
Articles Describing Code

Brainchop: Providing an Edge Ecosystem for Deployment of
Neuroimaging Artificial Intelligence Models
Sergey M. Plis, PhD1,2,3 , Mohamed Masoud, PhD1,2,3 , Farfalla Hu, MA2 , Taylor Hanayik, PhD4 ,
Satrajit S. Ghosh, PhD5 , Chris Drake, BSc6 , Roger Newman-Norlund, PhD6 , Christopher Rorden, PhD6 a

1 Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia Institute of Technology, 2 Tri-Institutional Center for
Translational Research in Neuroimaging and Data Science, Georgia State University, 3 Tri-Institutional Center for Translational Research in
Neuroimaging and Data Science, Emory University, 4 Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences,
University of Oxford, 5 McGovern Institute for Brain Research, Massachusetts Institute of Technology, 6 McCausland Center for Brain Imaging,
Department of Psychology, University of South Carolina

Keywords: Machine Learning, Artificial Intelligence, Edge Computing, Brain Extraction, Brain Segmentation, Brain Parcellation

https://doi.org/10.52294/001c.123059

Aperture Neuro
Vol. 4, 2024

Deep learning has proven highly effective in various medical imaging scenarios, yet the
lack of an efficient distribution platform hinders developers from sharing models with
end-users. Here, we describe brainchop, a fully functional web application that allows
users to apply deep learning models developed with Python to local neuroimaging data
from within their browser. While training artificial intelligence models is computationally
expensive, applying existing models to neuroimaging data can be very fast; brainchop
harnesses the end user’s graphics card such that brain extraction, tissue segmentation,
and regional parcellation require only seconds and avoids privacy issues that impact
cloud-based solutions. The integrated visualization allows users to validate the
inferences, and includes tools to annotate and edit the resulting segmentations. Our pure
JavaScript implementation includes optimized helper functions for conforming volumes
and filtering connected components with minimal dependencies. Brainchop provides a
simple mechanism for distributing models for additional image processing tasks,
including registration and identification of abnormal tissue, including tumors, lesions
and hyperintensities. We discuss considerations for other AI model developers to leverage
this open-source resource.

INTRODUCTION

Neuroimaging has emerged as a powerful tool for studying
brain structure, function, and connectivity, offering in
sights into the underlying neural mechanisms of various
cognitive processes and disorders. As we describe next, re
cent AI models have proved to be more accurate, robust,
and rapid than traditional image preprocessing stages, in
cluding brain extraction, tissue segmentation, regional par
cellation, and anomaly detection. The rate-limiting factor
in bringing these AI models to academic and clinical set
tings is that they are difficult to deploy to end users, often
requiring creation of project specific environments by ex
perts in the field. These complexities, coupled with the lack
of a platform for deploying AI solutions to common neu
roimaging problems, severely limits the impact of these po
tentially revolutionary tools.

THE PROMISE OF AI TO REVOLUTIONIZE BRAIN
IMAGING

Machine learning models have already proved capable of
robustly, rapidly, and objectively solving many labor inten
sive and error-prone neuroimaging tasks. These benefits
are particularly attractive given the burgeoning availability
of large open-access datasets that allow teams to aggregate
images across diverse populations to make new discoveries.
Here we summarize a few notable breakthroughs. Critically,
for each advance, we also highlight the barriers that hinder
end users from exploiting these tools. Our goal is not to
provide an exhaustive list of AI-based medical imaging
software, but rather to provide an overview of the breadth
of existing, and potential applications, by highlighting a
few seminal solutions. We further restrict our review to the
applications of machine learning to replace traditional im
age processing stages including brain extraction, brain seg
mentation, regional parcellation, coregistration, normal
ization, and anomaly detection; the prognostic benefits for

Corresponding author a

Plis SM, Masoud M, Hu F, et al. Brainchop: Providing an Edge Ecosystem for
Deployment of Neuroimaging Artificial Intelligence Models. Aperture Neuro. 2024;4.
doi:10.52294/001c.123059

https://orcid.org/0000-0003-0040-0365
https://orcid.org/0000-0002-5365-242X
https://orcid.org/0000-0002-1816-2011
https://orcid.org/0000-0003-0751-9844
https://orcid.org/0000-0002-5312-6729
https://orcid.org/0009-0006-1694-5246
https://orcid.org/0000-0002-0966-1070
https://orcid.org/0000-0002-7554-6142
https://doi.org/10.52294/001c.123059
https://doi.org/10.52294/001c.123059

behavior and disease1‑6 are beyond the scope of the present
work.

