate that although structural and functional connectivity can predict behaviors, they do not consistently surpass lesion-based models. Our study also revealed that models incorporating lesion-induced alterations in structural connection strengths slightly outperformed the lesion mask in predicting deficits. Structural disconnection patterns exhibited similar predictive capabilities to lesion masks, likely due to the alignment of structural disconnection patterns with the damage caused by the lesion.

References

Poster No 1446

Generality evaluation of meta-matching models for cognitive function prediction with small datasets

Minjae Kim¹, Juhyuk Han¹, Won Hee Lee¹

¹Kyung Hee University, Yongin, Republic of Korea

Introduction: There is a growing interest in leveraging resting-state functional connectivity (RSFC) data derived from resting-state functional MRI to predict non-imaging phenotypes. The introduction of the meta-matching framework has extended this paradigm to predicting non-imaging phenotypes such as cognitive functioning. The meta-matching framework operates under the assumption that most phenotypes are interconnected rather than independent, aiming to transfer predictive models from large datasets (e.g., UK Biobank) to smaller ones (e.g., HCP). However, the efficacy of meta-matching models trained on small datasets remains unexplored. To address this gap, we assess the generality of meta-matching models trained with RSFC and 58 non-imaging phenotypes within small HCP datasets for predicting individual cognitive measures across two independent datasets.

Methods: The training meta-set comprised 750 HCP subjects, each with 400 × 400 RSFCs based on the 400-region Schaefer parcellation and 58 phenotypes. To assess the generality of meta-matching models for predicting cognitive measures, we used two independent datasets: 418 subjects from the Amsterdam Open MRI Collection (AOMIC) and 116 subjects from
the Consortium for Neuropsychiatric Phenomics (CNP). Each test meta-set included 400 × 400 RSFC matrix and cognitive measure for each subject. We used the Raven’s sum score for AOMIC and global cognitive function obtained from the first principal component across 24 cognitive measures for CNP. Four existing models were tested using the meta-matching approach: (1) kernel ridge regression (KRR); (2) deep neural network (DNN) comprising four convolutional layers; (3) advanced fine-tuning where the weights of the last two layers of the DNN was fine-tuned; (4) advanced stacking with KRR, selecting a node with the highest coefficient of determination (COD) for the phenotypes based on the DNN, and training KRR with the selected node. We further evaluated three models: (5) advanced stacking with support vector regression (SVR), where SVR with a Gaussian kernel was trained for the selected node; (6) deep graph convolutional network (DGCNN) consisting of four graph convolutional layers and 1 pooling operator; (7) graph convolutional network (GCN) consisting of three graph convolutional layers. Using the meta-matching approach, each model was trained with the HCP RSFC data to predict 58 phenotypes. The COD was computed between the predicted phenotypes from the trained model and cognitive measures in a subset of the test meta-set (AOMIC or CNP). The node with the highest COD was identified as the most influential in predicting cognitive function within the given meta-set. Subsequently, the remaining RSFC data from a different test meta-set was fed into the trained models, and then cognitive function prediction was made exclusively for the previously identified influential node. The Pearson’s correlation between the true and predicted score was calculated to evaluate the model’s generalization. We conducted this procedure 50 times and correlations with the true cognitive score were averaged across 50 repetitions (Figure 1).

Results: The predictive ability of RSFC for cognitive function was compared across seven models within the meta-matching method on the AOMIC and CNP datasets (Figure 2). Overall, the GCN model provided better performance compared to the other models on both datasets. Specifically, it improved generalization performance by an average correlation of 0.11 on the CNP compared to KRR (t = 6.40, p < 0.05).
Conclusions: This study investigated the predictive ability of RSFC for cognitive function using seven different models trained on the HCP dataset within the meta-matching framework. Our GCN model demonstrated superior generalizability across healthy individuals (AOMIC) and individuals with psychiatric illness (CNP), suggesting that it can be used in clinical settings to assess cognitive function and inform treatment decisions.

References

Poster No 1447
Generalization performance of sex classification models to multiple datasets
Lisa Wiersch1,2, Patrick Friedrich1,2, Sami Hamdan1,2, Vera Komeyer1,2, Felix Hoffstaedter1,2, Kaustubh Patil1,2, Simon Eickhoff1,2, Susanne Weis1,2
1 Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, 2 Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany

Introduction: Machine Learning (ML) methods are a powerful tool increasingly applied for studying phenotypes based on neuroimaging data. Knowing to what extent the choice of training samples influences the generalizability of ML-models is crucial to achieve most accurate model performance in across-sample predictions. The present study investigates the influence of the choice of sample for sex classification analyses based on resting-state functional connectivity (RSFC) in a variety of cohorts differing in sample size, age range and imaging quality.
Methods: We employed samples from four different independent cohorts: HCP (N = 878, age range = 22-37, mean age: 28.49\(^1\)), GSP (N = 854, age range = 21-35, mean age: 22.92\(^2\)), eNKI (N = 190, age range = 20-83, mean age: 46.02\(^3\)) and 1000Brains (N = 1000, age range = 21-85, mean age: 61.18\(^4\)). For each sample, we included healthy subjects aged 20 years or older with a similar number of men and women who were matched for age. Sex classification models were trained on the data of each of the four cohorts individually and a compound sample comprising 75% data of all four samples (N = 2190, age range = 20-85, mean age: 40.10). Following the parcelwise approach by Weis et al. (2020\(^5\)), we trained sex classifiers on the parcelwise RSFC profile of 436 parcels individually resulting in five sets of parcelwise Classifiers (pwCs;\(^6\)). Each of the classification models was trained with a Support Vector Machine Classifier implemented in Julearn\(^7\). All five pwCs were applied on test samples derived from the four original samples. In addition, out-of-sample performance of all pwCs was evaluated on data extracted from the AOMIC dataset (N = 370, age range: 20-26, mean age: 22.50) which was not included in training any of the pwCs.

Results: For pwCs trained on single samples, pwC HCP demonstrated highest mean cross-validation (CV) accuracy averaged across all 436 parcels (figure 1a). However, pwC HCP showed lowest generalization in across-sample predictions with mean accuracies ranging between 52% (eNKI) and 55% (1000Brains). In contrast, pwC GSP, pwC eNKI and pwC 1000Brains achieved lower mean CV accuracies than pwC HCP but higher generalization performance for across-sample predictions (figure 1a). Highest classifying parcels per model application were consistently located in the temporal lobe, inferior parietal lobule, posterior cingulate gyrus and inferior frontal gyrus (figure 2a). Except for pwC HCP, pwC compound achieved higher mean CV and generalization performance than pwCs trained on single samples: Mean accuracies in across-sample predictions ranged between 61% (HCP test sample) and 65% (GSP test sample, figure 1b) with up to 83% accuracy (eNKI test sample, figure 2b). Highest classifying parcels were located in similar regions as for pwCs trained on single samples (figure 2b). Likewise, pwC compound also showed highest generalization performance for the out-of-sample prediction of the AOMIC sample with a mean accuracy of 59% (figure 1c) with highest classifying parcels - up to 69% - being located in the inferior parietal lobule, inferior frontal gyrus and posterior cingulate gyrus (figure 2c).
Variability of brain-age estimates in MS within and between three different MR scanners

Lonneke Bos1, David Van Nederpelt1, James Cole2, Hugo Vrenken1, Eva Strijbis3, Bastiaan Moraal1, Joost Kuijer1, Bernard Uitdehaag1, Alle Meije Wink1, Frederik Barkhof1, Bas Jasperse1

1Amsterdam University Medical Centre, Amsterdam, Netherlands, 2University College London, London, London, 3Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands

Introduction: Neurodegenerative processes due to normal aging change the macroscopic structure of the brain, which are similar to brain changes observed in neurodegenerative brain diseases. “Accelerated” aging of the brain is therefore regarded as a marker of disease-related neurodegeneration. Recent deep and machine learning techniques trained on aging healthy subjects estimate the subjects age from standard brain MRI scans. By subtracting the person’s true age from this estimated brain-age the brain predicted age difference (brain-PAD) is acquired. Brain-PAD is related to clinical and radiological evidence of disease severity in multiple sclerosis (MS). Previous research showed that people with MS (pwMS) have a brain-PAD of 7.3 ± 0.8 (SD) years, on average. The intra- and inter-scanner reliability of brain-PAD estimation is currently unknown and is important for interpreting brain-PAD and for clinical implementation. The aim of this project is to investigate within-scanner repeatability and between-scanner reproducibility of brain-PAD using three different brain-age models and same-day scan-rescan imaging on three different scanners.

Methods: For 30 pwMS and 10 age and sex-matched HC (mean age 44.2 ±11.7 years and 39.2 ± 12.9 years, respectively), MS with EDSS range: 0.0–6.5, 3D T1-weighted MRI scans were acquired on a GE Discovery MR750 (3T), a Siemens Sola (1.5T) and a Siemens Vida (3T) scanner (AMS2 dataset). Each person was scanned twice on all scanners in one day. Brain-PAD was determined using the MIDI model (DenseNet121), the brainageR model (Gaussian Process Regression) and DeepBrainNet (inception-resnetv2). Repeatability and reproducibility were assessed using intraclass correlation coefficient (ICC, ICC absolute agreement within-scanner and ICC consistency between-scanners). Another way to measure repeatability and reproducibility was the smallest detectable change (SDC).

Results: Within-scanner repeatability was excellent (ICC>0.93) for all three models for both HC and pwMS (see Fig 1.A). Within-scanner repeatability was better for HC (SDC range 1.56 - 3.06 years) than for pwMS (SDC range 2.63 – 4.08 years) (see Table 1.A) for all three models. Between-scanner ICC for brainageR and the MIDI model was good to excellent (>0.85), for both HC and pwMS. For DeepBrainNet the ICC between-scanners was between 0.15 and 0.32 when the GE was compared with the Sola or the Vida, but was >0.92 for comparison between the Sola and the Vida (see Fig 1.B). Between-scanner SDC for the MIDI model was 5.06 years for HC and 5.73 years for pwMS. Between-scanner SDC for brainageR between 6.50 years for
HC and 6.86 years for pwMS. Between-scanner consistency was lower for the brainageR model for GE vs Sola, than for GE vs Vida. For DeepBrainNet the SDC between-scanners was 24.27 years for HC and 22.08 years for pwMS (see Table 1.B). Between-scanner consistency was lower for the brainageR model when comparing the Sola (1.5T) with the 3T scanners. This might be due to the lower signal to noise ratio as a result of the lower field strength. Differences in scanner characteristics and imaging protocols cause an imbalance of within-scanner repeatability and between-scanner reproducibility. Model fine-tuning could minimize discrepancies without sacrificing one for the other. The SDC within-scanner is clinically acceptable, whereas the SDC between-scanners is too large to detect the increase of brain-age for pwMS. This makes it difficult to use brain-age prediction on an individual level to predict disease progression.
Conclusions: Within-scanner reproducibility was excellent for all brain-PAD models for both HC and pwMS. The brainageR model was most robust between-scanners, while DeepBrainNet was most robust within-scanners. The MIDI model showed overall the best results for repeatability and reproducibility. While within-scanner repeatability showed promising results, caution is warranted in determining brain-age across different scanners.

References

Poster No 1449
Improving stroke recovery prediction by estimating subject information from population disconnectome

Patrik Bey1, Kiret Dhindsa2, Michael Schirner2, Jan Feldheim2, Marlene Bönstrup4, Robert Schulz3, Bastian Cheng3, Götz Thomalla3, Christian Gerloff3

Introduction: The detrimental impact of stroke on motor function depends on various factors, from lesion topology and location to alterations in both functional and structural connectivity1,2. Reliable biomarkers for predicting recovery remain an ongoing challenge, particularly during the acute phase after stroke3. Population-based disconnectomes capture lesion impact on connectivity, relate to brain function4 and have been shown to enable prediction of clinical scores with moderate accuracy5,6–7. Here we provide proof-of-concept enhancing this approach. We approximated patient information from disconnectomes, constructed from healthy controls, using a regression model and consequently improved machine learning classification of recovery without the need for individual disconnectomes. This is of particular interest as the clinical context of stroke severely restricts data availability, reducing the capacity to create individual disconnectomes. We show that our framework can use limited data to predict metrics for new patients, recovering some classification accuracy driven by individual variability, thus salvaging direct clinical applicability.

Methods: We used previously processed8 MRI data from 20 stroke patients9 and corresponding clinical scores including Barthel, ARAT, MRS and NIHSS. Severity of motor deficit was defined via an aggregate of all scores, computed as the ratio of maximum possible severity. Patient data was acquired 3-5 days (acute) and 85-95 days (subacute) post stroke onset. All patients were assigned a recovery class (good, medium, bad) according to longitudinal motor recovery (Figure 1 (A)). Individual lesion disconnectomes were created by extracting white matter streamlines intersecting the lesion volume. Each subject’s brain parcellation was then used to create the disconnectome. We repeated this approach using data of 15 healthy controls from the same cohort9, after transferring each patient’s lesion mask into control subject brain. The resulting disconnectomes were averaged to create a population-based disconnectome for each patient (Figure 1 (B)). A total of eight network measures were computed describing complementary properties of the disconnectome: degree, strength, centrality, assortativity, clustering coefficient, density as well as skewness and kurtosis of the degree distribution10. Those measures were used as input to a non-linear support vector machine (SVM) to perform three-way classification using leave-one-out cross validation (LOOCV). A linear regression was fitted to map the population disconnectome to the individual network metrics of each patient. The fitted model was then used to estimate network measures for previously unseen data. Finally, the predicted metrics were used as input to the SVM classification framework to investigate differential information based on these estimates of subject specificity.

Results: Both disconnectomes and corresponding network measures show distinct patterns and distributions between individual and population-based data (Figure 1 (B, D)). The classification showed a strong performance using individual disconnectome information (F1 score: 0.75) (Figure 1 (C)). Population-based information resulted in a reduced performance (F1 score: 0.55). Using the regression-based estimates as input features resulted in an increased performance (F1 score: 0.65) while retaining population-based disconnectomes as the basis.

Conclusions: We first showed that individual disconnectomes provide a higher level of information with regards to prediction of motor-deficit recovery compared to population-based approaches. Critically we could further show that by enhancing population-based disconnectome information, improvement of recovery prediction was significant. Future research can
expand upon this work by integrating such estimates of subject variability in recovery predictions and in whole brain modelling for stroke, e.g. using TheVirtualBrain, investigating recovery mechanisms.

References

Poster No 1450
Using Neurotransmitter Vulnerability to Discriminate Schizophrenia Patients from Healthy Controls
Lisa Hahn1,2, Florian Raabe1, Daniel Keeser1,3, Moritz Rossner1,4, John Fanning1,2, Clara Vetter1, Alkomiet Hasan5, Peter Falkai1, Nikolaos Koutsouleris1,2,6

1Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany, 2Max-Planck Institute of Psychiatry, Munich, Germany, 3Clinical Radiology, Ludwig-Maximilian University, Munich, Germany, 4Systasy Bioscience GmbH, Munich, Germany, 5Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany, 6Institute of Psychiatry, Psychology and Neurosciences, King’s College London, London, United Kingdom
Introduction: Aside to common psychotic symptoms such as hallucinations, delusions and disorganized thinking, schizophrenia (SCZ) is characterized by structural alterations such as volume reductions in the temporal, frontal, and parietal lobes. Here, we evaluated if the co-localization of these alterations with the distribution of specific neurotransmitter systems, i.e. an indication of neurotransmitter vulnerability) can be utilized to discriminate SCZ patients from healthy controls (HC).

Methods: Maps of grey matter volume (GMV) were derived from T1-weighted structural magnetic resonance imaging for 445 SCZ patients (mean age = 34.0 ± 11.3, 103 females) and 416 HC (mean age = 33.5 ± 11.3, 108 females) from the Multimodal Imaging in Chronic Schizophrenia Study (MIMICS; part of the PsyCourse study), the Center for Biomedical Research Excellence (COBRE; part of the COIN study) cohort, Mind Clinical Imaging Consortium (MCIC; part of the COIN study) cohort, the UCLA Consortium for Neuropsychiatric Phenomics LA5c study, and the Munich cohort (internal dataset). Two linear classifiers utilizing a leave-site-out cross-validation (CV) design (CV1: 10x5, CV2: 1x10) for the discrimination of SCZ patients and HC were created. The preprocessing steps computed within the CV framework included offset correction using the global mean, correction for age and sex using partial correlations, the model-specific feature computation, and standardization. The model-specific features either entailed whole-brain correlation coefficients between GMV and 29 nuclear-imaging derived neurotransmitter maps (e.g., receptor and transporter density) from a healthy volunteer population computed using the JuSpace toolbox or 29 eigenvariates computed using principal component analysis (PCA) as a control model.

Results: The first classifier (using whole-brain correlation coefficients) discriminated SCZ from HC with a balanced accuracy of 64.1 % and area under the curve of 0.68 (sensitivity = 64.7 %, specificity = 63.6 %). The control classifier (using PCA eigenvariates) performed similarly, discriminating SCZ from HC with a balanced accuracy of 66.4 % and area under the curve of 0.72 (sensitivity = 75.2 %, specificity = 57.5 %).

Conclusions: SCZ patients were distinguishable from HC based on the association of structural alterations with specific neurotransmitter systems. These findings suggest that this indication of neurotransmitter vulnerability might serve as a diagnostic biomarker.

References
A transformer-based meta-matching stacking method improves prediction accuracy of fluid intelligence

Juhyuk Han¹, Minjae Kim², Won Hee Lee³

¹KyungHee University, Gyeonggi-do, Republic of Korea, Korea, Republic of, ²Kyung Hee University, Yong-in, Yong-in, ³KyungHee University, Yonginsi, Yonginsi

Introduction: The proliferation of datasets integrating both imaging and non-imaging phenotypes has provided a rich resource for advancing predictive modeling in neuroscience. The meta-matching framework has emerged as a promising avenue, offering the potential to harness models trained on large-scale datasets for predicting non-imaging phenotypes within smaller datasets. Despite its promise, the conventional application of the meta-matching framework to a single modality has revealed limitations, particularly in integrating and exploiting information from diverse modalities. To address this gap, we propose a new stacking approach, termed multimodal transformer stacking, which incorporates self-attention to extract meaningful patterns and relationships across multiple modalities, advancing its potential for accurate predictions of non-imaging phenotypes.

Methods: We used 58 non-imaging phenotypes and multimodal imaging features of 750 subjects from the HCP dataset. We computed a new set of structural features derived from the same HCP participants, namely morphometric inverse divergence networks (MIND) and morphometric similarity networks. We used 16 diffusion features derived from diffusion MRI and 6 functional features derived from each task and resting-state fMRI scan. Details about the imaging features derived from T1-weighted, diffusion, and functional MRI scans can be found elsewhere. We divided the data into the training meta-set with 600 participants and 57 phenotypes, and test meta-set with 150 participants and fluid intelligence selected as the target phenotype. We subdivided the test meta-set into a K-shot sample set (n = 100) and a test set (n = 50). We initiated our approach with the advanced stacking method using each imaging feature. In this process, the nodes with the highest coefficient of determination (COD) from the basic deep neural network were selected. A kernel ridge regression was trained on a K-shot sample set using the predictions for the chosen nodes. Across diverse imaging features, we identified those yielding high performance in a test set. These were integrated into the multimodal transformer stacking. Predictions from the five imaging features were concatenated to form a multimodal feature matrix. This matrix entered into a transformer encoder to learn relationships among the phenotypes through self-attention across predicted phenotypes from different modalities. The resulting matrix was employed to predict fluid intelligence through a dense layer. The process was repeated 50 times, and the correlations and CODs with the true score were averaged over these 50 repetitions. Our approach was compared against existing methods.

Results: Traditional advanced stacking methods resulted in better performance for predicting fluid intelligence, when using MIND (r = 0.09), TBSS axial diffusivity (r = 0.22), tractography axial diffusivity (r = 0.19), resting-state (r = 0.29) and working memory fMRI features (r = 0.37). These were further used as features for the multimodal transformer stacking. Our results demonstrate that multimodal transformer stacking (r = 0.41) outperforms both stacking average and traditional advanced stacking of individual features (r: t = 3.13 – 11.11, p < 0.05; COD: t = 3.12 – 9.77, p < 0.05) (Figure 2). This suggests that the transformer encoder’s ability to capture long-range dependencies and relationships among phenotypes from different modalities contributes to improved predictive performance.

Conclusions: We proposed a new stacking strategy for integrating information from diverse imaging modalities to improve the prediction of fluid intelligence. Stacking average averages the predictions from individual models, which may not fully account for the interactions and relationships between the modalities. Our proposed approach has the potential to learn more complex relationships between the features and capture more subtle patterns and interactions for improved prediction of cognitive functioning.
ABSTRACTS

References
Poster No 1452

DL joint-fusion model with explanation shows the interplay between sMRI and fMRI in the study of ASD

Francesca Lizzi¹, Sara Saponaro², Giacomo Serra³, Francesca Mainas⁴, Piernicola Oliva⁴, Alessia Giuliano⁵, Sara Calderoni⁶, Alessandra Retico⁷

¹Pisa Division of National Institute for Nuclear Physics (INFN), Pisa, Italy, ²Pisa Division of National Institute for Nuclear Physics (INFN), Pisa, Italy, ³National Institute of Nuclear Physics (INFN), Cagliari, Italy, ⁴National Institute of Nuclear Physics (INFN), Cagliari, Italy, ⁵Unit of Medical Physics, Pisa University Hospital “Azienda Ospedaliero-Universitaria Pisana”, Pisa, Italy, ⁶Developmental Psychiatry Unit – IRCCS Stella Maris Foundation, Pisa, Italy, ⁷National Institute of Nuclear Physics (INFN), Pisa, Italy

Introduction: The development of multi-modal models that used data from different modalities has the potential to advance precision medicine. Combining data from multiple modalities allows the extraction of more comprehensive and complementary information, resulting in the creation of better-performing models. Additionally, this approach reveals important relationships that may cannot be detected when relying on a single modality. In this work, we develop a joint fusion deep learning (DL) model to combine harmonized structural and functional MRI features trained to discriminate subjects with Autism Spectrum Disorders (ASD) with respect to typically developing controls (TD). Additionally, we implement the SHapley Additive exPlanations (SHAP) explainability framework to identify the most significant features contributing to the classification of ASD subjects.

Methods: We analyzed both structural and functional MRI brain scans publicly available within the ABIDE I and II data collections²,³. We considered 1383 male subjects with age between 5 and 40 years, including 680 subjects with ASD and 703 TD from 35 different acquisition sites. Due to the multisite nature of the dataset, we separately harmonized the Freesurfer structural features and the functional connectivity measures using the NeuroHarmonize package⁴ as reported in⁵. The ASD vs. TD classification was carried out with a DL model, consisting in a feature dimensionality reduction neural network (FR-NN) and a classification neural network (C-NN). The FR-NN generates a fixed-length feature representation for each data modality. Specifically, we implemented the joint fusion approach¹, which propagates the loss back to the FR-NN during training, allowing the creation of informative feature representations for each data modality. Additionally, we implemented single data modality-based models to assess the potential enhancement offered by using a multimodal model. The single-modality models exclusively considered either structural or connectivity features and utilized similar neural networks for classification. The models were training for 150 epochs, applying standard deep learning techniques to mitigate overfitting. The performance was evaluated by computing the Area under the Receiver Operating Characteristic curve (AUC) within a nested 10-fold cross-validation, preserving the matching proportions of ASD and TD diagnoses. To identify the most significant features able to discriminate between ASD and TD subjects, we selected features with scores exceeding the 99th percentile among those determined by SHAP as important. Additionally, we quantified the effect size of the ASD vs. TD group difference using Cohen’s d coefficient.
Results: The AUC values of 0.66±0.05 and of 0.76±0.04 were obtained in the ASD vs. TD discrimination when only structural or functional features are considered, respectively. The joint fusion approach resulted in an AUC of 0.78±0.04. The features identified as crucial in discriminating between ASD and TD subjects primarily originated from functional MRI data. Additionally, we observed a pattern of reduced long-range inter-hemispheric connectivity and increased intra-hemispheric connectivity in ASD subjects compared to TDs. Finally, the set of features identified as the most important for the two-class discrimination supports the idea that brain changes tend to occur in individuals with ASD in regions belonging to the Default Mode Network and to the Social Brain.
Conclusions: Our results demonstrate that the DL-based joint fusion approach outperforms the other ones as it efficiently exploits the complementary information related to the ASD diagnosis contained in sMRI and rs-fMRI images. Furthermore, this work suggests that multi-modality DL models are promising tools for identifying potential neuroimaging biomarkers of neurodevelopmental disorders. Acknowledgments: FAIR-AIM project (POR FSE 2014-2020) and PNRR - M4C2 - PE “FAIR - Future Artificial Intelligence Research”

Poster No 1453
Divide and Conquer: Improving Brain Age Predictions through Contrastive Pre-Training
Maximilian Konowski1, Ramona Leenings1, Jan Ernsting2, Nils Winter3, Lukas Fisch4, Daniel Emden4, Carlotta Barkhau4, Susanne Meinert5, Elisabeth Leehr6, Xiaoyi Jiang7, Udo Dannlowski4, Tim Hahn4
1University of Münster, Münster, North Rhine Westphalia, 2University of Münster, Münster, NRW, 3University of Münster, Münster, North-Rhine Westphalia, 4Institute for Translational Psychiatry, Münster, North Rhine Westphalia, 5Institute for Translational Psychiatry, Münster, Germany, 6Institute for Translational Psychiatry, University of Münster, Münster, North Rhine-Westphalia, 7University of Münster, Münster, Northrine-Westphalia

Introduction: Brain Age models learn to derive the chronological age of healthy subjects from brain structure represented in T1-weighted MR images or derivatives thereof. The difference between predicted and chronological age, called brain age gap (BAG), has been used as a marker for atypical neurodegeneration and has shown significant salience in the context of different psychiatric conditions and lifestyle factors (Cole 2019, Bittner 2021, Wrigglesworth 2021, Hahn 2022, Blake 2023). Yet, prevalent imbalances in age distributions-e.g. an over representation of younger individuals-can introduce challenges to the training. A brain age model might benefit from disproportionately generating age predictions for larger age groups, as this statistically optimizes the loss function during training. Consequently, the BAG distributions among different age groups could vary significantly: The inherent meaning of a BAG of e.g. +2 years might have a training-induced shift in meaning across the age continuum. Artificially balancing the dataset by undersampling over-represented age groups, however, risks the loss of crucial information and variance that could be valuable for the learning process. To mitigate the negative effects of a skewed age distribution, we test a pre-training strategy. Specifically, we utilize samples from over-represented age groups to impart a structural understanding of MRI images to a deep learning model before fine-tuning it on a balanced dataset for chronological age prediction.