BRAIN EXTRACTION

Brain extraction, the segmentation of brain tissues from
surrounding tissue, fat and bone, plays a vital role in brain
imaging. The traditional FSL Brain Extraction Tool (BET)
has been widely adopted as a first step towards restricting
analyses to cortical regions and additionally aids algo
rithms responsible for registration of similar modalities
(i.e., T1w structural scans) between individuals and co-reg
istration across modalities within a given subject (i.e., T1w
to T2-FLAIR).7 Furthermore, accurately extracted brains
are better anonymized than medical images de-identified
using traditional defacing methods. This is particularly the
case in clinical situations where scalp features may be rec
ognizable (dermoid cysts, craniotomy scars, ear shape).8

FSL’s BET has already been ported to web assembly, pro
viding a zero-footprint solution.9 Recently, several machine
learning-based brain extraction models have been shown to
outperform BET. Two noteworthy examples are HD-BET10

and SynthStrip,11 the latter of which has proven exemplary
when working with disparate image modalities and images
of inconsistent quality. However, the deployment of these
machine learning tools is hampered by the fact that they re
quire local software installation and perform slowly, or not
at all, without access to a local Nvidia graphics card.

BRAIN SEGMENTATION

FreeSurfer,12 FSL FAST,13 and SPM14 all provide elegant so
lutions to the problem of brain segmentation, and each ac
curately classifies voxels as white matter, gray matter or
cerebral spinal fluid. The thousands of citations attributed
to each of these programs demonstrates that these mea
sures provide users with access to a powerful biomarker for
brain function and disease. Recently, several teams have in
troduced competitive machine-learning based models, in
cluding SynthSeg.15 SynthSeg is now included with recent
FreeSurfer versions, making model distribution straightfor
ward. However, to gain the full speed benefits, users still
need an Nvidia graphics card accompanied by properly in
stalled CUDA drivers.

BRAIN MORPHOMETRY (PARCELLATION/VOLUME/
THICKNESS)

Estimates of cortical thickness combined with parcellation
into distinct regions, based on any variety of publicly avail
able brain atlases, has proved a powerful method for neu
roscientists. Indeed, the seminal FreeSurfer articles12,16‑18

have each been cited thousands of times. Recently, a deep
learning based implementation of FreeSurfer brain parcel
lation, FastSurfer,19 was developed. This new version pro
duces volume segmentation results that are similar to those
produced by FreeSurfer, but in a fraction of the time. Addi
tionally, FastSurfer demonstrated better test-retest reliabil
ity than FreeSurfer in estimating cortical thickness in longi
tudinal studies. However, once again, users wishing to take

advantage of this incredible speed-up must have access to a
high-performance Nvidia GPU with appropriate CUDA dri
vers.

SPATIAL COREGISTRATION AND NORMALIZATION

Spatial coregistration methods play a crucial role in many
neuroimaging pipelines. For example, multi-volume time
series such as functional MRI (fMRI) and diffusion-
weighted imaging benefit from motion correction, a process
in which all volumes are aligned to either the first volume
or the mean volume of a series of images. It is also often
necessary to coregister images of different modalities, or
acquired at different timepoints, from the same individual.
For example, aligning a low-resolution fMRI scan to a high-
resolution anatomical image is fundamental. Finally, it is
common to spatially normalize images, warping each in
dividual’s brain to match the shape and alignment of a
common anatomical template, a process that allows for
comparisons between individuals as well as application of
group-level statistics. EasyReg20 has provided a convolu
tional neural network that is fast, works across modalities,
and does not require pre-processing (such as brain extrac
tion or bias field correction) to operate. An exception to the
general rule, this FreeSurfer tool provides reasonable infer
ence speed without requiring a graphics card or other spe
cialized hardware.