Methods: We loosely lean on Chaitanya et al. (2021) and implement a self-supervised pre-training with two focus points: First, we use a context restoration task to foster an understanding of the MRI-inherent data structure. Second, we use a contrastive
loss to encourage an understanding of fine granular inter-individual differences. As our backbone, we utilize a 3D ResNet10 architecture implemented in PyTorch. We train and evaluate three brain age models, for which we obtained a total of n=8911 catT2-preprocessed T1-MRI scans from healthy control subjects (Gaser, https://neuro-jena.github.io/cat/; MACS cohort: Vogelbacher et al., 2018; publicly available studies curated by Fisch et al. 2023). For evaluation, we randomly select 5 samples from each age bin to form a balanced test set Xtest (n=260). The first brain age model was trained on the unbalanced dataset Xtrain(n=8651) to serve as benchmark performance. Second, we pre-train a model with samples from over-represented age groups Xpretrain (n=7080), before we fine tune it to age prediction with an age-balanced data subset Xfine-tune (n=1571). Third, we train a randomly initialized model on the downsampled fine-tuning set only. Finally, we use the model’s predictions to calculate the brain age gap (BAG) for the test set and compare the BAG distributions per age group.

Results: Compared to the benchmark model, the fine-tuned model exhibited accelerated convergence and yielded superior results on the balanced test set (MAE of 9.9 to 4.68 years), despite utilizing only a fraction of the available data, see figure 1. Although the benchmark model exhibited promising performance on a validation set during training (MAE of 3.68), its performance notably deteriorated when assessed on the balanced test set. Notably, age predictions from the fine-tuned model exhibited a more uniform distribution, contrasting the benchmark model’s implicit bias towards the skewed training data distribution. Consequently, the range of the BAGs of the benchmark model differs substantially over different age groups, potentially confounding later statistical analysis. Remarkably, the pre-trained model showed only slight improvements against a model trained on the fine-tuning dataset, only.

Conclusions: Our findings emphasize the nuanced relationship between data volume and bias, as well as the relevance of a carefully curated dataset. In the future, we aim to explore pre-training strategies which are specifically tailored to the brain age learning objective.

References
Deep Generative Anomaly Detection for Structural Anomalies in Fetal Brain with Ventriculomegaly

Sungmin You¹,², Carlos Simon Amador Izaguirre¹, Seungyoon Jeong¹,², Hyukjin Yun¹,²,³, Ellen Grant¹,⁴,⁵, Kiho Im¹,²,³

¹Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA, ²Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, ³Department of Pediatrics, Harvard Medical School, Boston, MA, ⁴Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, ⁵Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA

Introduction: Fetal ventriculomegaly (VM) means the enlargement of the cerebral ventricles diagnosed in utero and occurs in up to 2 per 1000 births. (Pisapia, Sinha, Zarnow, Johnson, & Heuer, 2017) The potential effects of VM on neurodevelopment can be variable depending on the severity from little impact to developmental delays, motor skill challenges, and intellectual disabilities. (Chervenak et al., 1984; Weichert et al., 2010) Early diagnosis of VM using fetal MRI is essential for the better identification of etiology and guidance of prognosis. (Pisapia et al., 2017) This study proposes a deep generative anomaly detection model for the diagnosis of VM based on structural anomalies in fetal brain MRI.

Methods: This study was approved by the local Institutional Review Board at Boston Children’s Hospital. For the training and test of the proposed model, 151 typically developing (TD) fetuses (gestational weeks [GW]: 31.3±4.0, range: 22.0-38.7; sex: 69/49/28 [male/female/unknown]) and 46 fetuses with VM (GW: 29.8±4.5, range: 20.2-38.0; sex: 33/11/2) were included in this study. The TD subjects were divided into training-testing groups, which resulted in 121 subjects for the training set and 30 subjects for the test set while all VM subjects were used only for the test. We used our pipeline for fetal MRI processing which has been validated in several studies (Yun et al., 2022) including brain masking, non-uniformity correction, and slice-to-volume registration (Kuklisova-Murgasova, Quaghebeur, Rutherford, Hajnal, & Schnabel, 2012) to preprocess the fetal MRIs. We extracted 30 center slices on each view for training and testing after cropping them to different sizes according to their view, sagittal 158×126, coronal 110×126, and axial 110×158. We normalize the intensities of images with min-max normalization. Our anomaly detection model is based on the variational autoencoder (VAE) (Kingma & Welling, 2013) composed of four convolutional blocks on the encoder and decoder. [Figure 1] The proposed model was trained for each view during 2000 epochs with the Adam optimizer with a learning rate of 1e-4 and the mean squared error loss. For the evaluation, the averaged pixel-wise mean absolute error between the input and reconstruction was used to compute the anomaly score for each image. We performed the area under the receiver operating characteristic (AUROC) analysis to confirm the feasibility of classification between TD and VM. We extracted the center slice as a representative image of a volume and performed the Mann-Whitney U-test to compare the distribution of anomaly scores between groups.

Results: Our proposed model showed 0.836 from the AUROC analysis on the test set using the sagittal view. Furthermore, the Mann-Whitney showed statistically significant higher anomaly scores (p<0.001) in the VM than in TD with the sagittal view, where an elevation of anomaly scores distribution in the VM than the TD is observed. [Figure2]
Conclusions: Our VAE-based anomaly detection model for diagnosing fetal VM on MRI showed an AUROC of 0.836 in the sagittal view. This demonstrates the potential of the anomaly detection model for the accurate prenatal detection of VM, which can aid in understanding VM’s etiology and improving prognosis guidance. For a future study, including other views and developing a framework for aggregating slice-wise results into volume-level predictions will further enhance the diagnostic power. This model can also be used for detecting and diagnosing other various neurodevelopmental disorders in utero.

References

Poster No 1455
Leveraging periodic activation functions in deep neural network to predict fMRI signals from EEG
Yamin Li1, Ange Lou1, Shiyu Wang1, Catie Chang1
1Vanderbilt University, Nashville, TN

Introduction: fMRI has been an irreplaceable neuroimaging modality but is limited by hemodynamic blurring, high cost, and incompatibility with metal implants. Complementary to fMRI, EEG directly records cortical electrical activity at high temporal resolution, but has limited spatial resolution and limited sensitivity to deep subcortical brain structures. The ability to obtain fMRI information from EEG would enable cost-effective, naturalistic imaging across a wider set of brain regions. Further, beyond augmenting the capabilities of EEG, cross-modality models would facilitate the interpretation of fMRI signals. However, as both EEG and fMRI are high-dimensional and prone to noise and artifacts, it is currently still challenging to model fMRI from EEG. To address this challenge, here we aimed to construct a novel deep learning framework to reconstruct fMRI signals directly from EEG data.

Methods: Simultaneous “Eyes Open – Eyes Closed” EEG-fMRI data from 8 subjects were used in this analysis (EEG: 30channels; fMRI: TR=1.95s for first 4 subjects and TR = 2s for the last 4; resolution=3mm isotropic; duration=5min per subject, data and preprocessing details see in2). fMRI ROI signals were extracted using the Harvard-Oxford structural atlas3 and interpolated to 100 Hz. EEG was downsampled to the same sampling rate, and shifted by 6 seconds to approximate the time delay of the HRF4. In our analysis, we trained subject-specific models given the potentially unique response properties of individuals. The preprocessed data for each subject were divided into training and testing sets in a ratio of 4:1. The training samples with a window length of 20.48 seconds were randomly sampled from the 4-minute training time course. Our model comprises two main components: 1) sinusoidal representation network (SIREN) blocks and 2) feature encoder and decoder blocks. Inspired by5, the input is first passed to SIREN, a framework that leverages the periodic activation function in each layer of a multilayer perceptron for spatial filtering and frequency-related feature extraction. The output of SIREN is sent into
a subsequent encoder-decoder to recover the fMRI signals. Each encoder block has a down-sampling operation to increase the receptive field while retaining important information. The decoder comprises the same symmetric building blocks and up-samples the latent space features to produce the fMRI signal of a certain ROI. The model optimizes the linear combination of the mean squared error loss and the correlation loss: \(\text{Loss} = \text{L}_\text{mse} + \alpha \text{L}_\text{corr} \). The prediction performance is evaluated by calculating the Pearson correlation between predicted ROI signals and the ground truth.

Results: We observe a reasonable agreement between the actual and predicted ROI fMRI traces in subcortical regions. The corresponding attribution topographies mainly emphasize the motor cortex which is consistent with the functional role of basal ganglia and the presence of corresponding interconnections leading to motor cortical areas\(^6\). Overall, as shown in Fig. 2(C), our model outperforms the current state-of-the-art deep learning model that was designed for the same task\(^4\).

Conclusions: Our proposed model successfully reconstructs fMRI signals from EEG time series without explicit feature engineering and improves the prediction accuracy compared with existing models. This work contributes a novel framework that leverages periodic activation functions in deep neural networks to learn representations of functional neuroimaging data. As we only train our model on the “eyes-open-eyes-closed” data on healthy control and the prediction performances might vary on different datasets, future work would try to assess performance on different task conditions and patient populations.

References

Poster No 1456

Usage of Different Brain Atlases on Comprehensive Training Procedure Using Basic MLP Structure

Jo-Hsin Shih¹, Po-Hsien Lee², Zhitong John Wang³, Changwei Wu³, Ai-Ling Hsu⁴

¹Department of Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan, ²School of Medicine, Taipei Medical University, Taipei, Taiwan, ³Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, New Taipei, Taiwan, ⁴Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan

Introduction: Major depressive disorder (MDD) is a prevalent and severe mental illness, posing a high risk of disability worldwide (Whiteford et al., 2013). Characterized by impairments in mood and cognitive functioning, MDD has been associated with malfunctions of brain networks, as measured by resting-state functional magnetic resonance imaging (rs-fMRI) (Kaiser et al., 2015). The growing availability of large-scale rs-fMRI datasets focusing on MDD has enabled the development of various deep-learning models in differentiating MDD patients from controls (Qin et al., 2022; Venkatapathy et al., 2023). Among these models, the mandatory selection of a parcellation atlas for feature extraction may affect the resulting accuracy; however, there is a lack of studies investigating its impact on model performances. In this work, we tested the hypothesis that models trained with the rs-fMRI parcellated atlas would achieve the highest performance as compared to those trained with other atlases generated from structural or task-based origins.

Methods: The rs-fMRI scans of 498 subjects (256 MDD patients vs. 242 controls) from the Rest-meta-MDD consortium (Chen, X. et al., 2022) were analyzed to assess the impact of using commonly adopted whole-brain atlases on model accuracy. Given the inhomogeneous confounding factors in the consortium collected from 25 sites, data from a single site (site 20) of 533 subjects, all acquired on a 3T scanner (Siemens Tim Trio), were specifically chosen. Additional inclusion criteria included (1) preprocessed data parcellated using four atlases, i.e., AAL (Tzourio-Mazoyer et al., 2002), Dosenbach (Dosenbach et al., 2010), Craddock (Craddock et al., 2012), and Power (Power et al., 2011) atlases; and (2) subjects aged between 21 to 70 years. Next, the functional connectivities of each atlas were calculated using Pearson correlation. Considering that the complexity of deep-learning architectures often determines its learning capability, models were trained using the simple two-layer architecture of multi-layer perceptron with 32 and 16 neurons in each layer. To prevent information leakage that potentially inflates model accuracy, the models were trained on 80% of the data using BRAPH (Mite et. al 2017). The parameters were validated on 10% of the data, and the accuracy was tested on the remaining 10% of the data. Additionally, the settings for model training included the use of Adam optimizer, L2 regularization, a dropout rate of zero, a batch size of 32, 20 epochs, and a loss function of cross entropy. Moreover, models were repeatedly trained using a 30-time resample approach to statistically assess the impact of atlas utilization on model accuracy. This assessment was conducted using an ANOVA and post-hoc tests with a p-value < 0.05 being considered statistically significant.

Results: During training, every model achieved an accuracy over 80% (in the training dataset) within 5 epochs and reached 100% in 20 epochs. Figure 1 shows the model accuracies on the testing dataset, presenting the mean and standard error of the mean across 30 repetitions. Moreover, an ANOVA test showed a significant difference in accuracy among models trained with data parcellated by 4 atlases at F(3, 116) = 2.93, p < 0.036. Post-hoc Tukey HSD tests were conducted for pairwise comparisons. Notably, the accuracy between the model trained by Craddock and Power atlases was found to be significantly different (p < 0.05).
Conclusions: This study investigated the effect of data parcellation using four different atlases on the accuracies of deep-learning models. By employing a 30-time resampling method on the dataset, we demonstrated that the data parcellated using rs-fmRI-based atlas (Craddock) resulted in a higher model accuracy compared to data parcellated using task-fmRI-based atlas (Power).

References
3. Qin, K. et al. (2022), ‘Using graph convolutional network to characterize individuals with major depressive disorder across multiple imaging sites’, EBioMedicine, vol. 78

Poster No 1457

Scalable and accessible normative modelling for cross-cultural generalizability in neuropsychiatry

Pieter Barkema1, Saige Rutherford2, Christian Beckmann3, Andre Marquand4

1Queen Square Institute of Neurology, University College London, London, United Kingdom, 2Radboud University, Nijmegen, Netherlands, 3Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, NL, Nijmegen, Netherlands, 4Radboud University Nijmegen, Nijmegen, Gelderland

Introduction: The study of individual variability through normative modelling has recently shown to have great potential for understanding the mysterious neurobiology of mental disorders (A. F. Marquand et al., 2019; Rutherford et al., 2023). Accurate modeling of variability across the lifespan, however, requires processing of neuroimaging data from tens of thousands of participants, large amounts of compute power to estimate models, and labour and expertise to implement, which provides a barrier for many users of these models. To address these issues, we recently introduced PCNportal (https://pcnportal.dccn.nl/), allowing free and online access to pre-estimated normative models, requiring no compute power, code or domain expertise (Barkema et al., 2023) – using the well-validated PCNtoolkit library as a modelling backend (A. Marquand et al., 2021). We demonstrate this framework and provide a showcase application to evaluate the global usefulness of PCNportal in context of cross-ethnical generalizability. A key feature of PCNportal is how easily models can be added and accessed across the world. On PCNportal’s launch we provided access to normative models for cortical thickness and brain volume, and now expand our repertoire to include models trained on resting-state fMRI data using multiple parcellations, and additional models for cortical thickness, surface area and cerebellar volume. Can these models, however, generalize to cohorts of different ethnic backgrounds? The largest neuroimaging cohorts available are strongly biased towards white ethnicity, such as UK Biobank, ABCD and HCP (Fry et al., 2017; Ricard et al., 2023), and several studies suggest that bias may confound studies (Chee et al., 2011; Tang et al., 2018). We test cross-ethnical generalizability of one ethnically biased model by applying it to an East Asian cohort.

Methods: Data We use the SRPBS-database (Tanaka et al., 2021), containing structural MRI data of 150 Image-Derived Phenotypes (IDPs) for 993 patients and 1421 controls from fourteen collection sites in Japan. We split the data into an adaptation and test set (50/50) ensuring an equal split for each collection site. Model We use a Bayesian Linear Regression (BLR) model trained on average cortical thickness measures from 58,836 data points from 82 sites (Rutherford et al., 2022) – a model with white ethnical bias. Importantly, this model is hosted on PCNportal and was similarly used in Barkema et al (2023). Analysis We analyze the deviations in cortical thickness and compare between the schizophrenia group (N=68) and the control group (N=468). We apply our biased model to obtain individualized deviation scores, modelling age, sex and sites as covariates.

Results: We investigated cross-ethnical generalizability of PCNportal by applying an ethnically biased model to a predominantly East Asian cohort, with a good model fit (Figure 1). We tested whether absolute deviation scores are greater in predominantly East Asian cohort, with a good model fit (Figure 1). We tested whether absolute deviation scores are greater in
the schizophrenia group than the control group by using a one-sided Wilcoxon rank sums test and found a significant effect (statistic=2.383, pvalue=0.009). This analysis replicates a well-established finding and shows that models have the potential to generalize to other ethnic groups, despite having a dangerous ethnic training bias.

Conclusions: We showcase the PCNportal tool for online normative modelling of neuroimaging data. We release four extra normative models, trained on fMRI resting-state data, cerebellar volume or average thickness. We also bring attention to an important issue of easy global access by illustrating cross-ethnic generalizability. We replicate a well-established effect of cortical thickness abnormalities in schizophrenia, in a cohort of primarily East Asian ethnicity. We hope this analysis inspires other cross-ethnic generalizability initiatives. PCNportal can tackle ethnical neuroimaging bias through facilitating global model and data contributions, aiming to build a more inclusive future in neuropsychiatric precision medicine.

References

Poster No 1458

Shape matters: Unsupervised Exploration of Glioblastoma Imaging Survival Predictors

Martha Foltyn-Dumitru¹, Mustafa Mahmutoglu¹, Felix Sahm¹, Wolfgang Wick¹, Martin Bendszus¹, Philipp Vollmuth¹, Marianne Schell¹

¹Heidelberg University Hospital, Heidelberg, Germany

Introduction: Within glioblastoma research, conventional metrics such as 2D/3D tumor size measurements have long served as reliable prognostic indicators. However, the complete prognostic potential of sophisticated structural parameters, particularly morphological radiomics, remains to be thoroughly explored. This investigation delves into a clustering technique on morphological radiomics along with tumor volume to unveil distinct glioblastoma phenotypes, assessing their prognostic impact on overall survival (OS).

Methods: A retrospective study included 436 glioblastoma patients (2009-2020) from Heidelberg University Hospital. Data were split into training and test datasets (80:20 ratio), with external validation using the UCSF glioma dataset including 397 patients (Calabrese et al., 2022). MRI acquisition involved 3D T1-weighted imaging (pre/post contrast administration), axial 2D FLAIR, and T2-weighted imaging. Automated tumor segmentation was performed using a variant of HD-GLIO (Isensee et al., 2019; Kickingreder et al., 2019). PyRadiomics facilitated the radiomic feature extraction of nine morphological radiomic
features from the tumor (van Griethuysen et al., 2017), and the total tumor volume was ascertained. Threshold determination for morphological radiomic features and tumor volume involved hierarchical Bayesian modeling within a Cox proportional hazards framework for OS (Chen et al., 2014; Fang et al., 2017). Parameters were binarized according to their respective thresholds. Subsequently, a Gower distance was computed using these binarized parameters, serving as the foundational metric for subsequent partition around medoids (PAM) clustering (Hennig, 2023; Maechler et al., 2022). Cluster robustness was quantitatively appraised using the Jaccard index across 500 bootstrap iterations. Survival rates were visualized using Kaplan-Meier curves and tested for significance by log-rank test. Univariate and multivariate Cox regression models, adjusted for clinical covariates, explored cluster and tumor volume impact on OS. Discriminative ability was evaluated using the concordance probability (C index) and Akaike information criterion (AIC). ANOVA compared C indices for embedded models, and the evidence ratio from AIC assessed differences between non-embedded models.

Results: PAM clustering identified two clusters with the highest silhouette coefficient (width=0.44) and high stability (Jaccard index: 0.94 for cluster 1, 0.89 for cluster 2). Cluster composition analysis showed distinct patterns: Cluster 1 (n=233) had a higher proportion of patients with higher Sphericity and Elongation, while Cluster 2 (n=115) had a higher proportion of patients with higher Maximum 3D Diameter, Surface Area, Axis Lengths, and tumor volume (p<0.001 for each). OS differed significantly between clusters: Cluster 1 showed median OS of 18.8, 23.8, and 20.1 months in the training, test, and UCSF datasets, respectively, whereas Cluster 2 showed 11.7, 11.4, and 13.7 months (p<0.003 for all; Figure 1). Univariate Cox regression linked cluster affiliation with OS (HR=2.25, p=0.003, C index=0.625) in the test dataset. Multivariate Cox regression showed improved performance with cluster affiliation over clinical data alone (C index 0.67 vs. 0.59, p=0.003) and further enhanced predictive accuracy with preoperative ECOG status (C index=0.68, p=0.005). Cluster-based models outperformed the models with tumor volume alone (evidence ratio 5.16-5.37; Table 1).

![Image](image_url)

<table>
<thead>
<tr>
<th>Models</th>
<th>Parameter</th>
<th>HR, 95% CI</th>
<th>p-value</th>
<th>C Index</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1a: Cluster (univariate)</td>
<td>Cluster 2</td>
<td>2.25, 1.32-3.84</td>
<td>0.003*</td>
<td>0.642</td>
<td>385.21</td>
</tr>
<tr>
<td>Model 2a: Cluster + Sex + Age</td>
<td>Sex w Age</td>
<td>2.21, 1.33-3.87</td>
<td>0.003*</td>
<td>0.671</td>
<td>388.56</td>
</tr>
<tr>
<td>Model 3a: Sex + Age</td>
<td>Sex w Age</td>
<td>0.99, 0.56-1.70</td>
<td>0.040</td>
<td>0.592</td>
<td>395.09</td>
</tr>
<tr>
<td>Model 4a: Tumor volume + Sex + Age</td>
<td>Tumor volume Sex w Age</td>
<td>1.03, 1.00-1.06</td>
<td>0.016*</td>
<td>0.841</td>
<td>391.86</td>
</tr>
<tr>
<td>Model 5a: Cluster + Sex + Age + ECOG</td>
<td>Cluster Sex w Age ECOG = 2</td>
<td>2.20, 1.28-3.78</td>
<td>0.004*</td>
<td>0.676</td>
<td>387.95</td>
</tr>
<tr>
<td>Model 6a: Sex + Age + ECOG</td>
<td>Sex w Age ECOG = 2</td>
<td>1.01, 0.58-1.76</td>
<td>0.971</td>
<td>0.604</td>
<td>353.64</td>
</tr>
<tr>
<td>Model 7a: Tumor volume + Sex + Age + ECOG</td>
<td>Tumor volume Sex w Age ECOG = 2</td>
<td>3.01, 1.03-9.01</td>
<td>0.030</td>
<td>0.640</td>
<td>351.33</td>
</tr>
</tbody>
</table>
Conclusions: Data-driven clustering reveals clinically relevant imaging phenotypes. This underscores the enhanced prognostic value achieved by combining morphological radiomics with tumor size, emphasizing the superiority of this integrated approach over relying solely on tumor size when predicting survival outcomes in glioblastoma patients.

References

Poster No 1459

Explainable AI for High-Dimensional Neuroimaging Data

Julia Kropiunig1, Øystein Sorensen1

1Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway

Introduction: The availability of masses of neuroimaging data has given rise to increased use of machine learning techniques for their analysis. These models are usually complex and therefore not easily interpretable by humans. However, it is crucial to explain and interpret those seemingly incomprehensible “black box” models, both for scientific and regulatory reasons. Model interpretability has two aspects to it trying to either focus on individual level explanations or global model behaviour, often referred to as local and global interpretability (Covert et al., 2021). Explainable AI methods are still at the early stages of their development, even more so if the feature space of the machine learning application is very high-dimensional and/or features are highly correlated. The following work discusses several interpretability methods - local as well as global - in the context of correlated features in a high-dimensional feature space and shows their application on tabular neuroimaging data.

Methods: We used magnetic resonance imaging (MRI) data from the UK Biobank (https://www.ukbiobank.ac.uk), including 44164 participants between the ages of 40 and 70 (mean=55.09, standard deviation (SD)=7.56) at recruitment having both a T1-weighted MRI scan and neuropsychological test scores for fluid intelligence (mean=7.61, SD=2.06). Two machine learning models using the tree ensemble gradient boosting library XGBoost (Chen and Guestrin, 2016) were trained to firstly predict age and secondly fluid intelligence from subcortical volumes (ASEG) and parcellations of the white surface using the Desikan-Killiany-Tourville atlas (285 features in total) on a 75:25 training-test set split using a grid parameter search on tree depth, L1-regularization, L2-regularization and learning rate. On both trained models global and local interpretability methods were applied and compared. For individual prediction explanations well-established model-agnostic interpretability methods such as LIME (Ribeiro et al., 2016) and Shapley values (Lundberg and Lee, 2017; Shapley, 1953) as well as state-of-the-art improvements to the Shapley values accounting for feature correlations (Aas et al., 2021; Jullum et al., 2021) were applied and compared. Global interpretability methods used included partial dependence plots (PDPs) (Greenwell, 2017) and global feature importance measure using Shapley values, SAGE (Covert et al., 2020).

Results: The model predicting fluid intelligence was able to establish a weak connection between the response and the brain measures with RMSE = 2.00, MAE = 1.61 on the test dataset whereas the model trying to predict brain age could establish decent predictive power with RMSE = 4.49 and MAE = 3.60. We could assert that PDPs could not give discernible insights into global model behavior due to small effects and high feature correlations and are clearly surpassed by feature importance measures. In the plot Shapley values according to Aas et al. (2021) and Jullum et al. (2021) accounting for correlations among features for the model predicting age are visualized. Since computational efforts increase with increasing feature space
dimensions the brain areas were grouped together into 28 theoretically plausible groups. Shapley values for a specific observation try to quantify how much a feature/group of features contributes to a specific prediction. Thus, it can be observed that the specific instances of Accumbens, Caudate and Amygdala lead to the addition of multiple years to the mean age whereas the values for Thalamus and Putamen take off years from the prediction. The prediction can be assembled by adding all the positive and negative contributions to the mean age.

Age prediction explanation for one participant from the test set

Conclusions: Shapley values seemed to give good local explanations but have a computational bottleneck that becomes apparent when looking at a high-dimensional feature space, even more so in combination with a huge sample size leading to the well-known trade-off between accuracy and computation time.

References

Poster No 1460

Identifying food cue-induced activity pattern for obesity and normal-weight individuals via LSTM

Zaichen La\(^1,2\), Guanya Li\(^1,2\), Wenchao Zhang\(^1,2\), Yang Hu\(^1,2\), Jingyuan Li\(^1,2\), Weibin Ji\(^1,2\), Mengshan Li\(^1,2\), Huiling Zhou\(^1,2\), Yonghuan Feng\(^1,2\), Zhao Yan\(^1,2\), Yi Zhang\(^1,2\)

\(^1\)Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China, \(^2\)International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
Introduction: Growing evidence indicates individuals with obesity exhibit hyperactive brain responses to high-caloric food cues in regions involved in food reward processing. The enhanced sensitivity of the reward circuitry is associated with higher food craving, and it is also accompanied by impaired function of the executive control circuitry, which is an important cause of excessive eating. Most neuroimaging studies focused on altered functional activity in certain brain regions. However, it is still poorly unclear whether the whole-brain activity pattern of visual perception in food energy density in obese patients is different from normal weight individuals. With the application of artificial neural network methods in the field of neuroimaging, it provides a new way to understand the brain functional activity pattern from a higher dimension.

Methods: fMRI task with high-caloric (HiCal) and low-caloric (LoCal) food cues was employed to investigate brain responses to visual perception in food energy density cues in 155 individuals with obesity (OB) and 105 normal-weight controls (NW).

Based on Brainnetome Atlas, the time series of 246 brain functional regions were extracted under the stimulation of HiCal and LoCal food pictures. Thus, the 1D Convolution operations (conv1D) and the long short-term memory block (LSTM) were utilized to measure the time sequence information. The attention mechanism was further employed to recognize the significative features from the aforementioned information, which were used to construct HiCal/LoCal food cue-induced activity pattern for OB and NW group respectively via 5-fold cross-validation (Fig. 1A). The importance of features in different brain regions were accessed by the shap interpreter. In order to identify the meaningful brain regions related to activity patterns of OB and NW, test data from OB (NW) were further cross-tested by the NW (OB) classifier (Fig. 1B).

Results: Based on the brain functional activity signals, the proposed model can effectively distinguish the HiCal/LoCal food cue–induced functional activity patterns from OB to NW group, and the accuracy of the OB model (90.96%) is significantly higher than NW model (83.92%) ($t = 5.42, P < 0.001$). Cross-testing showed lower accuracy of NW data tested in the OB model (OB model→NW data: 78.84%) than in the NW model ($t = -3.92, P < 0.001$) and lower accuracy of OB data tested in the NW model (NW model→OB data: 83.12%) than in the NW model ($t = -7.86, P < 0.001$), however there was no significant difference between the accuracy of OB and NW data tested in the NW model ($t = 0.45, P = 0.66$, Fig. 1C). Feature importance analysis showed that the top 20% of important features of the NW model (including dorsolateral prefrontal cortex, hippocampal gyrus, parahippocampal gyrus, Lingual_R, Fusiform_R, Frontal_Mid_Orb_L, Frontal_Sup_Medial_L and so on) were significantly different with the OB model (including insula, nucleus accumbens, orbitofrontal cortex, Lingual, Cuneus_R, Fusiform, Calcarine_R, Precuneus_L, Cingulum_Ant_R, Putamen, Frontal_Sup_Orb, Frontal_Sup_Medial, Occipital_Inf, Occipital_Mid_L cortex and so on, Fig. 2A). There was a high degree of overlap between the top 50% of important brain regions of the NW and OB model.
Conclusions: These findings indicate that the important role of the memory and executive control circuits in the food energy density perception in NW, while the insula, nucleus accumbens and the orbitofrontal gyrus, Calcarine_R, Lingual, Cuneus_R and Occipital_Inf_R in OB group enhance the brain perception of food energy density.

References

Poster No 1461

Time Domain Classification for Brain-Computer Interface Based Problems
Aiden Rushbrooke¹, Jason Lines¹, Thomas Kinna¹, Anthony Bagnall², Saber Sami¹
¹University of East Anglia, Norwich, Norfolk, ²University of Southampton, Southampton, Hampshire

Introduction: Electroencephalographic (EEG) data classification is a ubiquitous task across various disciplines. This task is of particular significance in Brain Computer Interfacing (BCI) enabling direct communication between the brain and external devices. Despite the prevalence of EEG classification many of the current popular approaches use standard classifiers rather than algorithms designed to explicitly exploit information within the time domain. These time series classification (TSC) methods have been shown to perform better than standard approaches such as deep learning on a range of time series machine learning tasks and problem domains¹. We explore the application of TSC algorithms to BCI based EEG classification problems and highlight their potential to enhance performance and interpretability compared to conventional classification techniques.
Methods: Classifier Selection: For our experimental TSC framework we used the recent Random Convolutional Kernel Transform (ROCKET) algorithm. A large number of random convolutions are used to transform the data, which is then used to train a ridge regression classifier. The main advantage of ROCKET methods are that they are fast and achieve accuracy comparable to state of the art approaches. To enhance BCI efficiency, we explored an adaptation of ROCKET known as MINI-ROCKET. This was selected for its increased speed and deterministic nature. In order to provide a comparison between TSC and traditional methods we employed Support Vector Machine (SVM), Random Forest, and K-Nearest Neighbors (KNN), chosen for their wide applicability in EEG data classification. Datasets: Five BCI datasets were used to compare performance. The first was a novel dataset for a BCI benchmark experiment where 28 participants were asked to press a button when a stimulus appears on a screen. The data was recorded at 1000Hz with 32 EEG channels. Each participant completed 40 button presses, spaced 1.5 second apart. Each participant also recorded resting state data. To form the BCI experiment 1 second segments around each press were taken, starting 200ms before the initial stimulus. This dataset, whilst not currently publicly available, will be released on timeseriesclassification.com in the future. The other 4 datasets were formed from a larger existing BCI motor data collection (see table 1). Experimental Design: A leave-one-out strategy was used to reduce the risk of bias caused by a train test split. The model is trained on all but one participant, who is used to evaluate performance. This is then repeated on a new model for each participant, and average accuracy calculated. The experiments were run using the Aeon toolkit.

Results: The results of the experiments are displayed in the tables below, with average accuracy shown in Table 1 and average time taken to fit a model in Table 2. For all classifiers except for SVM, prediction speed was around 1ms. Overall Mini-ROCKET was the best performing classifier in terms of accuracy. Unsurprisingly KNN, whilst being the fastest classifier used, performed much worse than the rest. A time-accuracy plot for the ButtonPress dataset is shown in Figure 2a. From this we can clearly see that the two best performing are MINI-ROCKET and Random Forest. We also tested reducing the training size of the ButtonPress dataset with the two best classifiers, the results of which are shown in Figure 2b. The results show even with a low number of instances, MINI-ROCKET performs well, and outperforms Random Forest at all points.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>MINI-ROCKET</th>
<th>SVM</th>
<th>Random Forest</th>
<th>KNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ButtonPress</td>
<td>0.915</td>
<td>0.890</td>
<td>0.872</td>
<td>0.613</td>
</tr>
<tr>
<td>OpenCloseFist</td>
<td>0.752</td>
<td>0.747</td>
<td>0.70</td>
<td>0.580</td>
</tr>
<tr>
<td>ImaginedOpenCloseFist</td>
<td>0.765</td>
<td>0.759</td>
<td>0.720</td>
<td>0.611</td>
</tr>
<tr>
<td>HandFootMovement</td>
<td>0.684</td>
<td>0.678</td>
<td>0.630</td>
<td>0.573</td>
</tr>
<tr>
<td>ImaginedHandFootMovement</td>
<td>0.880</td>
<td>0.881</td>
<td>0.843</td>
<td>0.602</td>
</tr>
</tbody>
</table>

(a) Accuracy scores for 5 BCI datasets for both TSC and traditional methods

<table>
<thead>
<tr>
<th>Dataset</th>
<th>MINI-ROCKET</th>
<th>SVM</th>
<th>Random Forest</th>
<th>KNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ButtonPress</td>
<td>35.7</td>
<td>354.2</td>
<td>24.3</td>
<td>0.12</td>
</tr>
<tr>
<td>OpenCloseFist</td>
<td>98.8</td>
<td>2665.5</td>
<td>65.7</td>
<td>0.25</td>
</tr>
<tr>
<td>ImaginedOpenCloseFist</td>
<td>104.2</td>
<td>2211.4</td>
<td>67.9</td>
<td>0.23</td>
</tr>
<tr>
<td>HandFootMovement</td>
<td>90.5</td>
<td>2850.5</td>
<td>65.0</td>
<td>0.41</td>
</tr>
<tr>
<td>ImaginedHandFootMovement</td>
<td>103.1</td>
<td>2838.9</td>
<td>74.0</td>
<td>0.40</td>
</tr>
</tbody>
</table>

(b) Average time taken to fit each classifier in seconds
Conclusions: Our experiments show that TSC methods have potential when applied to BCI problems, achieving high accuracy whilst needing little pre-processing or prior knowledge. The speed of models such as those based on ROCKET could be used for real time BCI classification experiments. Further work would be to expand both the range of datasets and models to evaluate the generalisable nature of TSC methods to real-time BCI adaptations and test their potential for clinical usage.

References
Poster No 1462

Power and reproducibility in the external validation of brain-phenotype predictions

Matthew Rosenblatt¹, Link Tejavitulya¹, Chris Camp¹, Rongtao Jiang², Margaret Westwater², Stephanie Noble³, Dustin Scheinost¹

¹Yale University, New Haven, CT, ²Yale School of Medicine, New Haven, CT, ³Northeastern University, Boston, MA

Introduction: Identifying reproducible and generalizable brain-phenotype associations is a central goal of neuroimaging. Consistent with this goal, prediction frameworks evaluate brain-phenotype models in unseen data. Most prediction studies train and evaluate a model in the same dataset. However, external validation, or the evaluation of a model in an external dataset, provides a better assessment of robustness and generalizability¹, and it may improve reproducibility. Yet, the statistical power of such studies has not been investigated. Here, we ran over 60 million simulations across several datasets, phenotypes, and sample sizes to better understand how the sizes of the training and external datasets affect statistical power.

Methods: We used resting-state fMRI data from the Adolescent Brain Cognitive Development (ABCD) Study² (N=7822-7969), the Healthy Brain Network (HBN) Dataset³ (N=1024-1201), the Human Connectome Project Development (HCPD) Dataset⁴ (N=424-605), and the Philadelphia Neurodevelopmental Cohort (PNC) Dataset⁵,⁶ (N=1119-1126). Resting-state functional connectomes were formed using the Shen 268 atlas⁷. We performed external validation, where a model was developed in one dataset and applied to the other three datasets. Ridge regression models⁸ with 1% feature selection were trained to predict age, attention problems, and matrix reasoning from functional connectivity. We subsampled the training and external datasets at various sample sizes (Figure 1) to determine how sample size affects external validation performance (Pearson's r). We defined the “ground truth” prediction performance as the performance when using the full training and external datasets. The fraction of significant simulation results was calculated. This fraction was considered power for models with a significant ground truth effect and false positive rate for models with an insignificant ground truth effect (Figure 1). Among the significant prediction results, effect size inflation was calculated as the difference between the observed performance and the ground truth performance (Figure 2). We further compared our simulation results to the median sample sizes of external validation studies in the field (training sample: n=129; external sample: n=108)⁹.

Results: Increasing the external sample size increased the power consistent with theoretical curves, and decreasing the size of the training dataset negatively offset the power curve (Figure 1). For sample sizes similar to the median in the field, the power ranged from 99.11-100.00% for age, 5.47-8.35% for attention problems, and 5.24-72.74% for matrix reasoning. For insignificant ground truth effects, the false positive rate was highest for large external samples and small training samples. Effect size inflation was greatest in weaker predictions and smallest in strong predictions, such as age (Figure 2). For the weakest predictive models, the training dataset size made little difference in effect size inflation, likely because effect size inflation is a consequence of low power based on the external sample size. For stronger models (e.g., age), we saw a greater effect of training size. There was little to no inflation, but smaller training sizes produced worse predictions. For sample sizes comparable to the median in the field, the median inflation rates ranged from Δr of -0.12 to -0.05 for age, 0.10 to 0.20 for attention problems, and -0.17 to 0.21 for matrix reasoning, where negative inflation means deflation.
Conclusions: For attention problems and matrix reasoning, typical sample sizes for external validation in the field are underpowered. Relatedly, due to low power and publication bias, effect sizes may be overestimated for certain phenotypes. External validation is expected to become more widespread as the field confronts reproducibility challenges (9), and this work provides a starting point for understanding the sample sizes needed to power external validation studies adequately.

References
Poster No 1463

The effects of data leakage on connectome-based machine learning models

Matthew Rosenblatt¹, Link Tejavibulya¹, Rongtao Jiang¹, Stephanie Noble², Dustin Scheinost¹

¹Yale University, New Haven, CT, ²Northeastern University, Boston, MA

Introduction: Understanding individual differences in brain-behavior relationships is a central goal of neuroscience. As such, machine learning approaches using neuroimaging data, such as functional connectivity, have grown increasingly popular in predicting numerous phenotypes. The reproducibility of such studies is hindered by data leakage, where information about the test data is introduced into the model during training¹. Although leakage is never a correct practice, quantifying the effects of leakage in neuroimaging data is important due to its pervasiveness. Here, we evaluate the effects of leakage on functional connectome-based machine learning in four large datasets for the prediction of three phenotypes.

Methods: We obtained resting-state fMRI data from the Adolescent Brain Cognitive Development (ABCD) Study² (N=7822-7969), the Healthy Brain Network (HBN) Dataset³ (N=1024-1201), the Human Connectome Project Development (HCPD) Dataset⁴ (N=424-605), and the Philadelphia Neurodevelopmental Cohort (PNC) Dataset⁵ (N=1119-1126). Resting-state functional connectomes were formed using the Shen 268 atlas⁶. Throughout this work, we predicted age, attention problems, and matrix reasoning from functional connectivity using ridge regression⁷ with 5-fold cross-validation. We evaluated a gold standard model, which included covariate regression, site correction, and feature selection within the cross-validation scheme and was split accounting for family structure. We also evaluated four other categories of models. First, several alternative analysis choices that do not contain leakage were included as a reference point, such as omitting site correction, covariate regression, or both. Second, feature leakage involves selecting features in the combined training/test data instead of only in the training data. Third, covariate-related forms of leakage in this study included correcting for site differences and performing covariate regression in the combined training and test data (i.e., outside the cross-validation folds). Fourth, subject-level leakage was evaluated in the forms of family leakage and repeated subjects leakage. For family leakage, the family structure of the data was ignored, where leakage may occur if one family member is in the training set and another in the test set. For subject leakage, a percentage of the participants were randomly repeated in the dataset, mimicking the possible mishandling of repeated measurements datasets.

Results: We first analyzed leakage in HCPD and found that leaky feature selection and subject leakage (20%) most inflated performance, but leaky covariate regression deflated performance (Figure 1). Other forms of leakage, including family leakage and leaky site correction, had little to no effect on performance (Figure 1). Results were similar when considering all the datasets, where leaky feature selection (Δr=0.03-0.52, Δq2=0.01-0.47) and subject leakage (20%) (Δr=0.06-0.29, Δq2=0.03-0.24) led to the greatest performance inflation (Figure 2). Notably, weaker baseline models were more affected by feature leakage. Leaky covariate regression was the only form of leakage that consistently deflated performance (Δr=-0.09-0.00, Δq2=-0.17-0.00). Family leakage (Δr=0.00-0.02, Δq2=0.00) and leaky site correction (Δr=-0.01-0.00, Δq2=-0.01-0.01) had little effect. We repeated the analyses with support vector regression⁸ and connectome-based predictive models⁹ and saw similar results.
Conclusions: Concerns about reproducibility in machine learning can be partially attributed to leakage. Some forms of leakage greatly affected the results. But, other types did not affect predictions, which means that published results with these forms of leakage likely remain valid. Since the effects of leakage vary greatly, the best practice remains to avoid data leakage altogether through the careful development and sharing of code, alternative validation strategies (lock box, external validation), and model information sheets.
Association between DBM-derived Atrophy Patterns and Cognition in Frontotemporal Dementia Variants

Amelie Metz\(^1\), Yashar Zeighami\(^2\), Simon Ducharme\(^3\), Sylvia Villeneuve\(^4\), Mahsa Dadar\(^5\)

\(^1\)McGill University, Montreal, Quebec, \(^2\)Douglas Research Centre, Montreal, Quebec, \(^3\)McGill University, Montreal, \(\ldots\), \(^4\)Brain Imaging Centre, Douglas Institute Research Centre, Montreal, QC, \(^5\)McGill University, Montreal, QC

Introduction: Frontotemporal Dementia (FTD) is a prevalent form of early-onset dementia characterized by progressive neurodegeneration\(^2\). It encompasses a group of heterogeneous neuropathological disorders, including behavioral variant frontotemporal dementia (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), and semantic variant primary progressive aphasia (svPPA), each exhibiting distinct symptoms. BvFTD initially presents with abnormal behavior, changes in personality, and reduced executive control while in primary progressive aphasias, cognitive deficits predominantly manifest themselves in distinct skills within the language domain\(^4\). Previous magnetic-resonance imaging (MRI) studies have highlighted atrophy patterns in specific brain regions corresponding to symptom manifestations\(^6\) but few have validated these findings using deformation-based morphometry (DBM)\(^4,7\) which offers increased sensitivity to subtle local differences in structural image contrasts compared to traditional methods. Here, we tested whether DBM-derived brain atrophy patterns in the core variants of FTD are associated with severity of cognitive impairment and whether this relationship differs between the phenotypic subtypes.

Methods: A total of 136 patients (70 bvFTD, 36 svPPA, 30 nfvPPA) and 133 cognitively unimpaired controls from the frontotemporal lobar degeneration neuroimaging initiative (FTLDNI) database underwent high-resolution brain MRI and clinical, neuropsychological examination. Cognitive measures included global cognition, language, memory and executive functions. DBM values\(^4\) were calculated as an estimation of regional cortical and subcortical atrophy. Atlas-based associations between DBM values and performance across different cognitive tests were assessed using partial least squares (PLS)\(^8,9\).

We then applied linear regression models to discern differences in atrophy and cognitive decline in the three FTD variants. Lastly, we assessed whether the combination of neural and behavioral patterns in the latent variables identified in the PLS analysis could be used as features in a machine learning model to predict FTD subtypes in patients.

Results: PLS revealed three significant latent variables (LV) that combined accounted for over 85% (42.98%, 35.60%, and 6.97% respectively, permuted p-values<0.01) of the shared covariance between cognitive and brain atrophy measures. It identified neural networks whose collective atrophy was associated with the clinical phenotype (Fig.1). The atrophy pattern included left-hemispheric subcortical structures (LV-I), left temporal and bilateral subcortical areas (LV-II), and frontal and right subcortical regions (LV-III). Brain scores were significantly related to behavioral scores in all LVS in that subjects with greater expression of the respective brain pattern had greater impairment in most cognitive measures included in the LV (LV-I: R²=0.37, p=0.0, LV-II: R²=0.77, p=0.0, LV-III: R²=0.43, p=0.0). In LV-II, the brain pattern had a higher impact on cognition in bvFTD whereby the atrophy pattern was related to higher performance in language tests and lower scores in executive function (bvFTD vs nfvPPA tStat=-2.48 p=0.01, bvFTD vs svPPA tStat=3.52 p=0.0). In LV-II, subjects with svPPA showed higher performance in the included cognitive scores (vs bvFTD tStat=-5.20 p=0.0, vs nfvPPA tStat=-6.21 p=0.0), whereas subjects...
with nfvPPA had higher scores in LV-III compared to bvFTD (tStat=3.06 p=0.0, Fig.2). Individual variation in the atrophy and behavioral patterns predicted classification of patients into FTD subtypes with an accuracy of 75.09%.

Figure 1. Latent variables (LV-I - III) obtained from the PLS analysis. Left panels: Brain pattern bootstrap ratios in MNI space; right panels: Pattern of demographic and cognitive test scores. The effect size estimates are derived from SVD analysis and the Confidence Intervals (CI) are calculated by bootstrapping, hence the CI are not necessarily symmetrical.

CDRTOT = total CDR score; MMSETOT = total MMSE score; TRCOTOT = CVLT total items remembered; RECOG = CVLT total items recognized; DIGITFW = forward digit span; DIGITBW = backward digit span; DCORR = phonological verbal fluency score; ANCORR = semantic verbal fluency score; BNTCORR = total BNT score.
Conclusions: Findings in this study demonstrate a robust mapping between neurodegeneration as estimated by DBM values and the cognitive manifestations of FTD variants. The combination of DBM and multivariate statistical methods could potentially serve as an imaging biomarker for early disease severity assessment and phenotyping in FTD.

References
ABSTRACTS

Poster No 1465

Structural Brain Abnormalities of Childhood Trauma: An ENIGMA Transdiagnostic Mega-Analysis Study

Haley Wang¹, Zhen-Qi Liu², Lauren Salminen³, Rajendra Morey⁴, Lianne Schmaal⁵, Laura Han⁶, Elena Pozzi⁷, ENIGMA MDD Working Group⁸, ENIGMA PTSD Working Group⁹, Tiffany Ho¹

¹UCLA, Los Angeles, CA, ²McGill University, Montreal, Quebec, ³University of Southern California, Los Angeles, CA, ⁴Duke University, Durham, NC, ⁵University of Melbourne, Melbourne, Australia, ⁶ENIGMA, International, International

Introduction: Early life adversity (ELA), including abuse and neglect, is strongly linked to stress-related mental disorders, such as major depressive disorder (MDD) and post-traumatic stress disorder (PTSD). Neuroimaging studies showed that individuals with more severe ELA have lower cortical thickness (CT), lower surface area (SA), and smaller subcortical volumes (SV). Case-control studies reported similar neuroanatomical abnormalities in MDD and PTSD, yet the extent to which MDD or PTSD-related brain alterations are attributable to ELA remains uncertain. Furthermore, neuroimaging studies of ELA showed heterogeneous effect sizes, and the regional distribution of structural brain abnormalities associated with ELA has been inconsistent. Here, we address these gaps by pooling together structural neuroimaging data from 25 international cohorts via the ENIGMA-MDD and PTSD Working Groups and leveraging data-driven methods to test whether neuroanatomical features (CT, SA, and SV) predict the severity of ELA.

Methods: Of the included 3,668 subjects (mean age=35.1; age range: 8.3-73.7 years), 2027 (55.3%) were female. This study included 2,263 healthy control (HC) subjects, 890 MDD patients, and 515 PTSD patients. The structural MRI data were processed using harmonized FreeSurfer quality assurance protocols with neuroCombat to correct for site and scanner effects across cohorts. ELA severity was measured by the Childhood Trauma Questionnaire (CTQ). We examined diagnostic group differences in regional CT, SA, and SV, controlling for age, sex, and intracranial volume, correcting for multiple tests. Using Partial Least Square (PLS) correlation, we extracted latent components (LCs) that maximize covariance between the neuroanatomical features and CTQ scores across all subjects. Additionally, seven machine learning (ML) models (linear, tree-based, support vector regression, and ensemble methods) were trained on the neuroimaging data to assess top neural features contributing to predictions of ELA severity (i.e., the CTQ total and subscale scores separately) across all subjects.

Results: The PTSD group had significantly higher total CTQ scores compared to the HC (d=1.47; p<.001) and MDD (d=0.73; p<.001) groups, with HC being lower than the MDD group (d=0.64; p<.001). Compared with HC, MDD group exhibited widespread lower CT measures, with the largest effect sizes seen in the bilateral supramarginal, fusiform, and middle temporal regions (q<.05). MDD group also showed lower SA in the right superior temporal sulcus and bilateral superior temporal sulcus regions (q<.05). However, no differences in SV were observed. No structural brain measure differences were found between the PTSD as compared with the HC or MDD groups. Transdiagnostic PLS analyses revealed significant but weak LCs linking CT and SA with total CTQ (p<.001; r=.07), neglect (p<.001; r=.06), and abuse (p<.001; r=.06). No LCs were found correlating SV with CTQ scores. Consistent with the PLS analyses, all ML algorithms failed to predict CTQ scores based on neuroanatomical features reliably.

Conclusions: Consistent with prior work, we found that MDD is associated with lower CT and SA in the supramarginal, fusiform, and middle temporal regions compared to HC, whereas PTSD showed no detectable neuroanatomical differences from MDD or HC after multiple tests correction. Interestingly, ELA severity did not correlate with the variances in macroscale neuroanatomical features transdiagnostically. Together, our results suggest that factors other than ELA, perhaps later environmental influences, may play a significant role in brain development and the neurophenotypes of MDD and PTSD. One possible interpretation is that ELA does not play an outsized role in shaping brain morphology by adulthood and that these effects are more prominent during childhood and adolescence. To test this formulation, future work will include separate analyses for children, adolescents, and adults, within the inherent limitations of these consortia data.

References

ABSTRACTS

Poster No 1466
A Novel Graph Convolutional Network for Predicting Cognitive Deficits in Very Preterm Infants
Hailong Li1,2, Junqi Wang1, Zhiyuan Li1,2, Kim Cecil1,2, Mekibib Altaye1,2, Jonathan Dillman1,2, Nehal Parikh1,2, Lili He1,2
1Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 2University of Cincinnati, Cincinnati, OH

Introduction: Very preterm (VPT) infants (born at or less than 32 weeks gestational age) are at high risk for adverse cognitive deficits. (Linsell et al. 2018) Given the known benefits of early interventions, accurate prediction soon after birth are urgently needed for at-risk VPT infants. Several studies have applied the brain structural connectome (SC) derived from diffusion tensor imaging (DTI) to predict cognitive deficits. (Kawahara et al. 2017; He et al. 2021; Girault et al. 2019) However, none of these models are specifically designed for graph-structured data, and thus, potentially miss certain topological information conveyed in the brain SC. In this work, we developed graph convolutional network (GCN) models (Kipf and Welling 2016) to learn the SC acquired at term-equivalent age as a graph for early prediction of cognitive deficits at 2 years corrected age in VPT infants. The supervised contrastive learning (SCL) technique(Khosla et al. 2020) is applied to mitigate the impacts of the data scarcity problem. We hypothesize that SCL will enhance GCN models for early prediction of cognitive deficits in VPT infants using the SC.