ANOMALY DETECTION

Mapping the location and extent of brain injury can aid
the diagnosis, prognosis and treatment of the brain2 with
seminal work describing the methods for objective analyses
highly cited.21,22 Within the field of medical imaging, sub
stantial effort has been put into the development of auto
mated algorithms for detecting various anomalies including
but not limited to, white matter hyperintensities,23 mi
crobleeds,24 tumors,25 as well as both acute26 and chronic
stroke27 lesions. These methods are important, especially
within the field of stroke. For example, lesion studies can
provide a stronger inference than activation measures by
revealing brain regions that are necessary.28 However, man
ually drawing a lesion on a high-resolution scan can often
take an hour, with demarcation along the edges being
highly subjective.29 Seminal work used traditional spatial
normalization with outlier detection and clustering to au
tomatically identify chronic30 and acute31 injuries. Both of
these methods do depend on the robustness of the spatial
normalization, which can be disrupted by the presence of
brain injury,32 albeit the acute method cleverly uses both
the diffusion-unweighted and weighted imaging pair and
leverages the fact that acute injury only appears in the lat
ter (so spatial transforms are estimated for an image where
the injury is invisible, while the lesion is identified from the
image where it is visible). Another limitation of both ap
proaches is that they require Matlab software, which hin
ders web deployment. More recently, LINDA introduced a
random forest machine learning algorithm to identify
chronic lesions33 and ADS (Acute-stroke Detection Seg
mentation) employed a deep learning model to identify

Brainchop: Providing an Edge Ecosystem for Deployment of Neuroimaging Artificial Intelligence Models

Aperture Neuro 2

acute injury.26 However, both of these tools rely on accurate
initial normalization using traditional methods34 which do
influence the robustness, deployability and performance of
these algorithms. The emergence of clinical datasets with
gold-standard human drawn lesions27 can allow objective
competitions to identify accurate automated lesion identi
fication.
In conclusion, AI-augmented image processing has the

potential to provide fast, robust and objective solutions for
many common and fundamental neuroimaging tasks. En
suring easy and fast deployment of these approaches is crit
ical for researchers and clinicians wishing to aggregate vast
databases of medical images across multiple sites and/or
studies.

MECHANISMS FOR SHARING NEUROIMAGING AI
MODELS

Despite the proven utility of existing AI models, they re
main difficult to distribute to other scientists and clini
cians. Many models demand specific software and hardware
configurations. The level of technical expertise required
to install and maintain these configurations is beyond the
ability of many researchers and clinicians. We briefly de
scribe four mutually inclusive solutions to distribute ma
chine learning models that fill different niches: native in
stallation, containers, cloud implementations, and
edge-based web technologies.

SOLUTION #1: NATIVE INSTALLATION

Perhaps the most common method for distributing AI mod
els in the field of neuroimaging is through bare-metal in
stallations. This traditional approach requires users to in
stall the necessary drivers and software environments
directly onto their local systems. This typically includes
setting up a Python environment to manage and isolate de
pendencies effectively. Users must then clone the model’s
repository from a version control system like GitHub, in
stall required dependencies using package managers like
pip, and subsequently download the specific AI models
needed for the task (which may be hosted on separate sites
due to file size limitations imposed by most online code
repositories). This time-consuming process assumes the
availability of specific types of hardware (i.e., a x86 archi
tecture CPU and an Nvidia GPU equipped with the appro
priate CUDA drivers). Addressing these hardware and emer
gent software discrepancies places a considerable burden
on both the model developers and the end users, with de
velopers being forced to ensure their models are compatible
with a range of operating systems/hardware configurations,
and end users being forced to buy and maintain specific
hardware components. Indeed, maintenance of software
ecosystems essential to properly train and use AI models
often requires driver/software updates that can break the

system, demanding painful and time-consuming complete
reinstallations.