Methods: This IRB-approved study utilized a regional VPT infant cohort from Cincinnati Infant Neurodevelopment Early Prediction Study (CINEPS) that includes a total of 393 VPT infants. DTI and T2-weighted MRI data were acquired on 3T MRI scanner (Philips Ingenia) for all infants between 39- and 44-weeks postmenstrual age. VPT infants received standardized Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) during the 2-year corrected age follow-up visit. We dichotomize the subjects into high-risk (≤85) and low-risk (>85) groups for developing long-term cognitive deficits. We preprocessed MRI data using the developing Human Connectome project (dHCP) processing pipeline (Bastiani et al. 2019). We used the dHCP neonatal brain atlas to define 82 ROIs, and considered the mean fractional anisotropy over all fiber tracts between the two brain ROIs as the structural connectivity (i.e., edges) of each SC. This results in an adjacency matrix with a size of 82 × 82. An overview is illustrated in Figure 1. We first augment a given subject’s brain SC into multiple ones via a random edge perturbation approach. (Figure 1(A)) The newly generated samples are assigned with the same class label as the original subjects. Next, we trained a graph encoder and an embedding projector to accomplish a pretext contrasting “pull-push” task, which repeatedly pulls together a random subject (i.e., the anchor) and subjects of the same class as the anchor, and pushes apart the anchor and subjects of different classes. (Figure 1(B)) Finally, we develop a GCN model for predicting the risk of cognitive deficits by reusing the pre-trained graph encoder. Figure 1(C) We used a stratified random split strategy to separate subjects into training (60%), validation (20%), and testing (20%) sets. We compared our SCL-GCN model with multiple peer competing models (Kipf and Welling 2016; Hoffer and Ailon 2015; Chen et al. 2020; He et al. 2020). We calculated accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC).
Results: After data exclusion, we have a total of 282 VPT infants (gestational age at birth 29.2 ± 2.5 weeks, 142 (50.4%) male) with cognitive assessment. The proposed SCL-GCN model achieved a mean AUC of 0.75 on cognitive deficit prediction, significantly higher than Triplet-GCN (0.73, $p<0.001$) and GCN (0.70, $p<0.001$). (Table 1) Our SCL-GCN model also achieved 73.1%, 65.9%, and 76.9% on accuracy, sensitivity, and specificity, respectively.

Conclusions: In a large cohort of VPT infants, we demonstrated that the SCL-GCN model achieved a mean AUC of 0.75 for predicting cognitive deficits. Our results support our hypothesis that the SCL technique is able to enhance the GCN model in our prediction tasks. We also demonstrated that the proposed model outperformed several competing models.
Poster No 1467

More Robust MRI Preprocessing Yields More Accurate and Generalizable Age Predictions

Reza Rajabli1, Mahdie Soltaninejad1, Sofia Fernandez Lozano1, Neda Shafiee1, Vladimir Fonov1, Danilo Bzdok1, D Louis Collins1

1McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec

Introduction: Deep learning approaches have revolutionized the way various patterns are found in different data settings. The vast number of trainable parameters in deep models make them capable of capturing complex patterns. However, this comes at the expense of their considerable appetite for data. Since these are high variance models, they risk being overtrained if the sample size is not sufficient, which is often the case in medical datasets. For example, training a model on Magnetic Resonance Images (MRIs) to predict a diagnostic/prognostic label, the number of available images can be at most in the order of 100K, significantly less than the 14M samples of ImageNet. Consequently, it is vital to implement measures that ensure the generalizability of medical image deep learning models. A noteworthy approach is to reduce the number of trainable parameters with shallower models. The Simple Fully Convolutional Network (SFCN) [Peng 2021] is one such successful example incorporated into the SFCN-Reg architecture [Leonardsen 2022] to build a generalizable brain age model. Leonardsen et al. trained their model on ~53K MRIs (from multiple studies) reporting a mean absolute error (MAE) of 2.47 years on the internal test and 3.90 years on average on external test images from other studies. While they are one of few who tested their model externally and reported one of the lowest prediction errors, the disparity between internal and external test results raises the question of the model’s ability to generalize to future brain scans and maintain high accuracy. We hypothesized that enhanced MR preprocessing could address this issue and lead to a reduction in external test error.

Methods: We downloaded 39,676 images from the UK Biobank (UKBB) dataset (version 49190) and applied the following preprocessing steps to each image: 1) brain extraction using SynthStrip [Hoopes 2022], 2) intensity normalization through histogram matching [Shah 2011], 3) denoising with adaptive non-linear means [Manjón 2010], 4) N4 bias field correction [Tustison 2010], 5) repeating step 2, and 6) affine registration to the MNI152 nonlinear symmetric template using ANTs [Avants 2014]. Next, we manually inspected all preprocessed images, and eliminated 1,975 (~5%) as failed, mostly due to either corrupted brain masks or failed registration. Then, we re-implemented the SFCN-Reg architecture with identical hyperparameters as detailed in [Leonardsen 2022], training it on 33,724 randomly subsampled MRIs from the preprocessed images. Finally, we assessed the trained model internally using ~1K MRIs not seen during training from the UKBB and externally (out of domain) on baseline visit scans of cognitively healthy subjects in the ADNI, AIBL, and OASIS3 datasets that underwent the same preprocessing steps and quality control procedures as the UKBB MRIs.

Results: After training our model, we identified the epoch with the best validation error and proceeded to assess its generalizability. To have a better understanding of the model’s reliability and robustness, we calculated the mean and standard deviation for the MAE using bootstrapping by randomly selecting 100 subjects 10 times from each test set. The MAE predictions on the internal test set (UKBB) was 2.2±0.17 years, and for external tests (ADNI, AIBL, and OASIS3), the MAE results were 3.45±0.28, 3.64±0.26 and 2.82±0.18, respectively (Figs 1-A, 1-B, 1-C, and 1-D).
Conclusions: Since SFCN-Reg was originally trained and tested on approximately ~53K MRIs (3-95 years) from multiple datasets, a direct comparison poses challenges. Nevertheless, we trained the SFCN-Reg on a smaller dataset with narrower age range (45-82 years) while maintaining the hyperparameters consistent with the original paper (Table 1). The experiments demonstrate that a more robust preprocessing pipeline, compared to simpler alternatives used by Leonardson, enhances the generalizability of shallower models.

References
Reliability and robustness in static and dynamic FC predictions

Christine Ahrends1, Mark Woolrich2, Diego Vidaurre3

1Aarhus University, Aarhus, Aarhus, 2University of Oxford, Oxford, Oxfordshire, 3Aarhus University, Aarhus, Aarhus C

Introduction: Predicting individual traits from brain measures is a major goal in modern neuroscience. Many studies aim to use either time-averaged (static) or time-varying (dynamic) estimates of functional connectivity (FC) for these predictions. While the focus of this work is mainly to increase prediction accuracy, it is crucial to consider the reliability and robustness of different approaches1. This is particularly important if we want to be able to meaningfully interpret model errors, such as to estimate brain age2. For instance, a model may predict accurately in some cases but make excessive errors in other cases (poor reliability), or predict generally well, but predict poorly when the training set contains outliers (poor robustness). We here compare a range of different methods using either time-averaged or time-varying estimates of FC in terms of reliability and robustness.

Methods: We use the Human Connectome Project (HCP) S1200 dataset3, where we estimate FC on resting-state fMRI and predict individual cognitive traits. We then compare four methods using time-averaged FC and seven methods using time-varying FC for the prediction. For time-averaged FC, we use two variants of an Elastic Net model4, one in Euclidean and one in Riemannian space5, a Selected Edges model where relevant edges of the time-averaged FC matrices are first selected and then used as predictors6, and a model based on Kullback-Leibler (KL) divergence7. For time-varying FC prediction, we use a Hidden Markov Model8 and construct seven different kernels from it using different projections of the individual-level parameters9. We use kernel ridge regression for the kernel-based models and ridge regression for the other models. All models use nested 10-fold cross validation (CV), and folds are constructed accounting for family structure in the dataset. We compare the methods using two criteria: reliability and robustness. To assess reliability, we compute the normalised maximum absolute errors. This indicates whether the single largest error in the predicted values exceeds the range of the original variable by orders of magnitude. To assess robustness, we run each model 100 times, each time randomising CV folds, i.e., randomising which combinations of subjects the model is trained and which subjects the model is tested on. We then consider the standard deviation across prediction accuracies across these 100 iterations, where low standard deviation indicates high robustness.

Results: In the time-averaged FC models, all but the KL divergence-based model have high reliability and robustness. In the time-varying FC models, the linear kernels are generally more reliable and robust than the Gaussian kernels, with the linear naive normalised kernel and the linear Fisher kernel performing significantly better than other kernels. The models based on KL divergence (both time-averaged and time-varying FC) were overall the most problematic ones, both in terms of reliability and robustness. Comparing the time-averaged and the time-varying FC models, the better models perform similarly in terms of reliability, but the time-varying FC models outperform the time-averaged FC models in terms of robustness. These models also have a higher prediction accuracy than the time-averaged FC models.

Conclusions: We here proposed an approach to assess reliability and robustness, two important criteria for studies aiming to predict individual traits from FC. We showed that the best-performing methods in terms of reliability and robustness are the Elastic Net and the Selected Edges approach for time-averaged FC and the linear naive normalised and linear Fisher kernel
Deep convolutional neural networks can discriminate pain from other aversive states in EEG data

Alyson Champagne¹, Mathilda Buschmann², Mathieu Roy³, Michel-Pierre Coll⁴

¹Laval University, Québec, Quebec, ²Universität Osnabrück, Osnabrück, Germany, ³McGill University, Montreal, Quebec

Introduction: Pain is experienced differently by each person, depending on their previous experiences, emotions and mood. In research contexts, pain is assessed by scales or verbal reports, measures with several limitations (Smith et al., 2016). Thus, the scientific community has invested considerable effort in creating pain biomarkers based on brain activity (Davis et al., 2020; Wager et al., 2013) recorded by electroencephalography (EEG; Mari et al., 2022) that could provide a complementary way of measuring pain. However, these attempts are limited by the use of univariate analyses that do not utilize the rich multivariate nature of EEG signals and the lack of adequate control conditions (Mari et al., 2022). Here, we collected EEG data while individuals experienced various levels of pain and other aversive control stimulations. The aim of this study was to assess the sensitivity and specificity of various machine learning algorithms applied to EEG data to discriminate between pain and other aversive states within and across individuals.

Methods: EEG data (64 channels, Brain Vision Acticap) was collected from 65 healthy individuals (39 females, mean age: 24.2 +/- 6.14) under three conditions: resting state (five minutes), experiencing tonic thermal pain for eight minutes, or listening to an unpleasant auditory stimulus for eight minutes. Twenty-two of the participants were tested using a different EEG system of the same model in a different location. These participants served as the test sample. During all tasks except resting, participants first experienced the stimulation passively and then experienced it a second time while providing a continuous intensity or unpleasantness rating using a visual analog scale. We preprocessed EEG data using a semi-automated approach, with steps including bandpass and powerline noise filtering, removal of bad channels and artifactual independent components and rejection of bad trials (Jas et al., 2017; Pion-Tonachini, Kreuzt-Delgado & Makeig, 2019). The continuous recordings in each condition were split into 4-second epochs with no overlap, and classifiers were applied to sensor space data to attempt to classify these epochs according to their pain condition (pain vs no pain) in the training sample (n = 43). We compared the performance of a random forest classifier, a shallow convolutional neural network (CNN) and a deep CNN (Schirrmeister et al., 2017). Nested cross-validation was used to optimize hyperparameters and perform model comparisons. Within-participant accuracy was assessed using 10-fold cross-validation in each participant of the training sample, and between-participant accuracy was assessed in the independent test sample (n = 22).

Results: In line with previous research using machine learning on EEG (Engemann et al., 2022), the shallow CNN showed the best classification performance compared to the deep CNN and random forest classifier. The accuracy of the shallow CNN was significantly above chance (0.5) for the classification performed within participants (mean cross-validation balanced accuracy = 0.68 +/- 0.09, range: 0.54-0.90; Figure 1A). Between participants, classification performed in the independent test sample led to a drastically lower accuracy but still significantly above chance (mean balanced accuracy = 0.56 +/- 0.07, range: 0.42-0.73; Figure 1B).
Conclusions: Our results confirm the ability of convolutional models to distinguish EEG signals associated with experimental pain from those associated with other aversive conditions across individuals. However, considerable work remains necessary to improve the performance of the models and establish the best approach to identify and measure pain using EEG signals. Our future work will aim to create a large open database of EEG pain recordings to provide the community with adequate data to test different approaches to reach this goal.

References

Poster No 1470

Computational modeling of MEG event-related beta oscillations during auditory verb generation

Minarose Ismail1, Davide Momi2, Zheng Wang3, Cathy Barr4, Randy McIntosh5, John Griffiths6, Darren Kadis4

1University of Toronto, Toronto, Ontario, 2CAMH, Toronto, Ontario, 3Centre for Addiction and Mental Health, Toronto, Ontario, 4Hospital for Sick Children, Toronto, Ontario, 5Simon Fraser University, Vancouver, BC, 6Centre for Addiction and Mental Health, Toronto, MT

Introduction: Lateralization of low beta (13-23Hz) event-related desynchrony (ERD) and synchrony (ERS) during verb generation in MEG provides a robust assay of language hemispheric dominance. In young children, low beta ERD and ERS are observed bilaterally, with lateralization emerging in early adolescence. These task-related oscillatory changes could serve as neural signatures of language network maturation, as well as its potential for plasticity. However, the neural mechanisms
underlying lateralization remain unclear. Exploring the emergence of macro-scale brain activity from anatomical network structure and micro-scale neuronal dynamics using biologically inspired neurocomputational models holds promise in addressing this gap.

Methods: Individual connectome-based neural mass models were constructed for 10 healthy adolescents (15-18 years old) using the Jansen-Rit model and individual structural connectivity matrices derived from multi-shell diffusion-weighted MRI tractography, segmented with the Shen 200-node atlas. The auditory event was parameterized as a 40ms square-wave stimulus injected bilaterally into neural masses representing left and right Heschl’s gyri. This model was used to fit trial-averaged MEG time series representing the early (-100-400ms) auditory evoked response in a verb generation task using the Whole-Brain Modelling in PyTorch (WhoBPyt) library, estimating local and global coupling parameters. For each individual, two sets of models were created: a verb model fitted with verb generation trials data, and a noise model fitted with speech-shaped noise trials data. These models were then used to simulate 1200ms epochs, and power spectral densities (PSDs) were computed using Welch’s method for the 700-1200ms time window that, critically, was not used for fitting. Simulated and empirical PSDs in left and right frontal ROIs were then averaged across subjects and compared.

Results: Brain network models for verb and noise conditions accurately captured auditory evoked field topographies at both the group average and the individual subject level (Figure 1). Interestingly, these early auditory-evoked models were also able to accurately predict the out-of-sample late (700-1200ms) effect of a left-lateralized low beta ERD and a right-lateralized low beta ERS (Figure 2). Consistent with empirical data, averaged PSDs from left frontal ROIs in the verb models correctly predicted a decrease in beta power relative to the noise models (ERD), while averaged PSDs of the right frontal ROIs predicted the observed increase in beta power relative to the noise models (ERS).
Conclusions: We present the first individualized whole-brain model of auditory verb generation, demonstrating validity by reproducing the temporal dynamics of sensory-evoked activity, and its potential in predicting the lateralization of late oscillatory responses within higher-order language regions. Importantly, the model replicated late (700-1200 ms) induced spectral effects after only being fit on early (-100-400ms) evoked response time series. Our findings suggest that language lateralization is encoded in the interaction between the structure and the dynamics of early sensory responses to language stimuli.

References

Poster No 1471
Classification of infant fNIRS data improves prediction of cognitive development 18 months later
Sumin Byun¹, Benjamin Zinszer²
¹Swarthmore College, Philadelphia, PA

Introduction: Recent studies in Dhaka, Bangladesh have identified correlations between developmental risk factors (e.g., family conflict) and fNIRS responses of infants and toddlers in a passive social cognition task (Perdue et al., 2019; Pirazzoli et al., 2022). A key goal of such work is prediction: the ability to identify children most likely to experience adverse
developmental outcomes months or years later. Behavioral measures offer one source of predictive power, but differences in neural responses can provide insight on processes that are not yet behaviorally realized, like language production or motor skills. We analyzed longitudinal data from 29 infants previously reported in these studies and asked whether multivariate analyses of fNIRS collected at 6 months old could enhance prediction of the children’s behavioral outcomes at 24 months.

Methods: All children were assessed on Mullen Scale of Early Learning (Mullen, 1995). Each child completed a passive social cognition task (Lloyd-Fox et al., 2007, 2009) with fNIRS imaging over bilateral frontal, temporal and parietal regions. In this task, children saw images of vehicles and videos of a woman in three conditions: silent, paired with vocal sounds (laughing, coughing, etc.), and paired with nonvocal sounds (a fan, water, etc.). We co-registered each child’s data to a 10-20 based scalp parcellation (Magee et al., 2023) and computed median HbO and HbR responses for each condition in the window 5-8 s (baseline 0-2 s). Multi-parcel response patterns for each child were Spearman-correlated with their same-age cohort (n-fold cross-validation) for pairwise classification of the four conditions (Emberson et al., 2018; Zinszer et al., 2023). We entered these six classification accuracies and five Mullen subscores from each child’s first visit (6 m.o.) into a binomial regression to predict their membership in the lower third of Mullen scores at their second visit (24 m.o.).

Results: Predictions of Mullen scores at 24 m.o. based on 6 m.o. Mullen subscores (AUC=0.76) were significantly improved by the inclusion of the 6 m.o. fNIRS data (AUC=0.88, likelihood ratio=8.60, p=0.003). ROC curves for these predictions are depicted in the figure. Among fNIRS predictors, the visual social contrast (accuracy of Silent Videos vs. Cars) was the strongest predictor. A model including only this predictor alongside Mullen subscores also improved predictions relative to the Mullen data only (AUC=0.82, likelihood ratio=4.84, p=0.028).

Conclusions: Including fNIRS data from a single subject-level classification test of visual stimuli (cars vs. faces) significantly improved predictions beyond the information provided by behavioral testing. Individual differences in this kind of visual processing may underlie later differences in socially relevant outcomes, such as language acquisition.

References
Cross-Modal Synthesis of Functional Network Connectivity and Magnetic Resonance Imaging Data

Reihaneh Hassanzadeh¹, Vince Calhoun²

¹Georgia Institute of Technology, Atlanta, GA, ²GSU/GATech/Emory, Decatur, GA

Introduction: Brain disorders such as Alzheimer’s disease (AD) can be characterized by brain imaging methods such as structural MRI (sMRI) and functional MRI (fMRI). While providing several modalities, many imaging datasets may have missing modalities for many subjects. This missing modality issue limits multi-modal analysis, where all the modalities of a subject are needed. Hence, we study the possibility of the challenging cross-modality transition task where sMRI images are transformed into fMRI images and vice versa. More specifically, we utilized generative deep learning methods to generate sMRI from functional network connectivity (FNC), which are feature maps extracted from fMRI, and FNC from sMRI. Our results show that our generative deep learning approach can generate samples close to the real images.

Methods: We studied 982 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Among the 982 subjects, 305 of them have both of the modalities (i.e., sMRI and FNC), 920 have an sMRI image, and 413 subjects have FNC maps. Furthermore, FNC is a correlation map that is measured as follows: We applied a spatially constrained group ICA to the data to extract 53 time courses and then computed the Pearson correlation between the time courses to form FNC. For the generative model, we used cycle GAN¹ while adapting to transforming 1D flattened FNC maps to 3D-sMRI images and vice versa. For translating 3D-sMRI images to 1D-FNC maps, we used 3D-CNN layers to learn spatial information in the sMRI images and transform them into FNC features using fully connected layers.

Results: Figure 1 shows the real sMRI and generated sMRI by the GAN model, which is averaged across all AD samples and controls (CN). According to the figure, the GAN model could effectively generate samples that resemble sMRI while it used FNC information. Moreover, comparing the AD to CN samples, the generated samples could show the AD patterns, i.e., brain atrophy, similar to the pattern in the real data. Furthermore, Figure 2 shows the averaged FNC maps for real and generated samples. According to the figure, the model could learn the general FNC structure while transforming sMRI images into FNC maps and generating realistic FNC maps. Comparing AD to CN suggests that some of the reduced connectivity in the AD group was captured by the model while generating the FNC maps, such as the connectivity between sensory-motor (SM) and subcortical (SC) networks and the connectivity between SM and cerebellum (CB) networks.

Figure 1. Real and Generated sMRI: AD vs. CN
Conclusions: In summary, our study demonstrates the effective use of generative deep learning models, specifically cycle GANs, to translate structural MRI to functional network connectivity data and vice versa. We analyzed the ADNI database and could successfully generate realistic sMRI images from FNC maps and vice versa, capturing key pathological features of Alzheimer’s disease. This achievement addresses the challenge of missing modalities in brain imaging datasets. It opens new paths for enhanced multi-modal analysis in neuroscience research, particularly in understanding and diagnosing neurodegenerative diseases like Alzheimer’s.

References

Poster No 1473

Can Critical Behaviour Change Windows Successfully Predict Physical Activity Engagement in Aging?

Nagashree Thovinakere¹, Sue-Jin Lin², Robert Baumeister², Yasser Iturria Medina³, Maiya Geddes²

¹McGill University, Westmount, Quebec, ²McGill University, Montreal, QC, ³McGill University, Montreal, Quebec

Introduction: Physical activity is a crucial modifiable factor in preventing cognitive decline and dementia¹. Lifestyle changes following a new cardiovascular disease diagnosis provide an opportunity for improved health outcomes². However, successful behaviour change remains challenging, necessitating a deeper understanding of neurobiological mechanisms. This study aims to identify functional brain features predicting successful behaviour change (increased physical activity) among older adults with new diagnosis of a cardiovascular risk factor.

Methods: Methods: We analyzed baseline resting-state functional magnetic resonance imaging (rs-fMRI) data in a subsample from the UK Biobank, a large population longitudinal cohort (n=295; mean age = 63.13 years ± 7.5; cognitively normal). Brain imaging was obtained at baseline, and physical activity data was obtained for two time-points: Baseline and follow up after 5 years. Participants met the following inclusion criteria: 1) reported a new diagnosis of a cardiovascular risk factor (i.e., hypertension, type II diabetes, dyslipidemia, cardiac angina or myocardial infarction) between baseline and follow-up, and 2) did not meet the World Health Organization recommended 150 minutes/week of moderate-to-vigorous physical activity (MVPA) at baseline, 3) age >= 60, cognitively unimpaired. Self-reported MVPA were recorded using the Lifetime Total Physical Activity Questionnaire. Demographic variables including age, sex, years of education, and socioeconomic status were
included as covariates of non-interest. To assess whether baseline rs-fMRI connectivity predicts future change in physical activity behaviour, we used a Random Forest Classifier. Preprocessed rs-fMRI data from the UK Biobank was used as the input for these analyses. The Schaefer 2018 atlas was used to parcellate the brain, with 400 regions of interest (ROIs) and 7 rs fMRI networks. The analysis followed a nested cross-validation approach with 5 inner loop resampling and 10fold outer loop cross-validation to prevent overfitting. Our machine learning pipeline involved: 1) feature reduction using grid search, 2) hyperparameter selection and tuning within the inner loop, and 3) model building with the best cost value for each fold in outer loop cross-validation. Model performance, averaged across all 10folds in the outer loop, was assessed using two metrics-accuracy and Receiver Operating Characteristic (ROC) curves. The significance of accuracy was determined through a permutation test, repeating 1000 times to establish the null distribution. The post-hoc analysis involved extracting weights for all features from the best estimator, ranking the absolute values of coefficients, and selecting the top 30 features.

Results: Our prediction model delivered a highly accurate performance with mean accuracy (0.80 ± 0.05) and Area Under Curve (0.78 ± 0.08) in predicting future behavior change (≥150 min/week MVPA at follow-up). The frontal operculum/insula node in the Salience Ventral Attention Network emerged as the most critical predictor. Enhanced between-network connectivity, particularly between visual and somatomotor networks and transmodal brain networks (Default Mode and Salience) was associated with successful behaviour change.

Conclusions: The finding that functional network differentiation supports successful physical activity behaviour aligns with recent findings suggesting a shift in overall network activity balance during external versus internally guided decisionmaking. Notably, localized activity within unimodal networks supports cognition reliant on immediate perceptual input, while greater segregation of unimodal from transmodal networks supports internally oriented processing, including self-referential processes. Speculatively, this suggests that functional segregation may sustain long-term engagement in physical activity.

References
Towards personalized multimodal lesion mapping of temporal lobe epilepsy: a multisite validation

Judy Chen¹, Jessica Royer¹, Oualid Benkarim², Alexander Ngo², Ella Sahlas³, Sara Larivièrè⁴, Raúl Rodriguez-Cruces², Ke Xie⁵, Yifei Weng⁶, Jordan DeKraker⁶, Andrea Bernasconi⁷, Neda Bernasconi¹, Dewi Schrader⁷, Zhiqiang Zhang⁸, Luis Concha⁹, Boris Bernhardt²

¹Montreal Neurological Institute and Hospital, Montreal, QC, ²Montreal Neurological Institute and Hospital, Montreal, Quebec, ³McGill University, Montreal, Quebec, ⁴Brigham and Women’s Hospital, Portsmouth, NH, ⁵Nanjing University, Nanjing, Nanjing, ⁶McGill University, Montreal, Canada, ⁷University of British Columbia, Vancouver, BC, ⁸Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, ⁹Universidad Nacional Autonoma de Mexico, Queretaro

Introduction: Drug-resistant epilepsy affects over 20 million people worldwide, and a majority of these patients are diagnosed with temporal lobe epilepsy (TLE)¹. Diagnostic methods to lateralize the lesion for surgical resection remains a challenge due to the heterogeneity in clinical phenotypes. Past work leveraging MRI to individually characterize patients and lateralize their pathology has been promising but remains limited to a single modality and/or single site². Here, we leverage our open-source image processing and analysis tools to: 1) map the distribution of patient-specific alterations in neocortical and hippocampal subregions from structural (T1w) and diffusion (DTI) scans across three sites; 2) evaluate the efficacy of these features to lateralize patients in a machine learning framework.