SOLUTION #2: CONTAINERS

Containers like Docker and Singularity/Apptainer offer
valuable solutions for managing and distributing complex
software more efficiently. These tools act as encapsulated
environments, allowing developers to package their appli
cations along with all of the necessary dependencies and
configurations required to use them successfully. By doing
so, they mitigate compatibility concerns and streamline the
deployment process across different computing environ
ments. Moreover, Docker and Singularity/Apptainer enable
precise version control, ensuring that software behaves
consistently regardless of the underlying system thereby
simplifying software distribution while, at the same time,
enhancing reproducibility and reliability of computational
tasks. Field-general solutions like Docker and Singularity/
Apptainer have thus far dominated the field of neuroimag
ing-relevant tools. However, infrastructure specific to the
deployment of brain-data based inference generation mod
els has recently emerged. Nobrainer (https://github.com/
neuronets/nobrainer) pioneered an infrastructure for shar
ing algorithms from different organizations including Syn
thMorph,35 SynthSeg15 SynthSR,36 SynthStrip,11 kwyk,37

and DeepCSR.38 Nobrainer provides a unified container for
running all of these models, simplifying the distribution
and usage of AI inference. However, as of this writing this
container only supports the x86 architecture, is only tuned
for Linux, and inference is only accelerated with NVidia
graphics cards 1. Another more generalized example of this
approach is neurodesk39 which allows loading of specific
software versions as self-contained packages. For example,
one could load either current or previous releases of
FreeSurfer to replicate studies that used previously de
scribed models from that team (e.g. easyReg, SynthSeg,
SynthStrip, SynthSR).

SOLUTION #3: CLOUD COMPUTING

For many use cases, cloud computing can provide an el
egant method for deploying machine learning inferences.
In this case, a centralized computer houses the specific
software, versioning and hardware required to compute in
ferences. The user simply needs to select the images to
process, and upload their data. A clear example of this ap
proach is brainlife40 (brainlife.io) which allows users to ap
ply machine learning inferences like SynthSR and Synth
Strip to either a user’s personal data or from linked
open-access repositories such as OpenNeuro.41 Another ex
ample is neurodesk which can be deployed as cloud in
stances.39 An important benefit of cloud resources is their
ability to scale on demand, whereas other methods are con
strained by local hardware. This advantage makes them

https://github.com/neuronets/nobrainer-zoo/issues/42 1

Brainchop: Providing an Edge Ecosystem for Deployment of Neuroimaging Artificial Intelligence Models

Aperture Neuro 3

https://github.com/neuronets/nobrainer
https://github.com/neuronets/nobrainer
http://brainlife.io/
https://github.com/neuronets/nobrainer-zoo/issues/42

particularly apt for processing large datasets that would be
difficult to analyze in a timely manner using local compute
resources. Therefore, cloud computing enhances efficiency
by allowing multiple users to concurrently share a pool of
resources, eliminating the need for each user to maintain
sufficient resources to handle their peak demands indepen
dently. However, cloud resources are not ideal for every ap
plication. One significant limitation is that images must be
shared with another organization. This is not a viable op
tion in many situations for ethical, regulatory, or legal rea
sons (particularly prior to anonymization measures such
as removing the face or scalp from images). Further, cloud
computing can incur a penalty for transferring large data
between a user’s computer and the remote service. Another
serious limitation with current cloud implementations is
that the results are not interactive; a strong assumption
is that all input data are similar and that the output from
the automated models is without error. In practice, both of
these assumptions are rarely correct. Interactive visualiza
tion and editing tools are required to help confirm and en
sure that the inference model processed the images suc
cessfully.

SOLUTION #4: EDGE-BASED DEPLOYMENT

The final method of distributing neuroimaging machine
learning models leverages edge-based web technologies.
This method harnesses the power of end users’ local com
pute resources to process images and generate and save
the derivatives. This approach leverages two properties of
most inference models: estimating the inferences of exist
ing models is much less computationally taxing than train
ing new models, and application of existing models to ex
isting data is a task that is ideally suited for graphics cards’
advantage for massively parallel operations. Of particular
interest, the Open Neural Network Exchange (ONNX) web
runtime and TensorFlowJS JavaScript packages allow mod
els to be run using the WebGL and WebGPU libraries which
harness the local graphics card regardless of manufacturer,
thanks to the browser acting as an operating system remov
ing the need for the user to provide specific hardware and
drivers (e.g., Nvidia graphics cards with CUDA libraries).
Since the image data is not shared with the cloud, edge
computing can address the privacy concerns associated
with cloud computing. From the model developer’s per
spective, a key advantage of edge computing is that it har
nesses the end user’s hardware for computation, allowing
it to scale effortlessly with the number of users. This is in
contrast to cloud computing, where demands on central
ized hardware increase as the number of active users grows,
requiring continuous resource allocation and management.
Edge-based deployment is simple for the user, with no

software to install. To start using pre-trained deep learning
models a user just needs to open a URL in their browser,
which in our case takes around 200 ms to load six seg
mentation models and provide 15 ways to run them. These
packages run the models locally within the sandbox of the
user’s browser without the need for data exchange with a
remote server, as there is no back-end. Since image data
remains local, this approach bypasses privacy concerns of

cloud solutions and is therefore ideally suited for clinical
applications (such as lesion detection) and image de-facing
or brain extraction which remove recognizable features to
allow subsequent sharing of anonymized images. The
brainchop42,43 project from the Nobrainer team showcases
this approach, providing models for brain extraction, tissue
segmentation and parcelation as shown in Figure 1.
Rather than assume that all inferences are successful,

brainchop allows users to interactively view the input and
segmented images, ensuring model accuracy. In this way,
brainchop is an ideal framework for customization and
user-driven model tuning that could eventually allow end-
users to further refine/tailor AI models to their specific
needs or the needs of the research community. One way
this could be accomplished is by including the ability to
adjust model parameters, like threshold levels, segmenta
tion boundaries, and coregistration points directly within
the visualization/feedback module. For instance, in cases
where automated image segmentation fails due to atypical
anatomy or poor image quality, users could manually refine
the segmentation boundaries. This interactive approach
could be used to iteratively provide AI model developers
with error feedback, that could then be used to justify
change in the AI model, perhaps resulting in an improved
ability to process both normal data and handle occasional
edge-cases. We envision that this on-the-fly feedback could
be part of a virtuous cycle that would allow AI systems to
continuously ‘learn’ and improve their performance over
time. It is worth noting that visualization is useful for ma
chine learning regardless of the form of distribution (e.g.,
native, container, cloud or edge), and a web-based visual
ization module could be shared across all these methods.
Indeed, this could allow crowdsourced training for huge
datasets, leveraging the diversity of aggregated datasets
and editors.

MISSION STATEMENT

Our primary objective is to provide a method to deploy
neuroimaging AI models that is simple, efficient, ensures
data safety, and provides users with sufficient feedback to
catch and fix errors. This method should allow developers
to quickly and easily deploy their AI models and allow users
to confidently apply these solutions to their images. We
believe the best way to achieve this objective is through
edge-based computing which protects privacy by using lo
cal hardware, has zero footprint (no specialized software
to install) and is universal (works on any operating system
and graphics card). To achieve this aim, we comprehen
sively refined and optimized brainchop, bringing it from a
prototype to a robust tool that can be directly used by end
users with existing models and harnessed by other teams
with their own models. These refinements include remov
ing dependencies, improving performance, and adding fea
tures such as the ability to manually edit AI-generated na
tive space segmentations. The Methods section describes
our implementation and the Results section describes the
performance improvements relative to the initial prototype.

Brainchop: Providing an Edge Ecosystem for Deployment of Neuroimaging Artificial Intelligence Models

Aperture Neuro 4

Figure 1. Examples for each of the three model families currently supported by brainchop.
The segmentation (top) identifies gray (red) and white (white) matter. The brain extraction (middle) creates a mask of the brain voxels (red). The parcellation classifies 104 cortical
regions. The colors and regions come from the FreeSurfer Color Look Up Table.