Methods: Participants. We studied 388 individuals aggregated from 3 independent sites. Our cohort comprised 123 TLE patients (61 females; mean±SD: 32.4±11.1 years; 57 left-sided focus) and 265 healthy individuals (94 female; mean±SD age: 29.0±9.6 years). All participants underwent 3T T1-weighted (T1w) and diffusion MRI scans. The Nanjing cohort consists of 122 healthy controls (HCs) and 70 TLE patients; EpiC cohort consists of 32 HCs and 18 TLE patients; and MNI cohort consists of 111 HCs and 35 TLE patients. Image processing and analysis. Multimodal imaging data were processed using micapipe_v0.2.03 and hippunfold_v1.3.04. Post-processing using z-brains (https://github.com/MICA-MNI/z-brains) involved z-scoring surface based features in the neocortex and hippocampus of each patient against their site-matched healthy controls while controlling for age and sex in fsLR 64k vertex space and 5k hippocampal space. Right-TLE patients were flipped to reflect ipsilateral and contralateral regions with respect to seizure focus. Significantly altered vertices were defined at |z| 1.96 and the probability of each vertex being altered across the patient cohort was mapped across three features: cortical thickness (CT), fractional anisotropy (FA), and apparent diffusion coefficient (ADC). Logistic regression (LR) and support vector machine (SVM) algorithms were trained with 10-fold cross validation on 5k fsLR vertex-wise neocortical and hippocampal data to lateralize the seizure focus in TLE.

Results: Proportion maps. The temporal lobe demonstrated the highest proportion of neocortical alterations across all features (thickness, FA, and ADC), and were most pronounced with ADC, reaching over 40% (F1A). However, mean proportion of each region parsed through the Desikan-killiany atlas revealed high neocortical variability remains even in the best performing feature (ADC) as no specific region was altered in more than 50% of patients. Hippocampal maps showed moderate atrophy, subtle FA decreases, and highly pronounced ADC signal (F1A). An anterior-posterior gradient was most prominent across the ADC feature and somewhat noticeable in the hippocampal atrophy patterns. Site-specific alteration proportion maps for both neocortex and hippocampus demonstrated preservation of the overall neocortical alteration patterns across sites (F2B). Lateralization performance. Classifiers trained on hippocampal data vastly outperformed those on neocortical data, achieving the highest accuracy score of 85.4% (logistic regression on ADC) as compared to the maximum accuracy score of 70.8% (logistic regression on ADC & FA). Overall highest accuracy score of 87.1% was SVM trained on ADC&CT neocortical and hippocampal data.
Conclusions: MRI phenotypes among patients are too variable to rely on single modality for accurate lesion lateralization. It is possible to accurately lateralize TLE patients using personalized lesion mapping techniques with machine learning classification models. We present here a multisite validation of this technique, achieving a maximum accuracy score of 87.1%.

References
3. Cruces, R et al., 2022 NeuroImage, 10.1016/j.neuroimage.2022.1196

Poster No 1475
AI&ML in MRI for the lateralization of temporal lobe epilepsy: a systematic review and meta-analysis
Judy Chen¹, Natalie Chen², Yigu Zhou³, Sienna Armstrong⁴, Lorenzo Caciagli⁵, Andrea Bernasconi¹, Neda Bernasconi¹, Boris Bernhardt⁶
¹Montreal Neurological Institute and Hospital, Montreal, QC, ²University of Toronto, Toronto, ON, ³Montreal Neurological Institute, Montreal, Quebec, ⁴McGill University, Montreal, QC, ⁵University of Bern, Bern, Bern, ⁶Montreal Neurological Institute and Hospital, Montreal, Quebec

Introduction: Accurate lateralization of temporal lobe epilepsy (TLE) is critical for drug-resistant patients undergoing surgery but is often difficult to achieve due to conflicting evidence in presurgical work-up.¹ Artificial intelligence (AI) and machine learning (ML) methods have been increasingly leveraged to analyze brain magnetic resonance imaging (MRI) for this purpose, but their true accuracy and effectiveness in supporting clinical decision making remains unclear.² The aim of this meta-analysis was to synthesize current AI/ML models used in MRI and assess their performance in lateralizing TLE.

Methods: MEDLINE and Embase databases were searched for original research articles and yielded 2606 publications after removing duplicates. Studies were included if they used any AI/ML model trained on (but not limited to) MRI images to
classify laterality and reported any evaluation metric (sensitivity/specificity, AUC under ROC, or total accuracy score). Articles were excluded if they were conference abstracts without a full text publication or had a patient cohort of n<10. Information regarding the publication (year, first author), MRI (Tesla, modality), AI/ML algorithm (model type, input), demographics (patient/control cohort size, sex, epilepsy duration, age of onset, lesion laterality), and algorithm performance metrics (training and test cohort: Sn/Sp, AUC, accuracy score) was extracted from all articles. The risk of bias of each included study was independently assessed by two reviewers using the Prediction model Risk Of Bias Assessment Tool (PROBAST) tool.3

Results: Abstract and title screening yielded 328 publications, and 51 studies were included. The majority of studies reported an accuracy score (n=29) and were thus included for the meta-analysis; 1440 TLE patients in total (left-sided = 761; mean +/- SD age: 35.4 +/- 5.2, age of onset: 16.3 +/- 4.6). The accuracy scores in relation to year of study publication, MRI modality, and size of cohort show increasing publications after 2015 with larger cohort sizes and more multimodal MRI used (Fig 2A). The ML algorithms include support vector machine (n=16), any type of discriminant analysis (n=10), logistic regression (n=1), random forest (n=1), and k-means clustering (n=1). Preliminary analyses show that the overall accuracy of AI/ML methods to lateralize patients is 91% (95% CI 87-93%) (Fig 2A). Influence diagnostic plots also show highly concordant effect sizes, demonstrating robust accuracies across different modalities and AI/ML algorithms (Fig 2B).

Conclusions: AI/ML methods are highly accurate in lateralizing temporal lobe epilepsy (TLE). They have an overall accuracy rate of over 90%, with highly consistent and robust results across various study designs and algorithm types. AI/ML on multimodal MRI images can be a powerful aid for the presurgical assessment of drug-resistant TLE patients.
State descriptions drive predictions of individual cognitive traits from time-varying FC

Christine Ahrends1, Mark Woolrich2, Diego Vidaurre3

1Aarhus University, Aarhus, Aarhus, 2University of Oxford, Oxford, Oxfordshire, 3Aarhus University, Aarhus, Aarhus C

\textbf{Introduction:} Observing a person's behaviour over time is how we understand the individual's personality, cognitive traits, or psychiatric condition. The same should apply at the brain level, where we may be able to gain crucial insights by observing the patterns in which brain activity unfolds over time. Recent approaches allow predicting individual traits, such as age or cognitive traits, from time-varying or dynamic functional connectivity (FC). However, it is still unclear which aspects of this spatiotemporal level of description best characterise subject differences or predict individual traits. Time-varying or dynamic FC is represented using models of varying complexity (Lurie et al., 2019) that are estimated from modalities such as functional MRI or MEG. The parameters of these models describe different aspects of dynamic FC: In a state-based model, for instance, this may be the connectivity strength between nodes in the network of a transient FC state, or the transition probabilities between all states. By interrogating these parameters, we may be able to understand which aspects of dynamic FC are unique to an individual and related to their specific traits and which aspects are common between individuals.

\textbf{Methods:} We here use resting-state fMRI data and behavioural measures of cognitive traits from 1,001 subjects from the Human Connectome Project (HCP) (van Essen et al., 2013). We use a Hidden Markov Model (HMM) to describe time-varying FC in the group of subjects (Vidaurre et al., 2017). We then estimate individual-level parameters of the HMM and construct from them the Fisher kernel (Jaakkola et al., 1999; Jaakkola & Haussler, 1998; Ahrends et al., 2023). The Fisher kernel is a mathematically principled approach for using a generative probabilistic model like the HMM in a prediction model or classifier. The HMM parameters can be categorised into two types: parameters related to the transitions between states and parameters related to the state descriptions (i.e., connectivity strength between brain regions). To test the influence of the different types of parameters, we construct three different kernels: one using all parameters, one using only transition parameters, one using only state descriptions. We then predict individual cognitive traits separately from each of these kernels and compare their prediction accuracies.

\textbf{Results:} We found that state description parameters were the most relevant features for the Fisher kernel predictions in all cognitive traits. Both the full kernel and the kernel containing only state parameters predicted cognitive traits at high accuracy. The prediction accuracy was significantly reduced when state features were removed, while removing transition features had no significant effect. One reason for the dominance of state parameters may simply be that the state parameters outnumber the other parameters. However, reducing the number of state parameters to match the number of other parameters did not
significantly affect accuracy. This indicates that the content of the state descriptions is more relevant for the prediction of cognitive traits than information about state transitions.

Conclusions: Cognitive traits can be accurately predicted from time-varying FC using the HMM-Fisher kernel approach. We here showed that descriptions of transient FC states are highly predictive of individual cognitive traits, whereas state transitions carry little information about individuals. This suggests that differences between individuals in cognitive traits are linked to changes in connection strengths within resting-state functional networks.

References
Generalization of Brain-Behavior Predictions to Unharmonized Data Towards Real-World Applications
Brendan Adkinson¹, Matthew Rosenblatt², Javid Dadashkarimi², Link Tejavibulya², Dustin Scheinost²
¹Yale School of Medicine, New Haven, CT, ²Yale University, New Haven, CT

Introduction: Despite the significant attention devoted to power, reproducibility, and generalizability, only a minority of neuroimaging studies undertake external validation. Compounding this issue, there is a notable lack of focus on external validation under real-world conditions wherein–unlike research settings–imaging and phenotypic data are largely unharmonized across sites. Neuroimaging research studies, by design, remove the between-site variations that future clinical applications will demand. Only by including multiple datasets with different imaging parameters, patient demographics, and choice of clinical instruments can the true effect sizes of predictive models be evaluated. Therefore, it is imperative to assess whether predictions can survive generalization across diverse dataset features. In this work, we use advanced methodological approaches to achieve generalization of predictive models across three markedly unharmonized samples.

Methods: Data from the Philadelphia Neurodevelopmental Cohort (PNC, n=1294, ages 8-21), Healthy Brain Network (HBN, n=1110, ages 6-17), and Human Connectome Project in Development (HCPD, n=428, ages 8-22) were used to generate connectome-based predictive models (CPM) of language abilities and executive function. PCA-derived ‘latent’ measures of each cognitive construct were created from 23 individual tasks. Resting-state and task-fMRI data were collected on 3T Siemens Tim Trio (HBN and PNC) and 3T Siemens Prisma (HBN and HCPD) scanners. Imaging data (motion < 0.20mm) were processed using BioImage Suite. Whole-brain functional connectivity matrices were created using the Shen 268x268 atlas. Connectomes were combined across rest and task runs within each dataset. Within-dataset models were trained with 10-fold cross-validation. Both within-dataset and externally-validated models were evaluated with Pearson’s r, representing the correspondence between predicted versus observed values. Significance testing was performed via permutation testing.

Results: CPM successfully predicted language abilities (PNC: r=0.50, p<0.01, q2=0.24, MSE=1.05; HBN: r=0.27, p<0.01, q2=0.06, MSE=4.42; HCPD: r=0.22, p<0.01, q2=0.01, MSE=1.47) and executive function (PNC: r=0.39, p<0.01, q2=0.14, MSE=1.17; HBN: r=0.17, p<0.01, q2=0.02, MSE=2.03; HCPD: r=0.17, p=0.02, q2=-0.01, MSE=1.98) within each dataset. The addition of covariates into models yielded similar results for age, sex, race, socioeconomic status, head motion, and clinical symptom burden. Training models in one dataset and testing in another yielded significant predictions across all six dataset pairings for both language abilities (range of r=0.13 to 0.35, all p<0.001) and executive function (range of r=0.1 to 0.28, all p<0.001).
Conclusions: PNC, HBN, and HCPD are characterized by a high degree of inter-dataset heterogeneity, encompassing substantial variations in participant demographics such as age, sex, and race, as well as geographic distribution and clinical symptom burdens. Further diversifying these datasets is a notable lack of harmonization in imaging acquisition parameters, fMRI tasks, and behavioral paradigms employed to assess language abilities and executive function. We demonstrate that robust and reproducible brain-behavior associations can indeed be realized across such diverse dataset features, which are inherent to future clinical applications. Our results were achieved by employing state-of-the-field methodological approaches including the combination of multiple connectomes, harmonization of behavioral measures via PCA, and preservation of participant data (e.g., use of behavioral data from 6745 PNC and 1281 HBN participants without imaging data to derive principal components). This work provides a critical foundation for future work to test the generalizability of brain-behavior predictions to clinical settings. Furthermore, our findings contribute to the ongoing discourse surrounding the requisite sample sizes for reproducible brain-behavior association studies.

References
Poster No 1479

A Deep Learning Approach for Consciousness Level Assessment in Sleep Stages: An Case framework Study

Yong Liu¹, Gan Huang², Jinfei Tian³, Yao Wang⁴, Kin Cheung Lee⁵, Junling Gao⁶

¹Department of Critical Care Medicine, Shenzhen Hospital of Southern Medical, shenzhen, shenzhen, ²Shen Zhen University, Shenzhen, AK, ³Department of Critical Care Medicine, Shenzhen Hospital of Southern Medical, Shenzhen, AR, ⁴The University of Hong Kong, Hong Kong, AZ, ⁵The University of Hong Kong, Hong Kong, Hong Kong, ⁶The University of Hong Kong, Hong Kong, AS

Introduction: Consciousness level assessment in clinical settings often relies on the Glasgow Coma Scale, which tends to be arbitrary. Additional information from EEG data could provide more objectivity. With this in mind, Lee et al. developed an explainable consciousness index (ECI) using deep learning methods. This study applies the ECI and the associated deep learning algorithm to sleep EEG data to assess its ability to categorize different sleep stages, each assumed to represent different levels of consciousness.

Methods: The ECI method, employing deep learning and the Layer-Wise Relevance Propagation (LRP) toolbox, was used to categorize overnight sleep EEG data. The C4 channel was selected, as previous studies have indicated that parietal EEG is likely related to consciousness activities. Sleep stages were labeled by clinicians for each 30-second EEG segment. The EEG data were first preprocessed by filtering at 0.1-45 Hz. Corrupted segments were replaced with adjacent EEG data, as independent component analysis could not be applied to single-channel EEG data or those with limited channels.

Results: The data processing procedure was as follows: Consciousness levels for the stages of wakefulness, rapid-eye-movement, N1, N2, and N3 were arbitrarily assigned values of 1, 0.6, 0.4, 0.3, and 0.2, respectively. The adapted ECI deep learning algorithm was then used to calculate the consciousness level for each 30-second stage. A correlation analysis was performed on the results from the clinical labels and the ECI-calculated results, yielding a correlation coefficient (r) of -0.199. When corrupted EEG segments were not replaced with adjacent EEG data, the correlation dropped to -0.132.
Conclusions: The application of the ECI algorithm to single-channel sleep data was not as effective as desired. This could be due to the lack of spatial information in single or limited-channel EEG data from ordinary sleep, which may weaken the ECI algorithm's ability to categorize consciousness levels. Additionally, the consciousness levels in sleep stages may not align directly with those seen in clinical conditions, such as the comparison between wakefulness and coma. Clinicians can often observe sleep and wakefulness even in coma patients. Corrupted EEG data may contain movement information, and additional information from heart rate, breathing rate, and body movement could be analyzed by the ECI algorithm, potentially improving its applicability to sleep data.

References

Poster No 1480

Experience-dependent plasticity in fMRI: an investigation using linear regression models & VideoMAE

Katrina Portelli¹, Simon Dahan¹, Yourong Guo², Anderson Winkler³, Logan Williams¹, Emma Robinson¹

¹King’s College London, London, London, ²King’s College London, London, London, ³University of Texas Rio Grande Valley, Brownsville, TX

Introduction: Self-supervision algorithms that approximate neural processing of speech offer potential for data-driven hypotheses of sensory processing and model-free extraction of spatio-temporal features from complex stimuli¹,³,⁴. We take this approach to investigate experience-dependent changes in brain activity following repeated movie watching, using data from the Human Connectome Project (HCP). We use a vision transformer to construct a latent encoding of movie frames that predict neural responses to movie stimuli. Following validation, we use this model to identify areas whose activity changes with repeated exposure to the same movies.

Methods: Functional magnetic resonance imaging (fMRI) data was obtained from the HCP 7T release⁹. 184 participants were scanned while passively viewing a series of movie clips, acquired in up to four separate sessions. At the end of each session, the same test-retest movie clip was presented. We limited analyses to participants who had completed four runs of interest (n = 172). fMRI responses were projected from volume to the cortical surface space and aligned using MSMAi²,⁷.
Movie frames were encoded using a video masked autoencoder (VideoMAE), pre-trained on the Kinetics400 movie dataset. Spatio-temporal activations were extracted from segments of 3-second movie clips. These activations were linearly regressed against brain activity from the central time point of each clip. A ridge regression model was trained for each subject, regularised with Thikonov penalties, accounting for temporal lag using the approach of\(^3\). Training data consisted of fMRI compiled from all sessions, excluding the test-retest clips. The linear model's performance was assessed for each session by generating correlation maps at the vertex level (fig.1b), using Pearson correlation between the predicted and actual time series in response to the test-retest clip. Correlation values were averaged across the 360 regions of the HCP multimodal parcellations, propagated to individuals as described in\(^2\). Correlations were then compared across sessions using repeated measures permutation analysis of linear models (PALM) corrected for multiple comparisons.

Results: Here we focus on fMRI responses from scanning sessions 1 and 4. We first assessed correlations between the linear regression model's predicted fMRI timeseries and the actual fMRI timeseries from session 1. Significant correlations were found in 87 and 91 parcels in the left and right hemispheres, respectively (fig.1c). These areas functionally fall within the dorsal and ventral visual streams, auditory association areas and frontal regions related to decision-making and reward. Comparing correlation coefficients in the significant parcels from session 1 to the same parcels in session 4 revealed significant decreases in prediction accuracy (fig.2). These decreases were observed in 88 parcels (44/87 in the left and 44/91 in the right hemisphere). Specifically, parcels in the left and right superior and inferior temporal cortex, frontal opercular cortex, orbitofrontal cortex, posterior cingulate cortex and the MT+ cortex. Activity in these cortices has been linked to the processing of dynamic visual stimuli\(^5\). In a subset of parcels, lateralisation of changes in accuracy was observed. Parcels specific to the right hemisphere included the premotor eye field, retrosplenial cortex, area PFm, area LO3 and visual area 8. In contrast to the left hemisphere, prediction accuracy in the right early visual areas V2 V3, was not significantly different between sessions.

Conclusions: We show videoMAE-derived features reliably predicted neural responses to movie clips in visual processing areas. Repeat exposure to movie stimuli was associated with a change in prediction accuracy in a subset of these areas, demonstrating the potential of these models for identifying areas undergoing experience-dependent neural plasticity, thereby advancing our mechanistic understanding of sensory processing.
Multimodal Ensemble Deep Learning for Mental Disorder Classification Using Neuroimaging Data

Hooman Rokham¹, Haleh Falakshahi², Vince Calhoun³
¹Georgia Institute of Technology, Atlanta, GA, ²Georgia Institute of Technology, Atlanta, GA, ³GSU/GATech/Emory, Decatur, GA

Introduction: The intricate exploration of brain functional mechanisms within mood and mental disorders remains a formidable undertaking. Existing challenges in the categorization of psychosis, characterized by issues like heterogeneity, lack of validity, and the constraints of unbalanced, small sample sizes, further compound the complexity of unraveling and recognizing essential biological features associated with these disorders. This study addresses these challenges by implementing a sophisticated multimodal ensemble deep learning approach. The primary objective is to perform a four-way classification task for the diagnosis of individual subjects, utilizing a comprehensive dataset that incorporates both structural and resting-state functional MRI data. This innovative methodology spans across three diverse datasets, fostering a more nuanced and insightful understanding of the intricate interplay between brain function and psychiatric disorders.

Methods: In this investigation, we scrutinized the structural and resting-state functional MRI data of a cohort comprising 1520 subjects, encompassing 566 normal controls, 234 with bipolar disorder, 249 with schizoaffective disorder, and 473 with schizophrenia from three distinct datasets—FBIRN, B-SNIP1, and B-SNIP2. The preprocessing steps involved slice timing and rigid body head motion correction, followed by registration to the standard Montreal Neurological Institute (MNI) and subsequent smoothing. Subsequently, a fully automated Neuromark ICA pipeline (Du et al., 2020) was employed on the preprocessed data, extracting 53 intrinsic connectivity networks (ICNs) from seven different domain regions. Subject-specific functional networks and associated time-courses (TC) were then extracted. Following this, we utilized a fully convolutional neural network (CNN) architecture as the foundational model for fMRI data and a 3D convolutional neural network for structural MRI (sMRI) data. Our proposed multimodal ensemble deep learning method was assessed for its ability to glean features from time courses and gray matter images using undersampling technique in conjunction with repeated cross-validation. By adopting this approach, each individual subject appeared in different test sets, facilitating evaluation and classification using models trained with distinct randomly generated training sets. The labeling assigned to each test sample was determined based on the maximum averaged probabilities obtained from the individual base models for each class.

Results: Results demonstrate that the ensemble deep learning approach surpasses the performance of the base deep CNN models in handling both structural and functional MRI data. This enhancement is particularly evident in a performance boost of 0.11 for sMRI data and 0.13 for fMRI data. Furthermore, employing data fusion techniques and an ensemble approach elevates the overall accuracy to 0.61, accompanied by an area under the curve (AUC) of 0.83. Notably, statistical examinations of group differences in gray matter and functional connectivity data, coupled with post-classification analysis, reveal that misclassified subjects exhibit more pronounced distinctions within their respective groups compared to others predicted by the model.

References
Conclusions: In summary, we have introduced a multimodal ensemble deep learning method for the classification of mood and psychosis disorders. The findings indicate that amalgamating individual base models as ensemble deep learning methods outperforms a single CNN. Additionally, the multimodal ensemble method further enhances performance. The results suggest that multimodal ensemble deep learning methods exhibit robustness to label noise and demonstrate superior performance in the presence of noisy and heterogeneous data, as compared to single deep learning models. Moreover, the ensemble deep learning method exhibits improved performance, especially in scenarios with small sample sizes, such as in small neuroimaging datasets within the field of psychiatry.

References

Poster No 1482
Using Manifold Learning to Uncover the Embedded Brain and Implications for Mental Health in Youth
Erica Busch1, May Conley1, Arielle Baskin-Sommers1
1Yale University, New Haven, CT

Introduction: Advancing the study of biosocial transactions, which considers the interplay between youth and environment, is essential to improving our understanding of how information processing and neural differences contribute to the formation and maintenance of mental health problems. To move the study of biosocial transactions beyond what we have achieved so far (e.g., a complex account of contexts and behaviors without understanding the neurobiological embedding within these transactions), we need to find ways of studying the complex, transactional relationships between neurocognitive functioning and the social world (Viding et al. 2023). Manifold learning techniques can discover and highlight latent structure from high-dimensional, noisy biomedical data, such as fMRI. Here, we develop and apply a novel manifold learning technique to capture the interplay between various environmental factors, neuroimaging data, and mental health outcomes in youth.

Methods: We used data from 5,245 9–10 year old youth enrolled in the Adolescent Brain and Cognitive Development StudySM (ABCD Study®) Data Release 4.0 to ask how brain activation during an emotional n-back task and measures of environmental adversity interact and reflect emotional and behavioral problems. We extracted activation patterns from parcels including the amygdala and the executive control network during cognitive processing (i.e., the contrast of 2-back vs. 0-back and of emotional and neutral task blocks) (Conley et al. 2023). fMRI activation maps contain high levels of noise and intersubject variance. Recent work shows that manifold learning unveils meaningful structure from biomedical data (Moon et al. 2019) and fMRI activity (Huang & Busch et al. 2022). Explicitly modeling additional signals like temporal dynamics in the manifold calculation improves insight into the geometry of fMRI activity and its relation to behavior (Busch et al. 2023). We modified the manifold learning method T-PHATE, designed for fMRI timeseries, to combine multivariate environmental features with neural manifold geometry to embed youth brain data in a latent space via approach we call "Feature PHATE (F-PHATE)" (Fig. 1). We then used the coordinates embedded coordinates of each participants’ data to predict their Child Behavior Checklist (CBCL) total problem, externalizing, and internalizing scores. We benchmarked prediction using F-PHATE embeddings against embeddings in a standard embedding model without the environmental features (PHATE) and from the full voxel-resolution data.
Results: First, we validated that embeddings with standard PHATE captured cognitive processing by predicting n-back performance. Linear regression trained on PHATE embeddings significantly outperformed those trained on the full voxel resolution data (amygdala and control network, Fig 2A). Next, we predicted CBCL scores from PHATE and F-PHATE embeddings, and the voxel resolution data for comparison (Fig. 2B). In the amygdala, neither PHATE embeddings nor voxel resolution data predict CBCL externalizing (Fig 2C) or internalizing scores (Fig 2D), though the PHATE embedding does predict total problem scores. PHATE embeddings of the executive control network predict both total problem and externalizing scores (but not internalizing scores) better than the voxel data. With the addition of environment information, prediction performance for F-PHATE exceeds that of either standard PHATE or the voxel data.

Conclusions: We present a manifold-learning approach to incorporating environmental or other information in a low-dimensional embedding space. Embedding participants into a joint neural-and-environmental manifold uncovered latent
structure predictive of broad emotional and social problems and externalizing behavior. This work holds important implications for understanding the relationship between biosocial transactions and mental health.

References

Poster No 1483
Perception similarity enhances visual encoding of natural scenes in the human brain
Yudu Zhang1-2, Zhang Jing1, Siyang Li1, Weiyang Shi1, Yongfu Hao1, Zhang Yu1, Tianzi Jiang1

1Zhejiang Lab, Hangzhou, China, 2Shanxi University, Taiyuan, China, BrainNetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China

Introduction: The integration of brain responses with artificial neural network (ANN) models has opened new avenues for understanding the neural basis of cognitive functions. This study introduces an innovative encoding approach using the dreamsim_Openclip model, leveraging the joint mechanism of image-text alignment and perceptual similarity training. By employing advanced spatial and layer attention mechanisms, the proposed model not only achieve state-of-the-art encoding performance in the cortex, but also provides novel insights into the receptive field mapping and hierarchical structure of visual coding. This work marks a substantial advancement in bridging the fields of artificial intelligence and neuroscience, particularly in the realms of visual processing and scene comprehension.