METHODS

DESIGN CONSIDERATIONS

Here we describe refinements since brainchop version 2,
which we have previously described.42,43 The Results sec
tion provides objective measures for the cumulative benefit
of these optimizations. The major performance difference
between version 2 and 3 is implementing 16-bit instead of
32-bit textures for the models which significantly improved
the performance by reducing memory usage and data trans
fer times. In contrast, the version 4 optimizations focused
on new features, reducing idle time, reducing time spent on
concurrent tasks and the image processing stages that oc
cur before and after the model inferences. Therefore, it is
worth noting that the changes from version 2 to 3 impact
the actual inference time of the model, while the changes
from version 3 to 4 largely focus on processing operations
that occur before and after the inference. Therefore, the
version 4 optimizations will have smaller proportional ben
efits as the inference model complexity increases (though
it is worth noting that the introduction of web workers can
reduce time spent idle or waiting for concurrent tasks).
The new user interface is shown in Figure 2. The user can

drag and drop a voxel-based medical image of the head, in
any of the supported formats (with NiiVue already provid
ing support for the NIfTI, NRRD, MRtrix MIF, AFNI HEAD/
BRIK, MGH/MGZ, ITK MHD, ECAT7, and DICOM formats)
and select any of the pre-specified image processing models
from the drop down menu. The results are shown as an in
teractive overlay on top of the source image, with sliders
allowing the user to independently adjust the visibility of

the source and classified image. A button allows the user
to save the model as a NIfTI-format image. Alternatively, a
button allows the user to save the entire scene (background
image, overlay, drawings, contrast settings, crosshair loca
tion and annotations) as a single file (using NiiVue’s doc
ument format with the .nvd extension) that can be viewed
with any NiiVue instance. As we note, this provides a vir
tuous cycle between model developers and users, providing
a mechanism for sharing edge cases where models do not
act as expected. A checkbox allows users to select whether
models are run on an independent thread (web worker) or
on the main thread. Simple drawing tools allow the user to
modify segmentation models, with the ability to edit model
results. To provide a minimal user interface, these tools
currently only provide binary operations, but the underly
ing NiiVue visualization system can support more compli
cated drawings (e.g., using different pen colors to edit spe
cific classes for the segmentation and parcelation models).
We also provide a diagnostics model, which provides text-
based details on the user’s system and the execution of the
most recent model. These details can help troubleshoot un
expected behavior. The user interface is built using pure
HTML, rather than using a widget framework (e.g., Angular,
React, or Vue). This minimal, framework agnostic approach
aids users who wish to embed these models in their pre
ferred framework, as the web page directly interacts with
the modular NiiVue and brainchop functions.
Segmentation accuracy and out-of-sample robustness

are the driving objective measures for selecting between
competing neuroimaging machine learning models. How
ever, considerations regarding the speed and resource de
mands of the inference models have clear implications.

Brainchop: Providing an Edge Ecosystem for Deployment of Neuroimaging Artificial Intelligence Models

Aperture Neuro 5

https://apertureneuro.org/article/123059-brainchop-providing-an-edge-ecosystem-for-deployment-of-neuroimaging-artificial-intelligence-models/attachment/243625.png

Figure 2. The brainchop web page (https://neuroneural.net/brainchop/) allows users to select between tissue
segmentation, brain extraction and parcelation models from a drop down menu.
Users can drag and drop their own images. The integrated visualization allows users to interact with the images. Note that the name of the region selected by the crosshairs is shown
in the status bar in the bottom left. Users can save the resulting classification results as NIfTI images or edit them as required prior to saving them which allows for improved quality
control.

Users at well-resourced institutions working with huge
datasets would clearly prefer fast but demanding solutions.
On the other hand, catering to these users excludes many
potential users. Brainchop supports both groups by having
both fast but demanding, as well as slow but lean variations
for some of the more complex models. The current brain
chop models are all based on MeshNet44 models that are
renowned for their modest computational requirements.
These models were converted to TensorFlow.JS (TFJS).45

Beyond the basic model inference, we also provide Tensor
FlowJS filters for attenuating noisy voxels to improve seg
mentation accuracy. Both models and filters currently use
the WebGL2 TFJS backend that leverages the graphics card
of the user’s computer (and can be extended to the WebGPU
backend if this matures to support 3D convolutions). In
deed, the recent releases of brainchop conduct more of the
computations on the graphics card, improving the speed.

INPUT IMAGE HARMONIZATION

Raw neuroimaging data is often acquired with a range of
resolutions and voxel sizes. However, machine learning
models are typically trained on images of a specific resolu
tion. Similar to many other neuroimaging AI tools, brain
chop requires that the input images are 256×256×256 voxels
with a 1mm isotropic resolution. The original brainchop
used the Python code from FastSurfer19 to reslice input im
ages of any resolution to these dimensions. However, this
choice added a large number of dependencies including
matplotlib, cycler, six, fonttools, kiwisolver, pillow, python-
dateutil, pytz, scipy, nibabel, and numpy all of which
needed to be emulated via pyodide. As we demonstrate in
the Results section, downloading these packages to con
form an initial image is slow (particularly penalizing users
with limited internet bandwidth), retaining these packages
for subsequent images holds on to local memory, and the
emulation for reslicing is slow. To address this, we ported
these routines to pure JavaScript.

THREADS AND WEB WORKERS

The original brainchop ran all computations on the web
page’s main thread, which impacted performance and inter
activity. The current version of brainchop allows the user
to specify whether the models run on the main thread (us
ing timers and callback functions to return results) or in
dependently on a web worker thread (using asynchronous
calls when necessary and messaging to return results to the
main thread). This feature required numerous changes as
we found that contemporary web workers have constrained
heap size relative to the main thread. To address this, we
preallocated arrays of known sizes rather than dynamically
growing arrays. Fortuitously, this led to speed benefits. We
maintain code for both the main thread and web worker for
two reasons. First, a web worker requires access to an Off
Screen canvas that has only recently been introduced in the
WebKit-based browsers such as Safari and is not yet sup
ported by TensorFlowJS (so at the time of this writing our
models must run on the main thread for these browsers).
Second, there is no intuitive way to predict whether a given
task will perform better on the main thread or using a
web worker. Pragmatically testing the Chrome and Firefox
browsers we have observed that some models are faster
with web workers while others are faster on the main thread
in a complex manner that interacts with the choice of
browsers. We speculate that this reflects differences in re
sources provided to these different threads. Regardless,
these differences might change with future web browser
updates, so providing both methods allows the developers
and users to choose the fastest solution for their situation.

CONNECTED COMPONENTS

The results of many AI image segmentation models benefit
from refinement for connected components. For example, it
is often necessary to ensure that voxels in a given area are
contiguous with each other. For instance, proper considera
tion of connected components prevents erroneous identifi
cation of two areas (connected by a narrow bridge) as a sin

Brainchop: Providing an Edge Ecosystem for Deployment of Neuroimaging Artificial Intelligence Models

Aperture Neuro 6

https://apertureneuro.org/article/123059-brainchop-providing-an-edge-ecosystem-for-deployment-of-neuroimaging-artificial-intelligence-models/attachment/243626.png
https://neuroneural.net/brainchop/

gle contiguous region. We developed a fast, pure javascript
solution based on the algorithm of Thurfjell and col
leagues.46 Specifically, we ported the C code from SPM’s
bwlabel function.47 Crucially, since parcellations can in
clude many classes (for example, our FreeSurfer parcella
tion model generates 104 distinct regions), we modified the
algorithm to identify the largest connected components of
all classes in a single pass.