Methods: We used 7T-fMRI dataset of the Natural Scenes Dataset (Allen 2021), when participants viewed 10,000 different natural scene images collected from Coco (Lin 2014). Image-wise brain response were estimated by using fmrprep and GLMsingle (Prince 2022) and then projected onto the fsaverage cortical surface. We utilized the pretrained dreamsim-openclip model (Fu 2023) to extract latent features of each scene image. This model is adept at encoding multimodal information, encompassing both objects and captions through text-image contrastive learning, and capturing the semantic relationships between objects through human perceptual similarity tasks of image triplets. To predict the neural response of each vertex in the cerebral cortex, we integrated latent features from multiple layers of openclip using a 1x1 convolution, followed by the application of spatial (196-dimensional) and layer (12-dimensional) attention mechanisms. The spatial attention specifically targets capturing the retinotopic mapping of the visual cortex, while the layer attention mechanism reflects the hierarchy of visual coding. Based on the spatial attention map, the angle and eccentricity of each cortical vertex can be estimated and subsequently compared with the actual population receptive field (pRF) parameters provided by the dataset.

Results: State-of-art encoding performance in the visual cortex was achieved by using the dreamsim-openclip model (Fig 1B), with a maximum prediction accuracy as 0.86. Medium encoding accuracy was observed in the prefrontal and parietal regions. Additionally, the receptive field mapping derived from the spatial attention map of each vertex highly resembled the actual pRF map (Fig 1C). The layer attention map aligns with the hierarchical structure of visual coding (Fig 1E), demonstrating low-layer representations predominantly for early visual areas (e.g., V1), middle-layer representations for higher visual areas including V4, and high-layer representations for higher-order areas in the dorsal and ventral streams. We observed that the proposed encoding model exhibited superior performance compared to other models, such as dreamsim-dino, particularly in high-order cognitive areas beyond the visual cortex (Fig 2A). Notably, this enhanced performance was evident in regions including the lateral and medial prefrontal cortex, as well as the superior parietal and temporal cortex. However, no significant improvement was detected in the early visual cortex, encompassing areas V1 to V3.
Conclusions: Our study employed the pre-trained dreamsim_Openclip model to encode neural responses to natural scenes across the entire cortex. Leveraging a joint mechanism of image-text alignment with perceptual similarity training, the proposed model achieved state-of-the-art encoding performance in the visual cortex, and demonstrated enhanced performance in high-order cognitive areas, particularly within prefrontal regions. Furthermore, the model effectively captured the receptive field mapping and the hierarchical structure of visual coding, utilizing both spatial and layer attention mechanisms.

References
Head motion does not drive success of dynamical classification approaches for fMRI
Grace Huckins1, David Glahn2, Russell Poldrack3
1Stanford University, Stanford, CA, 2Department of Psychiatry, Harvard Medical School, Boston, MA, 3Stanford University, Palo Alto, CA

\textbf{Introduction:} Historically, analysis of resting-state fMRI has largely focused on static measures like functional connectivity. In contrast, dynamical approaches remain underexplored, but they do present challenges. In particular, head motion in the scanner introduces artifacts that can exert a strong effect on the results of analyses3, but throwing out high-motion volumes would disrupt the dynamical structure of the data. In work presented at OHBM 2023, we demonstrated that a dynamical, hidden Markov model-based approach can successfully classify resting-state fMRI data and achieve higher accuracy than static approaches. Those previous analyses, however, did not account for the fact that head motion differences may have been driving classification performance. In the current study, we establish that the success of dynamical classification methods is not driven by head motion artifacts. Additionally, we apply our dynamical classification approach to a problem where head motion is a particular concern: classifying resting-state fMRI data according to psychiatric diagnosis.

\textbf{Methods:} All of the experiments in this study used the same HMM-based dynamical classification approach, which is detailed in Figure 1. For the first portion of this study, we used data from the MyConnectome dataset, which includes dozens of resting-state scans from a single individual. Data were preprocessed as in1. We previously demonstrated that dynamical classification can distinguish runs where the subject had and had not ingested caffeine; for that study, high-motion volumes were censored and censored volumes were reconstructed using linear interpolation. To test the impact of interpolation on model performance, we generated two versions of the MyConnectome data-one containing only the continuous sequences of low head-motion volumes, and the other containing interpolated sequences. Dynamical classification performance was evaluated using the SSM Python package. The second portion of this study used a dataset including individuals with and without a diagnosis of psychosis2. Data were preprocessed using fMRIPrep and XCP_D, and high-motion volumes were removed and reconstructed using linear interpolation. Dynamical classification of the psychosis data was performed using the Dynamax Python package, which implements the same models as the SSM packing using Jax and is therefore significantly faster (but cannot handle ragged sequences).

\textbf{Results:} As shown in Fig 2a, linear interpolation over censored volumes appears to have had no effect on classification performance. Across a wide range of hidden states, MyConnectome classification performance was virtually identical, whether or not head motion had been fully censored or subject to interpolation. In both cases, performance was significantly higher than the chance level of 50\%, despite the fact that the amount of data had been significantly limited by censoring high-motion volumes. In contrast, Fig 2b demonstrates that neither the dynamical classification approach nor a baseline approach, which applied linear SVM to functional connectivity matrices, was able to achieve above-chance performance in distinguishing individuals with psychosis from healthy controls.
Conclusions: This study shows that the success of dynamical classification on MyConneクトome rsfMRI data is not driven by differences in head motion between classes. Completely eliminating high head motion volumes from the dataset had no effect on classification performance. This HMM-based classification strategy is thus a robust and effective method for classifying rsfMRI data, and its high performance indicates that examining whole-brain dynamics in resting-state data may be a fruitful path forward for the field. Additionally, the fact that the dynamical approach was unable to distinguish two groups who differed in their head motion frequency (people with psychosis and healthy controls) provides further evidence that the success of dynamical classification is not driven by head motion.

References

Poster No 1485
Thumbs up or down: Simple quality assessment tool for physiological signals
Roza Bayrak\(^1\), Richard Song\(^1\), Ruogi Yang\(^1\), Catie Chang\(^1\)
\(^1\)Vanderbilt University, Nashville, TN

Introduction: Functional MRI measures the BOLD signal as a proxy for neural activity. The BOLD signal is based on changes in blood oxygenation, and therefore is modulated by peripheral physiological factors such as breathing and heart rate in addition to neural activity. While traditionally regarded as noise, systemic physiological processes are frequently shown to be linked with cognitive processes and may contribute valuable information to fMRI studies. Recognizing this, neuroimaging research increasingly draws upon concurrent recordings of peripheral physiology to enhance fMRI analysis. However, the usefulness of physiological data is contingent upon the quality of the recordings as well as expertise in data handling, which can vary significantly. To address this critical gap, we devised a simple tool for assessing the quality of peripheral physiological recordings. This deep-learning based tool not only ensures data integrity but could describe data quality issues and suggest steps for fixing the data, thereby promoting to improve the accuracy and reliability of downstream research. The code and data used in this abstract are publicly available.

Methods: Classification Tool: A simple classification pipeline is developed to assess the quality of raw physiological measures (Fig. 1, left), focusing on respiration and cardiac waveforms. Here, we use the data from the HCP Young Adult cohort. Physiological signals in this dataset were collected using a pulse oximeter and a respiration belt, sampled at 400 Hz. These raw waveforms were downsampled by a factor of 4, temporally normalized (zero mean, unit variance) and provided to the neural networks. The network is composed of stacked 1D CNNs (Convolutional Neural Networks) with decreasing feature map sizes at each layer. The models are trained using a learning rate of 0.0001 and a batch size of 2, employing Adam as the optimizer and binary cross-entropy as the loss function. The dataset is divided into training and test sets, employing rotating
ABSTRACTS

partitions in a 5-fold cross-validation framework. To prevent overfitting, an early stopping criterion is applied based on the performance on the validation set. Link to repo: github.com/neurdylab/physio_qa_dl Annotation Tool: To train our supervised neural networks, we labeled the physiological signals using an in-house annotation tool (github.com/neurdylab/physio_qa_manual), consisting of a matlab-based GUI that enables fast annotations of physiological signals. The tool (1) takes in raw recordings, (2) passes them through initial quality checkpoints (i.e. detecting empty files, clipping), (3) plots full length raw time series, and finally (4) provides the rater (annotater) with visual information for quality inspection and annotation (Fig 1, right). Since manual annotations are cumbersome, we aim to build a fully automated quality assurance method. However, manually assessing the quality of labels is vital in this initial stage to ensure the accuracy of our models.

Results: The models were able to classify the quality of respiration data with 83.35 ± 1.01% and cardiac data with 88.49 ± 1.42% accuracy.

Conclusions: Here, we provide a simple thumbs up / thumbs down tool that can save several hours of manually vetting physiological recordings. While the current study focuses on respiration and cardiac data, the CNN models may in the future be easily trained to handle different physiological metrics, such as eye tracking and end-tidal CO2. We envision that in future iterations, the tool can be further developed by adding new modules to (1) generate text-based reports detailing specific reasons for why the quality check for a given recording has failed and whether it is fixable (e.g., if a recording is partly usable, or if a simple interpolation algorithm could fix the problem), (2) provide suggestions for fixing the data, and (3) apply the suggested fix and return the corrected data.

Poster No 1486

Unraveling Alzheimer’s Disease Heterogeneity: A Comparative Analysis Using HYDRA and CHIMERA

Zhaoqi An1, Aristeidis Sotiras2, Brian Gordon3

1Washington University in St. Louis, Saint Louis, MO, 2Washington University in St Louis, St Louis, MO, 3Washington University School of Medicine, Saint Louis, MO

Introduction: Alzheimer's Disease can present with heterogenous neurodegenerative patterns. In order to optimize clinical trials and personalized medicine, the identification and characterization of diverse pathological brain patterns associated with AD have become paramount. Optimal approaches to identify such heterogeneity are unknown.

Methods: The present study employed two distinct clustering approaches, namely HYDRA and CHIMERA, to delineate the spatial pattern of brain atrophy attributable to AD. Methods were applied to MRI scans from the Open Access Series of Imaging Studies (OASIS-4) project. HYDRA uses a convex polytope formed by multiple linear hyperplanes that correspond to various pathological patterns, capturing disease subtypes. CHIMERA assesses the pathological transition by transforming NC distribution to separate transformations matching the disease distribution. While both identify spatial patterns, the distinction lies in HYDRA's discriminative analysis of disease subtypes and CHIMERA's generative nature on disease progression through distribution matching.

Results: Both approaches identified two patterns, or subtypes (Figure 1) with similar CDR results (Figure 2). Preliminary analyses revealed distinct spatial patterns of brain atrophy associated with AD subtypes. The patterns, illustrated in Figure 1, showcase fluctuating regions of atrophy in volumes across the brain. All subtypes demonstrate marked atrophy within the medial temporal areas, notably the hippocampus. Disparities are evident when assessing subtypes: Subtype-2 across both
methods shows pronounced variations in regions such as superior frontal, middle temporal, parietal cortex, and precuneus, areas paramount in AD pathology. Conversely, HYDRA's Subtype-1 highlights subtle differences in temporal cortex relative to its Subtype-2. CHIMERA's Subtype-1, while mirroring its Subtype-2 pattern, is less intensified, suggesting an earlier AD stage. Collectively, these patterns concur with recognized AD neuropathological trajectories, pinpointing regions initially impacted in progression. In addition, an in-depth exploration of subsequent analysis including a longitudinal data evaluation to observe the progression of these patterns over time and the amyloid biomarker's role and its correlation with the identified patterns is slated for later investigation.

Conclusions: Our findings demonstrate data-driven approaches to derive clinically meaningful patterns of neurodegeneration. A parallel evaluation of both approaches accentuates the robustness of clustering techniques, revealing consistent and overlapping insights into the intricate pathological landscapes of AD. This convergence in findings bolsters confidence in the reliability of such analytical tools in AD research.

References
Situation edge time series within the generalized linear model framework

Richard Betzel¹, Haily Merritt¹, Amanda Mejia¹

¹Indiana University, Bloomington, IN

Introduction: Functional connectivity (FC) is typically modeled as a linear correlation between time courses recorded at distinct locations in the brain. Recent work has shown that static FC can be transformed into “edge time series” (eTS; Figure 1a), revealing framewise fluctuations in connections’ weights (Zamani Esfahlani et al 2020; Figure 1b). To date, eTS have largely been interpreted in terms of time-varying FC. Here, however, we show that eTS can also be interpreted through a statistical lens. Namely, the derivation of the eTS between regions i and j is identical to the interaction term in a standard linear model (Figure 1c). Here, we exploit this link to build linear models in which we explain time-varying behavior using both activations and edge time series (their interaction). For this abstract, we focus on calcium imaging recordings made in larval zebrafish (Chen et al 2018).

Methods: Consider the z-scored activity time series from region i, zi. We can calculate the edge time series between regions i and j as rij = zi*zj, where * denotes element-wise multiplication. The element rij(t)=zi(t)zj(t) corresponds to the instantaneous co-fluctuation between regions i and j at time t. In statistics, it is common to explain a variable y as a linear combination of predictors x1, x2, x3, and so on. It is also common to include interactions between predictors as x1*x2. Note that if x1 and x2 are z-scored, then the interaction between predictors 1 and 2 is calculated identically to their eTS. Here, we models of the following form to explain some time-varying behavior, y: y = βizi + βjzj + βijzi*zj + β0 + ε. We fit models of this type for every pair of regions, ij, and calculate t-statistics for each regression coefficient, including βij. If we find that βij is statistically significant, i.e. that there is a significant interaction between i and j, then we can also conclude that the time-varying edge between i and j—the edge time series—carries unique explanatory power not carried by the activities of regions i and j alone. We applied this framework to calcium imaging recordings of N=18 larval zebrafish. Neurons were assigned to one of 164± 39 parcels (defined at the single-subject level and were functionally homogeneous and spatially co-localized) and mean time courses derived for each parcel. Though unable to move freely, the animals engaged in fictive spontaneous behavior, including swimming (left/turns and forward movements decoded from motor neuron outputs) and eye movements.

Results: Across animals, we found robust evidence that eTS explained time-varying behavior at a level above and beyond that of activations alone (see Figure 2 for results from a representative animal). We found that, across behavioral measures, 24.4±21.3% of edges exhibited statistically significant effects (FDR corrected at q=0.01; mean adjusted p-value of 0.0025). We found evidence supporting the hypothesis that the same or similar sets of edges are significantly associated with multiple distinct behavioral measures and that significant edges share a common neuroanatomical substrate, favoring the rhombencephalon.

Conclusions: In summary, our findings suggest that edges, above and beyond activations alone, carry meaningful information about time-varying behavioral measures. These findings suggest that dynamic coupling between groups of neurons—rather than reflecting stochastic fluctuations—may be neurobiologically meaningful and challenge the view that FC is purely time-invariant.
Poster No 1488

Dynamic Modulation of Information Flow from Occipitotemporal Cortex According to Cognitive Demands

Vicky He¹², Bahman Tahayori¹, David Vaughan¹², Graeme Jackson¹², David Abbott¹², Chris Tailby¹², for the Australian Epilepsy Project Investigators¹

¹The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia, ²University of Melbourne, Melbourne, Australia

Introduction: Neurobiological models of cognition hold that the degree to which information flows between different brain areas is modulated as a function of cognitive demands (Park and Friston 2013). Psychophysiological interaction analysis (PPI) is a regression-based method for evaluating such modulations in functional magnetic resonance imaging (fMRI) data (Friston et al. 1997). Here we applied PPI to investigate the task dependent modulation of connectivity from the ventral occipitotemporal cortex (vOT, also known as the Visual Word Form Area) during execution of a language task (pseudoword rhyming) versus a visuospatial task. We hypothesised that there will be reweighting of information flow from vOT according to task demand. More specifically, the vOT will interact more strongly with perisylvian language areas during pseudoword rhyming than during visual pattern matching.

Methods: Ninety-four Australian Epilepsy Project (AEP) participants completed a block design fMRI task contrasting rhyming blocks (whether two visually presented pseudowords would rhyme if pronounced aloud) against pattern matching blocks (whether two patterns composed of forward and backslashes matched). First level analysis was applied using the iBrain Toolbox (Abbott and Jackson 2001) with SPM12 (Ashburner et al. 2021). The PPI regression includes the main effect of task, the main effect of the seed (vOT) time course, the interaction between the two, and nuisance regressors. The PPI was

References

Figure 2. Application of edge time series data to representative zebrafish. (a) Activity time series from a single animal. All time series are z-scored. (b) Unthresholded correlation matrix. (c) Thresholded correlation matrix. (d) Force directed layout of thresholded network; node color corresponds to module label. Panels e-h show regression coefficients for single task (raw right turns). Panel i shows the interaction term, i.e. the coefficients fit to edge time series. (j) Correlation of interaction term matrices across measures. (k) All interaction term matrices. (l) Fraction of edges (interactions) that were significant at varying statistical cutoffs. (m) Number of behavioral measures for which each edge was statistically significant. (n) Mean number of statistically significant behaviors associated with edges incident upon nodes. (o) Mean values aggregated by anatomical division (D = diencephalon; M = mesencephalon; R = rhombencephalon; T = telencephalon).
implemented using the gPPI (generalised PPI) toolbox (McLaren et al. 2012), which incorporates a deconvolution procedure in forming the interaction (Gitelman et al. 2003). Given some debate around whether mean centring the task regressor in the interaction term is necessary (see Di, Reynolds, and Biswal 2017; ‘NITRC: Generalized PPI Toolbox: Task Time Course Not Mean-Centered’ n.d.) we modified the code in the toolbox to carry out PPI both with and without (default setting) mean-centring. Finally, we carried out a systematic search on papers that used PPI from 2018 to 2022 to examine whether mean-centring has become the standard in the field.

Results: Figure 1a shows the SPM-t map of the group level analysis on the interaction term with recommended mean-centring. As hypothesised, the vOT connects more strongly with classical language areas (left inferior frontal gyrus and superior temporal sulcus) during the rhyming task. On the other hand, there is greater connectivity between the vOT and the right intraparietal sulcus in the visuospatial task. Figure 1b shows the results without mean-centring, where there is extensive interaction with a peak at the seed location. This indicates a misspecification of the model, as the seed should not appear significant in the interaction (because the main effect of the seed is already included in the regression). Through the systematic search, we found that most papers do not include sufficient information about how the PPI model is implemented, with a number of published figures showing interaction effects within the seed region suggesting model misspecification.

![Figure 1. One sample t-test showing positive interactions (hot colours) and negative interactions (cool colours). vOT seed location shown in green. Left hemisphere on the right side. FWE cluster corrected p < 0.025 for each t-test (positive and negative interactions). (a) Results obtained with mean-centring the task regressor, confirming hypothesised dynamic modulation of regional interactions with the seed. (b) Results obtained without mean-centring, showing widespread spurious interactions including with the seed itself, confirming the model is misspecified.](image)

Conclusions: Our findings utilising the mean-centred PPI method are consistent with the idea of dynamic modulation of information flow according to cognitive demands (Park and Friston 2013). Using comparable visual stimuli as input, connectivity from left vOT was increased to key language areas during a linguistic task, but to visuospatial processing areas of the right hemisphere during visuospatial judgments. These findings are consistent with models of the reading system (Sandak et al. 2004) and language (Hickok and Poeppel 2007). Furthermore, we support the observations of Di and colleagues (Di, Reynolds, and Biswal 2017), that with deconvolution, it is essential for the task regressor to be mean centred to avoid spurious results.

References

A Connectome Generative Model with Dynamic Axon Growth

Yuanzhe Liu¹, Caio Seguin², Richard Betzel³, Danyal Akarca⁴, Maria Di Biase¹, Andrew Zalesky¹

¹The University of Melbourne, Melbourne, Victoria, ²Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, ³Indiana University, Bloomington, IN, ⁴University of Cambridge, Cambridge, England

Introduction: Connectome generative models provide insight into the wiring mechanisms underpinning connectome topology¹,². However, current generative models do not account for the dynamics of axonal growth, limiting their biological interpretability. The aims of this study are threefold: i) to build a connectome generative model that incorporates dynamic axon growth, ii) to develop a method that optimizes model parameters for individual connectomes, and iii) to test if the model can generate brain-like networks and white matter fiber bundles.

Methods: The cerebral volume is modelled as a 2D circle, with the circumference and the internal space representing brain gray and white matter, respectively. The circumference is randomly parcellated to represent the 84 regions in Desikan-Killiany atlas, otherwise known as nodes (Fig. 1a). Simulated axons are uniformly seeded at random along the circumference. Each axon propagates step-by-step within the circle, and the direction of propagation is dynamically updated based on a combined attractive force exerted by each node (Fig. 1a-1b). The attractive forces represent axon guiding cues that decay as a function of distance between the node exerting the force and the axon’s growth tip. An axon terminates when its tip encounters the circle circumference, forming a connection between its origin and intersection with the circle (Fig. 1c). Generated networks are constructed by counting the number of axons interconnecting each pair of nodes (Fig. 1d-1e). Two key model parameters control network topology: The force decay parameter \(\beta \), and the axon growth length of each extending step \(L \). Using an extensive grid search, we first examined how generated network topology, in terms of small-worldness and modularity, varied with respect to parameters. Next, we mapped structural connectomes for 1064 participants of the Human Connectome Project (HCP) and fitted model parameters to individual connectomes by minimizing the difference in above-mentioned topological measures, between empirical and generated networks. Finally, we generated networks with fitted parameters and tested if the generated networks recapitulate connectomic properties that the parameters were not optimized for.
ABSTRACTS

Results: Within the parameter space evaluated, generated networks were consistently characterized by a small-world and modular organization. Despite this, variations in model parameters altered the strengths of small-worldness and modularity in a continuous manner, such that increasing β and/or decreasing L resulted in stronger clustering and small-worldness, longer characteristic path length, and weaker modularity. By minimizing the small-world and modular disparity between empirical and generated networks, we optimized model parameters of connectomes mapped for HCP participants (Fig. 2a). The networks generated with our model not only displayed brain-like small-worldness and modularity, but also recapitulated several properties characterizing empirical connectomes that the parameters were not optimized for (Fig. 2b). Specifically, generated networks showed realistic axonal fascicle structures (i.e. short-range U-fibers and long-range bundles), negatively correlated connection weight and distance, strong long-range connections that deviated from the exponential distance rule, lognormally distributed connection weights, and scale-free degree distributions.

Conclusions: The present study developed a connectome generative model that features dynamic axon outgrowth. The model recapitulated a diverse array of topological features characteristic of nervous systems, at the connection, node, and network levels. A parameter inference approach was proposed, enabling parameter optimization for individual connectomes. Overall, our work enables generation of connectomes in silico that are weighted, spatially embedded, and feature axonal trajectories that appear biologically realistic.

References
Poster No 1490

Can function be predicted from structure at individual level?

Lars Smolders¹, Wouter De Baene³, Geert-Jan Rutten¹, Remco Hofstad², Luc Florack²

¹Elisabeth-Tweesteden Hospital, Tilburg, Netherlands, "Eindhoven University of Technology, Eindhoven, Netherlands, ³Tilburg University, Tilburg, Netherlands

Introduction: Understanding how anatomical connections give rise to functional interactions in the brain is a major goal in neuroscience. These ideas have been conceptualized in terms of networks of connections between Regions Of Interest (ROIs), where anatomical white-matter connections are represented by Structural Connectivity (SC) and functional interactions by Functional Connectivity (FC). Recently, several studies have attempted predicting FC from SC at individual level using machine learning methods. If successful, this could have significant benefits for clinical applications. Three such studies (Benkarim et al., 2022; Neudorf et al., 2022; Sarwar et al., 2021) show promising results on large data sets, making them attractive for further development. We examined these studies in detail, to determine whether the models indeed represent meaningful individual-level mappings of SC to FC.

Methods: See Figure 1 for a summary. On the data set used in the three studies, comprising MRI images of 1000 Human Connectome Project (HCP) subjects, we calculated SC and empirical FC (eFC) in the same way as Sarwar et al. Briefly, we calculated SC as the streamline count from whole-brain tractography on diffusion-weighted MRI between each ROI pair and calculated FC as the Pearson correlation coefficient between the resting-state fMRI activity of each ROI pair. We used ROIs from the Desikan-Killiany and Schaefer 200 parcel atlas. Using a 10-fold cross-validation workflow, we compared the performance of the presented models to the group average eFC of each training fold (avg-eFC) and to avg-eFC with random noise added to artificially introduce inter-individual differences. We also reproduced analyses demonstrating additional usefulness of predicted FC (pFC) from the authors' models: predicting cognitive performance from pFC (Sarwar et al., 2021), analyzing predictive power of pFC for network centrality measures in eFC (Neudorf et al., 2022) and analyzing differences in performance across Yeo's 7 networks (Benkarim et al., 2022).

Results: Sarwar et al. reported (on Supplementary data) an average individual-level eFC-pFC correlation of 0.7 and showed that pFC was not a group average by reporting an average inter-pFC correlation of 0.7. These values were reproduced by avg-eFC plus noise tuned to 0.1 standard deviation (Figure 2a). A correlation between predicted and actual cognitive score of 0.29 using pFC with SC regressed out was presented. When reproduced by us, we found a correlation of 0.19. Avg-eFC plus noise with SC regressed out achieved a correlation of 0.20. Neudorf et al. showed that pFC explained 56% of variance in eFC at individual level. Avg-eFC explained 55% of variance (Figure 2b). They also showed that centrality measures of pFC explain...
81%, 55% and 55% of variance in degree, eigenvector and PageRank centrality respectively. However, Avg-eFC explains 77%, 76% and 77% of variance in these measures. Benkarim et al. presented an average individual-level eFC-pFC correlation of 0.775. Avg-eFC achieved 0.762 (Figure 2c). Finally, differences in performance found by Benkarim et al., i.e. lower performance in default, frontoparietal and limbic networks, were also reproduced by avg-eFC.

Conclusions: We conclude that we cannot ascertain that the models as presented in the three studies represent a meaningful mapping from SC to FC. Firstly, the reported predictive performances do not exceed the performance of avg-eFC. Secondly, analyses into additional usefulness were reproduced by replacing pFC with the avg-eFC plus noise. Although it appears that current methods fail to find a meaningful mapping from SC to FC, we are convinced that this line of work should be continued, taking care to ensure that trained models do not converge to the group average. We believe that taking a step back and reassessing the construction of SC and FC may yield more informative versions of both, and thus improve the chances of finding a meaningful mapping from structure to function at individual level.

References

Poster No 1491

Does the rich club control brain state transitions? A network control theoretical investigation

Alina Podschun1, Richard Betzel2, Sebastian Markett3

1Humboldt-Universität zu Berlin, Berlin, Germany, 2Indiana University, Bloomington, IN, 3Humboldt-Universität zu Berlin, Berlin, Germany

Introduction: The brain seamlessly transitions between functionally relevant patterns of activity, often referred to as “brain states.” Extensive research indicates that the underlying dynamics of these processes are linked to the structural connectome of the brain (Cole et al., 2016). The rich club—a network comprising densely interconnected brain regions—emerges as particularly pivotal for efficient integration of information (van den Heuvel & Sporns, 2011). Disruption of its organizational integrity results in an increase in energetic cost during transitions between brain states (Betzel et al., 2016), prompting some to designate its regions as potential control centers (Gu et al., 2014). In contrast, compelling evidence also underscores the significance of peripheral, sparsely connected regions in governing control processes (Betzel et al., 2016; Senden et al., 2018). In this study, we systematically delved into the specific role played by the rich club in overseeing transitions between behaviorally constrained brain states. Leveraging a network control theoretical (NCT) framework and openly available data
from the Human Connectome Project (HCP), our investigation sought to elucidate potential control functions carried out by the rich club.

Methods: Analyses were grounded in individually reconstructed FA-weighted, undirected structural brain networks, constructed using the CATO pipeline (de Lange et al., 2023) and Lausanne sub-parcellation (219 ROI) of the Desikan Killiany atlas (Cammoun et al., 2021). Brain states were delineated using preprocessed contrasts from all seven tasks provided by the HCP. Individual rich clubs for each subject were identified based on the maximal normalized rich club coefficient (Riedel et al., 2022). On average, 21 regions (9.69%) of an individual's nodes were categorized as rich club members. The group-level rich club definition was consequently established by selecting the top-ranking 9.69% of nodes across subjects-those consistently identified as rich club members. For the analysis of brain state stability and energetic cost of brain state transitions, we applied an optimal control framework (see Braun and colleagues, 2021). Linear approximations were used to represent brain state dynamics. The rich club's control contribution was assessed by excluding group-level rich club nodes from a matrix of potential control regions, preventing them from influencing brain state dynamics. Results were compared to a spin-test-based null model (Váša et al., 2018), where a size-matched set of random nodes was excluded instead. Statistical comparisons were conducted using repeated measures ANOVA.

Results: Figure 1 shows an overview of constituent regions of the group-level rich club. When these regions were excluded from the matrix of control nodes, the impact on control metrics was significantly less pronounced compared to excluding a size-matched set of random regions (see Figure 2). Brain state stability consistently remained higher when rich club nodes were excluded (all p < 0.01), and the energy required for transitioning between brain states was higher when excluding random regions than when excluding the rich club (all p < 0.01). These findings suggest that, contrary to expectations, the rich club consistently contributed less to the stabilization of brain states and the energetic control of state transitions than would be anticipated by chance.

![Figure 1. Visualizations of the concept of rich-clubness and our group-level rich club.](image)

a) regions qualifying for the group-level rich club and the corresponding relative frequency with which a region is assigned rich club membership on an individual level

b) exemplary empirical (black), randomized (grey) and normalized (blue) rich club curves in relation to nodal degree level k. The rich club regime starting at kmax(\(\Phi\)norm), that is, all regions with a nodal degree greater than kmax(\(\Phi\)norm) are considered rich club members. Curves are based on a group-level connectome and included merely for visualization.

c) Projection of the 21 group-level rich club members onto an inflated map of the cortical surface (blue). Shown in black are border-lines of group-level definitions of the ROI as defined in the Lausanne atlas.

d) Interindividual variation: Projections of the relative frequency with which a certain region is assigned rich club membership on an individual level. The more saturated the color, the higher the frequency.
Conclusions: In excluding rich club nodes as controllers within the optimal control energy framework, we consistently observed less pronounced impacts on control measures compared to the exclusion of random regions. Our findings challenge the notion of the rich club as a potential control center in the human brain, indicating that its influence on controlling brain state dynamics is less significant than previously believed. Instead, our results underscore the critical role of weakly connected peripheral nodes in efficiently controlling the brain's activity landscape.

References
1. Betzel, R. F. et al. (2016), 'Optimally controlling the human connectome: The role of network topology', Scientific Reports, vol. 6, no. 1, 30770. https://doi.org/10.1038/srep30770
2. Braun, U. et al. (2021), 'Brain network dynamics during working memory are modulated by dopamine and diminished in schizophrenia', Nature Communications, vol. 12, no. 1, pp. 3478. https://doi.org/10.1038/s41467-021-23694-9

Poster No 1492
Network control theory (NCT) for neuroscientists: a Python-based protocol
Linden Parkes1, Jason Kim2, Julia Brynildsen3, Matthew Cieslak2, Sydney Covitz4, Raquel Gur2, Ruben Gur2, Fabio Pasqualetti5, Russell Shinohara5, Jennifer Stiso5, Dale Zhou5, Theodore Satterthwaite5, Dani Bassett3
1Rutgers University, Philadelphia, PA, 2Cornell University, Ithaca, NY, 3UPenn, Philadelphia, PA, 4Stanford, Palo Alto, CA, 5University of California, Riverside, CA

Introduction: Network neuroscience is principally concerned with studying the connectome, the complete description of the brain's connectivity. This connectome is encoded as a graph of nodes interconnected by edges that can be defined across multiple scales, species, and modalities. The connectome gives rise to complex topology, including hubs, modules, small-
worldness, and core-periphery structure\(^2\). Understanding how this topology shapes and constrains the brain’s rich repertoire of dynamics is a central goal of network neuroscience. Network control theory (NCT) provides an approach to studying these neural dynamics that yields insights into how they emerge from the topology of the underlying structural connectome. Here, NCT assumes that inter-nodal communication follows a linear model of diffusion, where activity from one set of nodes spreads across the network over time along a series of fronts\(^2\). Then, upon this dynamical system, NCT models a set of external control signals that are designed to guide these diffusing activity patterns towards a chosen target state (i.e., a user-defined pattern of neural activity). These control signals are found by minimizing the total magnitude of their input over a given time horizon; that is, they are designed to achieve a state transition with the lowest amount of control energy. Once modeled, these control signals can be examined to determine to what extent, and how, they were constrained by topology, thus allowing researchers to study how the connectome can be leveraged to control dynamics. To facilitate the application of NCT to neuroscience research, we developed a protocol accompanied by a Python-based software package called nctpy (https://github.com/BassettLab/nctpy).

Methods: Our protocol (Fig. 1) guides researchers through the process of modeling dynamics on a structural connectome, defining a state transition, computing the control signals and the associated state trajectory (i.e., simulated neural activity), as well as integrating control signals to compute control energy. We also include tools for deploying null network models, which enable researchers to examine which topological features affect their model outputs. We tested our protocol on an undirected connectome representing interregional structural connectivity in the group-averaged (\(n=253\)) human brain\(^3\). Using nctpy, we computed the control signals required to transition the brain between two activity states; one characterized by activity concentrated in the visual cortex (vis; Fig. 2A, left), and the other characterized by activity in the default mode network (DMN; Fig. 2A, right). These states were extracted from clustering of resting-state fMRI timeseries\(^4\). Next, we integrated these control signals over time, and summed those outputs over brain regions, to obtain control energy. We computed control energy for the vis-to-DMN transition as well as the reverse DMN-to-vis transition.

Results: We found that control energy was 24\% higher for the vis-to-DMN transition (energy=2676) compared to the DMN-to-vis transition (energy=2154), suggesting that the latter transition was easier to complete. Next, we tested these energies against a null network model that preserved both the spatial embedding and the strength sequence of the nodes\(^5\). We found that energy for both the vis-to-DMN (Fig. 2D) and the DMN-to-vis (Fig. 2E) transitions were lower than expected relative to their respective nulls, indicating that the energy associated with these transitions was not explained by a combination of spatial embedding and nodes’ strength. This result suggests that these transitions were supported by higher-order topology.

Conclusions: nctpy provides intuitive tools for performing NCT analysis on connectomes. Users can define their own state transitions, interrogate the corresponding control signals, summarize those signals into control energy, and examine to what extent their results are explained by different aspects of topology.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Python code / function</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>Select time system</td>
<td><code>def system(cont_time)</code></td>
</tr>
<tr>
<td>Normal structure</td>
<td>Prepare connectome according to the selected time system</td>
<td><code>lambda t: graph_normalized(t, gamma=1)</code></td>
</tr>
</tbody>
</table>
| Define initial and target states | Define initial and target states using two patterns of brain activity. These states can be extracted from empirical data as shown in Fig. \(2\) | `# initial state
get control (i.e., some activity)` |
| Define control nodes | Control nodes are the nodes for which control will be generated. These nodes can be assigned weights which determine their influence over system dynamics. Here, we use uniform weights | `# uniform full control signal; all nodes are control nodes with same control signal weight
return control signal` |
| Define time horizon | This will determine how long the dynamical model will run. Higher values correspond to longer running models. Units are arbitrary | `# get time horizon
T=1` |
| Compute control inputs and state trajectory | This is the primary function of the protocol. This function will generate the control signal(s) for each control node | `# get x and y
compute control input and state trajectory` |
| Compute control energy | Integrate control signals over time and sum over control nodes to get control energy | `# integrate control inputs to get control energy
return energy` |

Figure 1: Python functions from nctpy that comprise our protocol. Our protocol consists of several functions from nctpy. We color-coded our protocol into a series of stages that cover (i) defining the system, (ii) defining the control task, and (iii) computing the model outputs. Executing the above protocol requires a structural connectome stored as an \(N \times N\) adjacency matrix in variable \(A\). \(N\) represents the number of nodes. Additionally, our protocol assumes that users can provide their own initial and target states \((x_0, x_f)\), each comprising node-level patterns of neural activity stored as \(N \times 1\) vectors.
References

Intrinsic Phase-Coupled Variations of Global Signal in Human Resting State Functional Connectivity

Theodore LaGrow1, Harrison Watters2, Nmachi Anumba3, Lauren Daley3, Vaibhavi Itkyal3, Lisa Meyer-Baese3, Wen-Ju Pan3, Shella Keilholz3

1Georgia Institute of Technology, Atlanta, GA, 2Emory University, Decatur, GA, 3Georgia Institute of Technology and Emory University, Atlanta, GA

Introduction: This study explores the complex relationship between global signal (GS) and organization of brain states derived by co-activation patterns (CAPs) in human resting-state fMRI data, highlighting the intrinsic phase-coupled relationship between brain states and GS. While CAPs are beneficial in analysis (Bolton et al. 2020; Liu et al. 2018), their effectiveness is influenced by methodological choices such as seed regions and clustering methods (Liu et al. 2018; Iraji et al. 2022). Our focus is on CAPs’ correlation with the GS, typically considered a nuisance but shown indicative of brain dynamics (Gutierrez-Barragan et al. 2019; Bolt et al. 2022). Extending previous rodent studies (Gutierrez-Barragan et al. 2019), we assess these relationships using two human datasets to include a broader range of clinical data. This approach facilitates understanding the GS’s role in brain function, particularly in different age groups, underscoring its potential in exploring neuropathological and clinical contexts.

Methods: This study uses two datasets: (1) HCP (Van Essen et al. 2013) consisting of 20 subjects (10F/10M; 4 scans/subject; 80 scans total; avg. age 29.6±3.8) at TR=0.72s; and (2) ADNI (Mueller et al. 2005) consisting of 4 normal cognitive subjects (2F/2M; 16/14 scans; 30 scans total, avg. age 71.5±4.3) at TR=3.0s. Preprocessing follows the standard C-PAC pipeline (Craddock et al. 2013) to best remove non-neuronal noise. Both datasets are parcellated with the Brainnetome atlas (Fan et al. 2016). For HCP, the dataset was bandpass filtered with the Slow-5 range (0.01-0.027 Hz) for specific replication. CAPs analysis followed standard protocol where the top 15% of the DMN was utilized for the HCP data (Liu et al. 2018; Iraji et al. 2022). For ADNI, the dataset was bandpass filtered with Infraslow range (0.01-0.1 Hz). Further, 100% of the dataset was used for CAPs analysis for the ADNI dataset, feasibility demonstrated by Maltbie et al. 2022, to demonstrate the intrinsic nature of the phase-coupled brain states. An ANOVA analysis was performed to test the separability of the brain states to instantaneous phase (Hilbert transform) of the GS.

Results: We find similar variations in the number of brain states for both datasets observing at least two distinct phase-coupled brain states. Understanding GS is usually linked to noise distribution needing removal, organization of nonuniform brain state groups phase-coupled with GS furthers the utility of GS in fMRI analysis. Replicating Gutierrez et al.’s approach, we first examined brain states with 6 components, k=6. By visual inspection, we can see distinct separation of the GS phase. Fig 1 shows the replication of functional brain states and the relationship to the GS phase with at least two distinct phase-coupled brain state groups of the GS (ANVOA 3-way test: p<1.40973e-17). Fig 2 extends this work and validates two distinct phase-coupled brain state groups with the GS utilizing the Infraslow signal (ANOVA 2-way: p<0.1278; ANOVA 3-way: p<2.57435e-07). These results further our investigation extending to clinical populations. Noting several brain states group at specific GS phases in both rodents and humans, we simplified the analysis by considering 2 brain states, k=2. The separation of these states is highlighted by a clear distinction in the absolute phase values of the GS. Finally, with 3 brain states, k=3, and post ANOVA we confirm the separation of functional brain states based on the phase of the GS. The separation of unique phase-coupled brain states into 2 groups is significant for both datasets, however there is less separation for the clinical population. There is clear evidence of separation validating this signal of brain states is intrinsic phase-coupled to the GS.
Conclusions: Our study both replicates previous findings from rodents to clinical populations and reveals new insights into the phase-coupled relationship in human rs-fMRI data, emphasizing the need for further GS analysis across clinical cohorts.

References
Poster No 1494

Postoperative limbic functional connectivity predicts 5-year BMI in children with craniopharyngioma

Jennapher Lingo VanGilder1, Paul VanGilder1, Nicholas Phillips1, Jinsoo Uh1, Thomas Merchant1

St. Jude Children's Research Hospital, Memphis, TN

Introduction: Children treated for craniopharyngioma, a brain tumor associated with the hypothalamic-pituitary axis, are at-risk for developing severe obesity. Studies have shown that the extent of hypothalamic involvement by tumor is linked to body mass index (BMI) (Kliges et al. 2022), and our preliminary work suggests that the integrity of the fornix, a white matter tract that emerges from the hypothalamus, is associated with BMI in children five years after treatment. Functional MRI studies report that obesity is associated with abnormal activation of prefrontal (i.e., inhibitory control) and limbic (i.e., reward processing) cortices (Berridge et al. 2010). These reports implicate limbic structure and function in BMI regulation, yet the neural substrate underlying poor BMI trajectories in children treated for craniopharyngioma remains unknown. The purpose of this study was to evaluate the extent that postoperative fornix integrity impacts neural networks associated with long-term BMI. We hypothesized that greater functional connectivity between limbic and prefrontal brain regions would predict lower BMI at a 5-year follow-up visit.

Methods: Thirty-eight children (mean±SD age=12.99±3.54 years, female=18) underwent MRI after surgery but prior to radiotherapy (54 Gy [RBE]). DWI data were collected using a 1.5T Siemens scanner; b-value = 1 ms/μm² with 12 directions and one b=0 image; four scans were collected to increase the signal-to-noise ratio. Raw images were preprocessed to reduce noise and the DTI model was applied to quantify fornix FA in each voxel. A region of interest (ROI) approach was used to quantify fornix FA for each patient. Resting state fMRI images were acquired on a Siemens 3T scanner: TR=2.01 s, TE=30 ms, flip angle=90°, slice thickness=3.5 mm, and nslc=32. We performed a functional connectivity (FC) analysis using a seed-based approach with the CONN toolbox. Whole-brain correlation maps for each patient were calculated between 166 ROIs using the AAL atlas 3 (Rolls et al. 2020). A general linear model assessed whether ROI-ROI connectivity strength was correlated with the fornix FA value for each patient (FDR-corrected p<0.05). BMI was collected 5 years after radiotherapy and the age- and sex-specific z-score was calculated using normative values. Simple linear regression evaluated the relationship between 5-year BMI z-score and FC values for ROI pairs that were significantly correlated with fornix integrity.

Results: Whole-brain analyses revealed that the connectivity between 31 ROI pairs were associated with fornix FA after FDR-correction. Among these, the FC between three pairs of brain regions were negatively associated with 5-year BMI z-scores, i.e., greater connectivity predicted lower BMI at 5-year follow-up. The connectivity pairs were the right putamen and middle cingulate (β=-1.58, p=0.05), the right supplementary motor area and pallidum (β=-1.94, p=0.02), and the right supplementary motor area and putamen (β=-1.50, p=0.02) (Fig. 1). A schematic of the connectivity between prefrontal and limbic brain regions associated with fornix integrity and BMI at 5-year follow-up is shown in Fig. 2.

Conclusions: Our findings suggest that children with better postoperative fornix integrity have greater connectivity between neural regions in the prefrontal (i.e., cognitive control) and limbic (i.e., reward processing) networks. These findings align with previous literature that report greater activation of brain regions associated with cognitive control (e.g., the cingulate and supplementary motor area (Aron 2011)), are linked to suppressed activation of brain regions associated with reward processing.
(e.g., pallidum and putamen (Berridge 2010)), and regulation of food consumption (Farr et al. 2016). Our results suggest that conservative treatment approaches should be considered to preserve the integrity of limbic anatomy to reduce the risk of developing obesity later in life. Future work will evaluate if surgical approach impacts postoperative limbic anatomy.

Fig. The connectivity between limbic and prefrontal networks is associated with fornix fractional anisotropy (FA, in gray) and five-year BMI z-score (in red). SMA=supplementary motor area.

References
ABSTRACTS

Poster No 1495

Gray and white matter functional organization and their individual variabilities in normal aging

Chenye Shen1, Chenlu Ma2, Chaoqiang Liu1, Nanguang Chen1, Anqi Qiu3,4

1Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore, 2Department of Chinese Language and Literature, Fudan University, Shanghai, China, 3Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong, 4Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD

Introduction: The normal aging brain experiences a progressive deterioration in brain function, impacting cognition (Hedden et al. 2004). Recent studies reveal that brain function is embedded in a large-scale functional organization. While prior studies focused on gray matter (GM) functional organization in the cortex (Margulies et al. 2016), cerebellum (Guell et al. 2018), and subcortex (Tian et al. 2020), emerging evidence underscores the importance of BOLD signals in white matter (WM) (Peer et al. 2017). A recent study uncovered WM and GM function organization interaction in neurodevelopment (Zhu et al. 2023). This study explores the interplay between GM and WM functional organization in a normal aging population, hypothesizing that WM functional organization alterations align with GM changes and are linked to cognitive performance.

Methods: This study leveraged demographic, cognitive function tests, disease diagnosis, and brain imaging data (T1 and rs-fMRI) from the UK Biobank. We excluded participants with cancers, neurological or cardiovascular diseases, resulting in a normal aging population (N=23,051, age=44~82 years). T1 and rs-fMRI data were preprocessed in FreeSurfer and FSL. Cortical GM and WM functional organizations were identified using methods from (Zhu et al. 2023). Group-level GM and WM masks were first generated based on T1 segmentation (Peer et al. 2017), and GM and WM functional gradients were computed separately through the decomposition of corresponding functional connectivity (FC) (Margulies et al. 2016). Cortical GM was parcellated into 7 networks (Yeo et al. 2011). The WM functional networks were identified by assessing the voxel’s highest FC strength with GM, associating the WM network with the functional role of its corresponding GM counterpart. We assessed the individual variability of each gradient by calculating the Euclidian distance between individual and group-averaged gradient space. The age-related individual variability changes were investigated using linear regression. We also assessed its cognitive relevance, covarying for age, sex, and education.

Results: Figure 1 illustrates GM and WM functional gradients. The first GM gradient explained 20.6% of cortical GM FC variance, with limbic (Lim) and default mode network (DMN) anchoring the transmodal pole and visual (Vis) and sensorimotor (SM) networks at the unimodal end (Fig. 1a). The second GM gradient, accounting for 16.8% of variance, was situated between Vis and SM networks (Fig. 1b). The first two WM gradients, contributing 18.0% and 14.5% to cortical WM FC variance, exhibited a reciprocal mirror ordering, wherein the first WM gradient resembled the second GM gradient, and vice versa (Fig. 1c,d). This suggests that different tissues may preferentially support specific aspects of brain functional organization. Figure 2 depicts the associations of individual variabilities in gradients with age (Fig. 2a) and six domains of cognitive function (Fig. 2b). It highlights that the ability to capture age and cognitive information was more pronounced in the individual variabilities observed in GM gradients compared to WM, and in the unimodal-transmodal axis compared to the Vis-SM axis. This aligns with fMRI’s known sensitivity to GM signals (Gawryluk et al. 2014) and unimodal-transmodal axis’ ability to capture diverse brain properties (Bernhardt et al. 2022). The greatest relevance of individual variability to age and cognition at the transmodal end is observed in DMN for GM and Lim for WM, indicating non-uniformities in brain organization (Sydnor et al. 2021).
Conclusions: This study delineated WM functional organization in normal aging, revealing a close alignment with GM functional organization. The functional organization of GM and WM proves effective in capturing age and cognition information in different networks. This work sheds light on future studies investigating WM functional organization and its role in aging.

References

ABSTRACTS

Poster No 1496

Human Cerebral Cortex Organization Estimated by Functional PET-FDG “Metabolic Connectivity”

Penghui Du1,2, Sean Coursey2,3, Ting Xu4, Hsiao-Ying Wey2,5, Jonathan Polimeni2,5,6, Quanying Liu1, Jingyuan Chen2,5
1Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China, 2Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA, 3College of Science, Northeastern University, Boston, MA, USA, 4Child Mind Institute, New York, NY, USA, 5Department of Radiology, Harvard Medical School, Boston, MA, USA, 6Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA

Introduction: The recent development of high-temporal resolution functional PET (fPET) introduces an emerging focus on “metabolic connectivity (MC)”1-3, providing a complementary perspective to the hemodynamic-based “functional connectivity (FC)” assessed by fMRI4-6. In this study, we applied a connectivity gradient-based analytical scheme on a resting-state simultaneous fPET-fMRI dataset, aiming to characterize the detailed cortical organization of fPET-derived MC and understand how it differs from the fMRI-derived functional network structures.

Methods: The publicly available Monash rsPET-MR dataset7 was utilized for this study. A group of 26 healthy young adults each underwent a 95-minute simultaneous BOLD-fMRI (TR=2450 ms, 3×3×3 mm3 voxels) and constant-infusion FDG-PET scan (2.09×2.09×2.03 mm3 nominal voxels, 16 s per frame) while resting with their eyes open. As summarized in Figure 1a, we first estimated four types of connectivity metrics: a) FC, temporal synchrony of instantaneous fMRI fluctuations; b) MC, temporal synchrony of instantaneous fPET fluctuations; c) metabolic covariance (MCov), across-subject covariance of the static PET-FDG measures1; and d) ALFF connectivity (ALFF-C), temporal synchrony of fMRI amplitude of low-frequency fluctuations (ALFF), using a time-windowed measure (width=34.3s, step=9.8s), motivated by established link between ALFF and glucose metabolism8. After obtaining these four connectivity metrics, we quantified region-specific connectivity gradients following an analytical pipeline in previous study8, with larger gradients suggesting more rapidly changing connectivity patterns. Then a watershed algorithm was applied to identify potential boundaries between different brain regions. Finally, we derived multiple parcels from the boundary maps, and grouped them into separate networks using the Louvain community detection algorithm9.

Results: As illustrated in Fig. 1b, MC exhibited modest consistency of local gradients and boundaries with other metrics. At the network level (parcellation), we identified a prominent fronto-parietal component and an inferior temporal-occipital component in MC that deviated from the fMRI-derived FC and ALFF-C networks. Similar networks were also observed in MCov despite the dissociation of MC and Mcov in the connectivity profile. We then applied high-pass and low-pass filtering to the fPET data with a cutoff at 1/300 Hz (5 minutes) (Fig. 2). While both contributed to the local features, the global organization of MC was primarily driven by low-frequency components. Although high-frequency components also exhibited connectivity patterns and networks, they were noisy and resembled patterns derived from random noise. Surprisingly, we also noticed considerable across-subject consistency of the fPET time-activity curves (TACs). As shown in Fig. 2, both local and global features of group-averaged TACs to some extent resembled those derived from the individual data (Fig 2b). Synchronized fPET TACs across subjects may potentially stem from similar scanning experience coupled to experimental design, or from misspecification of baseline fPET TACs that have specific spatial signatures10.
Figure 1. a) Flow chart of fMRI and PET data processing and the connectivity gradient-based parcellation. All data were resampled to the standard fs_LR_32k surface space. For dynamic connectivity metrics (FC, MC, and ALFF), patterns of temporal correlations were averaged across subjects, and for static connectivity metric (MCov), across-subject covariance of the static PET data was calculated, as described in the main text. b) Summary of cortical parcellation estimated from different connectivity metrics. “Connectivity matrices” were calculated based on the Glasser 2016 multi-modal atlas, and exhibited patterns consistent with previous studies (Amadis et al., 2011). “Gradient maps” show the local gradient map of connectivity similarity averaged across all vertices, with yellow color indicating rapidly changing connectivity patterns; “Boundary Maps” show the edge-detection results, with yellow lines indicating potential boundaries separating different brain regions. Cortical parcellation results at two different network levels are shown. c) Similarity of connectivity, gradient maps, and boundary maps across different connectivity metrics, estimated at the region of interest level (Glasser et al., 2016) and quantified using the Spearman’s correlation coefficients.

Figure 2. a) Across-frequency dependence and across-subject consistency of the metabolic connectivity results. “MC: low-frequency”: temporal synchrony of low-frequency components (≤3Hz) of instantaneous PET fluctuations; “MC: high-frequency”: temporal synchrony of high-frequency components (3Hz-100Hz) of instantaneous PET fluctuations; “MC: group mean TACs”: temporal synchrony of smoothed group-average PET time-activity curves. To test the influence of cortical geometry and spatial smoothing on local gradient estimates, the results of a sham dataset, simulated by random noise, are also shown at the bottom (“Sham: random noise”). Note that while random noise resulted in spatially varying connectivity gradients, demonstrating the bias imposed by cortical anatomy and data processing, the effect size is small—the scales of sham gradients and boundary maps are significantly lower than other measures. b) Similarity of connectivity, gradient maps, and boundary maps across different preprocessing schemes, estimated at the region of interest level (Glasser et al., 2016) and quantified using the Spearman’s correlation coefficients.
Conclusions: In this study, we explored cortical organization using fPET-based MC. We found that while MC shares some local gradient and parcellation similarities with FC, the overall MC networks deviated from conventional FC-based networks. Our results also suggested that the metabolic networks were dominated by low-frequency components (≥5min) and were partially driven by surprisingly synchronized fPET dynamics across subjects. We corroborate previous MC findings that fPET sheds complementary insights into the cerebral functional architecture; additionally, we highlight the complexity of interpreting the fPET-based MC and a need for examining the specific signal mechanisms in future studies.

References
10. Coursey S, Hartung GA, Polimeni JR, Chen JE. Bias of Metabolic (De)activations Introduced by Polynomial Detrending of fPET-FDG Data. OHBM, 2023

Poster No 1497

Normative Measures Harmonization for Pathway Dependent Connectivity Measures in Multiple Sclerosis

Mark Lowe1, Ajay Nemani1, Xuemei Huang2, Katherine Koenig1

1The Cleveland Clinic, Cleveland, OH, 2Cleveland Clinic, Cleveland, OH

Introduction: We recently validated a statistically straightforward, connectivity-based metric as a marker for multiple sclerosis (MS) disease status and progression1. This metric is composed of pathway-dependent structural and functional connectivity measures and normalized using values derived from sex- and age-matched healthy controls (HC). The stability and robustness of this metric depends on having a stable HC distribution from which to derive normative values. The applicability of the metric depends on ensuring that the measures are not biased by the measurement systems used to collect functional and structural connectivity data. In this study, we apply a harmonization procedure intended to produce device-independent normative values using data obtained from a multi-MRI scanner platform dataset known as the Cleveland Clinic Brain Study (CCBS)2.

Methods: The structural and functional connectivity index (SFCI) is calculated using resting state functional connectivity (rsfMRI) and diffusion-based structural connectivity (DTI). In this study, we use rsfMRI and DTI data acquired by the CCBS, a lifespan study of older healthy adults2. Data for this study are produced on two MRI scanners at Cleveland Clinic, a Siemens Skyra 3T and a Siemens Prisma 3T MRI. We selected two sets of 10 age- and sex-matched subjects from each scanner. The same protocol is run on both scanners, so any biases are device-dependent and not protocol-dependent. Identical processing pipelines were performed on all data. Structural connectivity was taken to be mean pathway-dependent radial diffusivity and functional connectivity was taken to be the z-score-converted Pearson correlation of seed regions at the endpoints of the desired pathways. Details of the SFCI and calculation of component measures is described in Koenig et al.1. ComBat data harmonization3,4 is a popular batch correction tool that removes inter-site variability while preserving inherent biological variability. We applied harmonization separately to the structural and functional connectivity results. ComBat was applied with default parameters using the three underlying pathways described above as features across subjects. The SFCI was then recalculated on these harmonized data.

Results: Paired t-tests between original SFCI and ComBat harmonized SFCI showed no significant differences. Figure 1 shows a comparison of the harmonized results on component and combined metrics. Comparison of Figures 1c and 1d show that ComBat is effective at removing scanner-dependent effects such that norms can be calculated across data acquired from
both scanners, resulting in normalization that is equivalent to using within-scanner normalization (1d). Figure 2 shows the SFCI calculated for each of the 20 subjects, with each column representing a different calculation method for the normative values used for z-scoring. Column 1 uses unharmonized values normed across both scanners. Column 2 uses unharmonized values normed separately for each scanner. Column 3 uses norms calculated using harmonized data across all scanners. The fact that there is very little difference between SFCI calculated in columns 2 and 3 indicates that harmonization has effectively removed scanner-dependent biases from the pooled calculation.

Conclusions: ComBat is increasingly utilized in imaging studies because of its wide availability and effectiveness at removing site- or system-dependent biases from multi-platform studies. Here, we demonstrate that ComBat can be used in a combined DTI and rsfMRI context to effectively remove scanner biases. Using harmonized versions of our metrics, we can take advantage of a very large pooled dataset to produce stable normative values for SFCI calculation in individual MS patients. By incorporating more platforms, the goal would be to produce norms that would be applicable to connectivity measures obtained on any MRI scanner.

References
Linking structural and effective connectivity to explain motor recovery after stroke

Valerie Wiemer¹², Theresa Paul¹², Lukas Hensel¹, Matthew Cieslak³, Caroline Tscherpel⁴, Christian Grefkes⁴, Scott Grafton⁵, Gereon Fink¹², Lukas Volz¹

¹Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany, ²Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany, ³Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, ⁴Department of Neurology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany, ⁵Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA

Introduction: While motor recovery after stroke is thought to arise from functional reorganization of the motor network, the underlying mechanisms remain poorly understood (Grefkes & Fink, 2020). Structural cortico-cortical motor network connectivity assessed via diffusion MRI (dMRI) has recently been shown to be strongly associated with distinct aspects of motor control after stroke, highlighting that undamaged fiber tracts may serve as a structural reserve to enable reorganization and recovery (Paul et al., 2023a). However, it remains unclear whether and how the structural reserve of the motor network allows changes in information integration that may help to compensate for motor impairment. To address this critical question, we assessed dMRI-based structural and fMRI-based effective connectivity within a cortical motor network to characterize structure-function relationships of motor network reorganization in chronic stroke patients.

Methods: Structural motor network connectivity was quantified using a novel approach combining diffusion spectrum imaging and compartment-wise analysis of anisotropy (Volz et al., 2018; Paul et al., 2023b). In the same cohort of chronic stroke patients (N=23), the modulation of effective motor network connectivity underlying the control of finger-tapping movements with the paretic hand was assessed using dynamic causal modeling (DCM). Spearman correlations between tractwise anisotropy and DCM coupling parameters were computed to test for structural and effective connectivity associations. Motor impairment was quantified via finger-tapping frequency during the fMRI task, the Motricity Index Arm Score reflecting basal motor control, and the Action Research Arm Test indicating complex motor control. Associations between multimodal motor network connectivity and impairment were assessed via Spearman correlations and multiple linear backward regressions. Finally, subgroup analyses were performed to disentangle the relationship between motor network connectivity and recovery from the acute to chronic phase after stroke (substantial vs. non-substantial recovery).

Results: Besides the expected excitatory influences from premotor areas onto the ipsilesional primary motor cortex (M1), DCM results revealed a significant pathophysiological excitatory influence from ipsi- to contralesional M1 during paretic hand movements. No significant correlations between structural and effective connectivity were observed at the group level. While structural connectivity was highly indicative of motor impairment after stroke, effective connectivity showed no association with motor impairment. However, when combining structural and effective connectivity estimates as predictors in the regression models, we were able to meaningfully increase the explained variance for all outcome variables (all R²>74%, adj.R²>61%, P<.003). Notably, subgroup analyses revealed differential results for structure-function relationships concerning motor recovery: In contrast to substantially recovered patients, non-substantially recovered patients showed a negative association for the contra- to ipsilesional M1 connection, indicating recovery-dependent network alterations after stroke.

Conclusions: We here provide the first integration of structural and task-related effective cortical motor network connectivity in chronic stroke patients. Our results support the notion that interhemispheric cortical routes may support motor control and emphasize that the cortical structural reserve may facilitate functional reorganization after stroke. In particular, interhemispheric excitatory input from the ipsi- to the contralesional hemisphere may help to access undamaged contralesional descending fiber pathways, offering new insights into conflicting views on the functional role of contralesional M1. The high behavioral variance explained by a combination of structural and effective connectivity underlines their potential as future biomarkers for motor recovery after stroke.

References
Second-order instantaneous causal analysis of spontaneous MEG

Yongjie Zhu¹, Lauri Parkkonen², Aapo Hyvärinen¹

¹Department of Computer Science, University of Helsinki, Helsinki, Finland, ²Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland

Introduction: Despite decades of research, discovering instantaneous causal relationships from observational brain imaging data, such as spontaneous MEG and fMRI, remains a difficult problem. Popular methods, such as Granger Causality (GC)¹ and Non-Gaussian Structural Equation Models (e.g., linear non-gaussian acyclic model, LiNGAM)², either fall short in handling complex aspects of neuroimaging data such as contemporaneous effects or the data is not non-Gaussian enough.

Methods: Here we propose a model with instantaneous causality and temporally dependent variables, both of which are very empirically plausible in neuroimaging data. Then, we propose a method to estimate such causal models based on a pairwise approach inspired by³. The method is based on likelihood ratio with a connection to mutual information computed from second-order statistics between the residual and data variables to construct a simple decision criterion. Since the method is based on second-order statistics, we call it Second-Order Causal (SOC) analysis. To estimate the whole causal connectivity networks of n variables (or nodes), we apply a two-stage approach that is well-known in the literature³,⁴. The L1-penalized inverse covariance (graphical lasso estimator) was used to estimate which nodes are connected, and then the proposed pairwise method was used to estimate the causal directions for each pair of connected nodes. We first applied the proposed method to simulated data generated according to the generative causal models. Then, we applied it to a resting-state MEG dataset from the CamCAN repository⁵ (650 healthy subjects) with a split-half analysis to examine the consistency as well as to a brain age prediction task to show the usefulness. Specifically, the parcelled cortical MEG data was separated and reduced into 15 sources with nonlinear independent component analysis (NICA)⁶. The energies of NICA sources were computed and resampled into a sampling frequency of 1 Hz. Regarding the consistency analysis of the causal whole networks, we reported the consistency of the L1-penalized precision matrix and consistency of the causal methods (e.g., SOC, GC and pairwise LiNGAM (pwLiNGAM)³), and the consistency of the two-stage methods combining the two.

Results: The simulations (Fig. 1A-D) confirm that the SOC method is able to estimate the proposed model with instantaneous causality and time-dependent variables when the true regressor does not have the same autocorrelation as the noise. Compared with GC, SOC performs better, especially in cases where the number of time points is typically quite small and limited. Moreover, pwLiNGAM is unable to work when the autocorrelated variables are generated with Gaussian innovations. When applied on CamCAN data, the method gives consistent results across intra- and inter-subject in a split-half test (correlation between two halves for each subject or group) when estimating causal directionalities (Fig.1 E-J). The SOC method gives significantly better inter- and intra-subject results than GC and pwLiNGAM methods. Fig. 2A shows the resulting causal connectivity networks, with the influences significant at a 5% level. One can see that the connections tend to be strong between sources, which are close to each other. Fig. 2B-C shows better performance in a brain age prediction task as well.

Validation by Simulated data and CamCAN data

Fig. 1: Results from simulated and real MEG data (SOC, Second-Order Causality; GC, Granger Causality; pwL, pairwise linear non-Gaussian acyclic model (LiNGAM)²). Percentage of directions found correctly among all connections estimated to exist (A-D).

A. Impact of the regression coefficients in the true model, indicating the larger the regression coefficient (essentially the correlation coefficient) in the true model, the easier it makes the correct decision; B. Impact of the autocorrelation in the regressor variables. One can see the method failed with $r = 0.2$ since the variable had the same autocorrelations as the noise variable in the true causal model; C. Adding observational noise in variables. Gaussian innovations in AR model and with Gaussian observational noises, indicating that the lower the signal-to-noise ratio (SNR), the more difficult it is to determine the causal direction for both SOC and GC; D. Laplace innovations in AR model and with Gaussian observational noises. One can see when using Laplace innovations to generate the data and without Gaussian observational noises (SNR is typically high), the pwLiNGAM works best (Figure 1D does not show). Fig. 2A shows the resulting causal connectivity networks, with the influences significant at a 5% level. One can see that the connections tend to be strong between sources, which are close to each other. Fig. 2B-C shows better performance in a brain age prediction task as well.
Conclusions: We presented a model and corresponding estimation method for instantaneous causal discovery in time-dependent variables based on second-order blind source separation methods. Since the method exploits only autocorrelations of the variables and not non-Gaussianity, it could be particularly useful for time-dependent brain imaging data such as fMRI, or energies of E/MEG data, which follow practically instantaneous causal relationships as above, due to the slow temporal scale of the measurement system.

References
Statistical Link Prediction for Temporal Networks with Epilepsy MEG Data

Jaehee Kim¹, Heaji Lee²

¹Duksung Women’s University, Seoul, Seoul

Introduction: Networks have become a fundamental approach to understanding systems of interacting objects, unifying the study of diverse phenomena, including biological organisms and human brain systems. With the rise of large-scale temporal networks, such as social and neuroimaging networks, temporal link prediction has become an interesting issue. Brain neuroimaging network data are dynamic or temporal networks where entities and relationships appear, disappear, strengthen, and weaken over time. Nodes and their relationships represent links and entities. Each link contains information on the time when it is active and other possible characteristics. The evolutionary behavior of temporal networks got the attention of interest. As adding or removing new links or edges over time leads to network evolution, learning the evolutionary behavior of networks is directly related to the link prediction problem. Different types of edges represent different relationships, including connectivity and similarity among nodes. Adopting a specific definition of edges can fundamentally alter how we analyze and interpret a brain network. Temporal link prediction (TLP) is a classic yet challenging inference task on dynamic graphs, which predicts possible future linkage based on historical topology. The predicted future topology can be used to support some advanced applications on real-world systems (e.g., resource pre-allocation) for better system performance or information. It aims to predict possible linkages in specific future time steps based on the observed historical topology, essential in revealing brain systems’ dynamic nature.

Methods: We develop a link prediction method based on a stochastic block model as a probabilistic approach and another method based on the exponentially weighted moving average for node centrality as a time series approach combined with the neighbor similarity. We apply the proposed methods to MEG data for temporal link prediction. Link prediction aims to estimate the evolving likelihood of the existence of a link in a given network based on observed information in the network’s evolving process. We apply our method to the epilepsy patients’ magnetoencephalography (MEG) data on 72 ROIs collected at Seoul National University Hospital (SNUH). The dataset contained MEG data from 44 mesial temporal lobe epilepsy (mTLE) with hippocampal sclerosis (HS) patients who underwent epilepsy surgery between 2005 and 2011. Temporal link predictions are made and compared with the similarity-based methods such as CN (common neighbor), AA (Adamic-Adar), Jaccard index and PA (preferential attachment).

Results: Static and temporal link prediction is done with epilepsy MEG data. We compare link prediction for the temporal MEG network data with the proposed methods. Table 1 shows the comparison results (omitted), for example. Figure 1 reveals the link prediction networks at the next time-point via the proposed method using node centrality and common neighbors for exemplary subject in each group. We further demonstrate the utility of our proposed methodology via simulation studies. Our methods perform reasonably well for the MEG network link prediction.
Conclusions: Networks have become increasingly important to model complex brain systems with interacting elements such as links. Link prediction aims to infer the behavior of the network link formation process by predicting missed or future relationships based on currently observed connections. It has become an attractive study area since it allows us to predict how networks will evolve. Network neuroscience explorations can benefit from edge-centric perspectives.

References

Poster No 1503
The macroscale routing mechanism of structural brain connectivity related to body mass index
ChaeYeon Kim1, Yeongjun Park2, Jong Young Namgung1, Yunseo Park1, Bo-yong Park1,3,4
1Department of Data Science, Inha University, Incheon, Republic of Korea, 2Department of Computer Engineering, Inha University, Incheon, Republic of Korea, 3Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea, 4Center for Neuroscience Imaging and Research, Institute for Basic Science, Suwon, Republic of Korea

Introduction: Previous neuroimaging studies observed that morphological and functional activity patterns are associated with body mass index (BMI) [1], [2]. However, most studies focused on identifying regional abnormalities in gray matter volume and functional activation according to BMI [3], and how the network communication altered is relatively underinvestigated. In this study, we aimed to identify the link between the network-level communication mechanisms and BMI using a measure of network routing.

Methods: We studied T1-weighted structural magnetic resonance imaging (MRI) and diffusion MRI data from the S1200 release of the Human Connectome Project (HCP) database [4]. Among 1,206 subjects, we excluded participants who were genetically related (i.e., twins) and had a family history of mental illness and history of drug ingestion, resulting in 290 participants (mean ± standard deviation age = 28.3 ± 3.9 years, 51% female). The MRI data were preprocessed using the HCP minimal preprocessing pipeline [5]. Navigation efficiency was calculated from structural connectivity using the Brain Connectivity Toolbox to assess network communication ability. This measure estimates the signal propagation efficiency of a given brain region to reach the target region based on the greedy routing algorithm [6]. While controlling for age and sex, we assessed the association between navigation efficiency and BMI. The significance of the association was assessed based on the 1,000 spin permutation tests to adjust for the spatial autocorrelation [7] and further corrected for multiple comparisons using a false discovery rate (FDR) [8]. To examine neurobiological aspects, we linked the BMI-navigation efficiency association map to the neurotransmitter distribution maps of serotonin and dopamine, where the significance was assessed using 1,000 spin permutations [7] and FDR correction [8]. In addition, we identified gene lists associated with the BMI-navigation efficiency association map using the post-mortem gene expression data provided by the Allen Human Brain Atlas (AHBA) using the abagen toolbox [9]. Significances were assessed using Fisher’s exact test and FDR [8]. We compared the identified gene lists with cell-specific genes and calculated the overlap ratio of how many genes expressed for BMI-navigation efficiency associations were included in each cell-type–specific gene set.

Results: We found significant positive associations between BMI and navigation efficiency in the sensory, reward, and executive control-related brain regions. Specifically, ventrolateral and dorsolateral prefrontal (r = 0.279, pFDR < 0.001), somatomotor (r = 0.279, pFDR < 0.001), visual (r = 0.299, pFDR < 0.001), medial temporal (r = 0.220, pFDR < 0.001), and inferior parietal cortices (r = 0.273, pFDR < 0.001), as well as the accumbens (r = 0.170, pFDR = 0.004) and thalamus (r = 0.181, pFDR = 0.002) showed significant effects (Fig. 1A). The associations with the neurotransmitter maps exhibited significant correlations with the D1 (r = 0.148, pFDR = 0.01), 5HT2a (r = 0.154, pFDR = 0.008), and 5HT1a (r = 0.178, pFDR = 0.002) receptors (Fig. 1B). The genes associated with the BMI-navigation efficiency association map were more highly overlapped with excitatory (2.31 ± 0.87%) and inhibitory neurons (1.47 ± 0.89%) (Fig. C).
Conclusions: We studied network routing mechanisms related to BMI and associated with the neurotransmitter and transcriptomic data. Our findings provide potential links for understanding the network-level mechanisms of the brain related to the variations in BMI.

References
Poster No 1504

Shifts in structural connectome manifolds in patients with migraine

Eunchan Noh\(^1\), Yeongjun Park\(^2\), Yurim Jang\(^3\), Jong Young Namgung\(^4\), Mi Ji Lee\(^5,6\), Bo-yong Park\(^4,7,8\)

\(^1\)College of Medicine, Inha University, Incheon, Republic of Korea, \(^2\)Department of Computer Engineering, Inha University, Incheon, Republic of Korea, \(^3\)Artificial Intelligence Convergence Research Center, Inha University, Incheon, Republic of Korea, \(^4\)Department of Data Science, Inha University, Incheon, Republic of Korea, \(^5\)Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea, \(^6\)Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea, \(^7\)Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea, \(^8\)Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea

Introduction: Migraine is a neurological condition showing a phase of headache often accompanied by vomiting and sensitivity to sound or light\(^1\). Prior research based on functional magnetic resonance imaging (fMRI) found alterations in functional connectivity in patients with migraine\(^2,3\), but structural connectome alterations have not been fully investigated. In this study, we aimed to identify alterations in structural connectome organization in patients with migraine using manifold learning techniques that project high-dimensional data onto the low-dimensional manifold space.

Methods: We obtained T1-weighted and diffusion MRI of 47 migraine patients (age = 34.3 ± 8.3, 74.5% female) and 41 healthy controls (age = 35.2 ± 7.7, 75.6% female). The T1-weighted data were preprocessed using a FuNP surface-based pipeline\(^4\), and diffusion MRI data were preprocessed using MRtrix\(^5\). The neuronal streamlines were estimated using probabilistic tractography, and the structural connectivity matrix was constructed based on the sub-parcellation of the Desikan-Killiany atlas divided into 300 regions\(^6\). Low-dimensional eigenvectors were estimated by a nonlinear dimensionality reduction technique - diffusion map embedding. Individual eigenvectors were aligned to a template eigenvector, which was generated from the group representative matrix computed using distance-dependent thresholding\(^7\). We defined the manifold eccentricity feature by calculating the Euclidean distance between each data point and the center of the data on the manifold space\(^8\) (Fig. 1). The differences in the manifold eccentricity between patients with migraine and healthy controls were estimated using an independent samples t-test while controlling for age and sex. The multiple comparisons across brain regions were corrected using a false discovery rate (FDR) < 0.05. The between-group differences in subcortical connectivity were assessed using the degree values of the subcortico-cortical connectivity.

Results: We found significant shifts in the manifold eccentricity in the orbitofrontal cortex, temporal pole, and somatomotor regions. The largest effect was observed in the limbic areas when we summarized the statistics according to seven functional networks and four cortical hierarchical levels (Fig. 2A). Additionally, significant shifts in degree values of the subcortico-cortical connectivity were observed in the caudate, amygdala, thalamus, and accumbens (Fig. 2B).

![Fig. 1 Manifold eccentricity. (A) Schema of the manifold eccentricity. (B) Group-averaged manifold eccentricity of control and patient groups.](image-url)
Conclusions: Leveraging manifold learning techniques, we found that patients with migraine show shifts in structural connectome organization, particularly in the limbic and amygdala-caudate systems. Our findings may provide a clue for understanding the large-scale brain organization in migraine. Funds: This research was supported by the National Research Foundation of Korea (NRF2020R1A2B5B01001826; NRF-2021R1F1A1052303; NRF2022R1A5A7033499), Institute for Information and Communications Technology Planning and Evaluation (IITP) funded by the Korea Government (MSIT) (No. 2022-0-00448, Deep Total Recall: Continuous Learning for Human-Like Recall of Artificial Neural Networks; No. RS-2022-, Artificial Intelligence Convergence Innovation Human Resources Development. 2022-0-00448, Deep Total Recall: Continuous Learning for Human-Like Recall of Artificial Neural Networks; No. RS-2022-00155915, Artificial Intelligence Convergence Innovation Human Resources Development (Inha University); No. RS-2022R1A5A7033499, Institute for Information and Communications Technology Planning and Evaluation (IITP) funded by the Korean Government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project number: RS-2023-00229484).

References
Validation of Krakencoder's ability to predict cognition and demographics across lifespan datasets

Qinxin Wang¹, Keith Jamison², Amy Kuceyeski²

¹Cornell university, Ithaca, NY; ²Weill Cornell Medicine, New York City, NY

Introduction: Krakencoder is a simultaneous, multi-atlas, multi-modality brain connectivity set of encoding models that addresses the challenge of integrating diverse brain connectivity types that each carry unique information and possible noise (Jamison OHBM 2023). Its architecture includes a set of encoders and decoders designed to transform one connectivity type into another through the shared latent representation (See Figure 1). It was trained on resting-state functional and white-matter structural connectivity data from 700 healthy young adults in the Human Connectome Project (HCP-YA), optimizing for reconstruction accuracy and within-subject similarity in latent-space. Building on recent studies that demonstrated the effectiveness of kernel regression models for predicting demographics from brain connectomes (Li 2019, Ooi 2022), we trained kernel regression or classification models to predict sex, age and cognition. Using held-out subjects from HCP-YA, as well as two out-of-sample datasets, we compared the predictions of subject demographics from latent representations and the raw brain connectivity data, demonstrating Krakencoder's generalizability to data with diverse subjects and acquisition parameters.

Methods: Our study utilized three datasets from the Human Connectome Project, drawn from individuals across the lifespan, including young adults (HCP-YA, 22-37), developing individuals (HCP-D, 8-22), and an aging population (HCP-A, 36-86). Beyond age differences, the HCP D/A acquisitions are approximately half the length of HCP-YA. All datasets include three parcellations (86, 268, and 439 regions), three common functional connectivity (FC) metrics (Pearson correlation, Pearson correlation with global signal regression, and regularized partial correlation), and two structural connectivity (SC) approaches (streamline counts from deterministic and probabilistic tractography), yielding 15 total connectivity types. For Krakencoder, our predictions use the mean latent vectors across FC flavors, SC flavors, or both SC and FC for each subject. For the raw data, we use the mean cosine similarity matrices for FC, SC, or SC and FC. We employed cross-validation in fitting and testing the models, ensuring that family groups are not split.
Results: The analysis of held-out HCP-YA subjects reveals that predictions from Krakencoder’s latent representations generally outperform raw connectome data, though raw FC predicts age better than latent FC. FC latent space predicts cognition better than SC latent space. SC latent space better predicts age, and both predict sex with accuracy > 93%. The combination of FC and SC consistently yields high predictive performance for all three variables, outperforming or at least matching the better-performing individual modality. For out-of-sample HCP-D/A datasets, latent representations perform comparably to raw data. Latent was better in sex prediction but worse in age prediction, with minor differences in cognition prediction. Within latent representations, SC outperforms FC in predicting age, while FC is more predictive of sex and cognition. Combined connectivities also maintain relatively high performance.

Conclusions: Krakencoder effectively reduces the high dimensionality of raw data (677,870 dimensions) into low-dimensional vectors (128 dimensions) within the latent space, facilitating an integrated and aligned representation across diverse modalities. The resulting latent representations largely preserve the predictive properties inherent in the raw data, as evidenced by the marginal disparities in their predictive performances observed in our results. Although Krakencoder was originally trained on the HCP-YA dataset, it exhibits strong generalizability when applied to the HCP-A&D datasets, despite differences in data acquisition methods and substantial variations in the age distribution of subjects. This robust performance across distinct datasets underscores Krakencoder’s generalizability and versatile applicability.

References