IMAGE VISUALIZATION

The prior releases of brainchop used the WebGL1-based
Papaya for visualizations. Unfortunately, the development
of Papaya has been suspended and WebGL1 does not sup
port 3D textures that can aid interactive volume rendering.
Therefore, brainchop also depended on a WebGL2-based
ThreeJS volume rendering module. To address this, we up
graded brainchop to use the WebGL2-based NiiVue which
supports volume loading (allowing brainchop to import im
ages in the NIfTI, NRRD, MRtrix MIF, AFNI HEAD/BRIK,
MGH/MGZ, ITK MHD, ECAT7, and DICOM formats), planar
visualization and volume rendering using a single context
(reducing resource usage) without requiring Papaya or
ThreeJS. While our reference implementation uses NiiVue
for our visualization, our modular code can be embedded
in other web-capable viewers including BioImage Suite
Web,48 the OHIF viewer,49 and VTK.js (https://kit
ware.github.io/vtk-js/i). Since NiiVue has already been
adopted by the AFNI, brainlife, FreeSurfer, FSL and Open
Neuro teams and is supported by an active grant (NIH
RF1MH121885), sustained development is ensured. Addi
tionally, NiiVue provides several important capabilities to
enhance brainchop. First, NiiVue provides drawing tools
that allow users to edit models, for example removing mis-
classified tissue before saving the result. In the future, we
envision dynamic models, where a user can correct a single
slice and the model uses this feedback for other slices. Sec
ond, NiiVue provides an ability to not only save NIfTI-for
mat images, but also annotate images and save the entire
scene. This allows one user to interactively adjust the con
trast, crosshair position and write comments that they can
send as an email attachment to another user. A nice feature
of web pages is that they are required to live in a sandbox,
without access to a computer’s file system and restricted
memory. Therefore, web pages provide relatively safe at
tachments. This can help create a virtuous cycle between
model users and model developers, allowing end users to
document edge cases.

REFACTORING

The original brainchop code was monolithic, with the ma
chine learning code interleaved with Papaya specific visu
alization calls as well as diagnostics. The desire to support
NiiVue as well as the move to support image processing
using either web workers (which must communicate with
the main thread via serialized objects) and the main thread
(which can pass data directly via callbacks) encouraged us
to modularize the code. Separating the visualization from
the image processing can allow future developers to replace

NiiVue with another visualization tool, or even remove the
visualization entirely (for example, running the image pro
cessing from the command line using node.js). Likewise,
brainchop functions for acquiring machine specific diag
nostic data (which can help resolve machine specific issues)
are now provided in a separate file.

LICENSE

Our implementation uses the permissive and open BSD
2-Clause (NiiVue) and MIT (brainchop) licenses. We see
these licenses as being universal donors, allowing inclusion
in all other projects and not restricting contributions from
researchers at different institutions.50

INSTALLATION

Anyone with access to a web browser can use brainchop
(https://brainchop.org/). This provides drag-and-drop sup
port for any voxel-based format that NiiVue supports (e.g.
NIfTI, NRRD, MRtrix MIF, FreeSurfer MGH, ITK MHD, DI
COM). Developers can easily clone the main repository to
create forks that support their own models
(https://github.com/neuroneural/brainchop) and if they
wish they can make pull requests to contribute to the core
functions. The source code is also available at github
(https://github.com/neuroneural/brainchop) with a com
mand to host a local hot-reloadable web page (npm run dev)
that can run on the Linux, Windows, and MacOS operating
system. The hot-reloadable page automatically refreshes
when any of the source files are modified, allowing devel
opers to interactively modify the underlying code.

RESULTS

The impetus for our optimization of brainchop was to im
prove compatibility (support for constrained hardware), en
hance interactivity (with web workers running in the back
ground), reduce dependencies (easing deployment) and
adding features (e.g., the ability to edit model predictions).
The benefits of these modifications are impossible to objec
tively quantify. However, a consequence of these changes
is that the resulting models are faster and require less re
sources. Here we quantify the improvements in these met
rics.
We evaluated the performance of brainchop release 4.0

(which incorporates all the features described in the previ
ous section) with brainchop release 2.1 (which incorporates
feedback from the review of our earlier publications42), as
well as release 3.2.1. For brevity, we refer to these releases
as versions 2, 3 and 4 respectively, though we note that
each version has multiple releases that each introduce in
cremental improvements. All testing used a T1-weighted
3D gradient echo with inversion recovery scan (TI = 750ms,
TR = 7.25ms, TE = 3.1ms) acquired using a UIH scanner
(https://github.com/neurolabusc/dcm_qa) with the raw im
age having an interpolated resolution of 460x512 in the
sagittal plane (230x256mm field of view) with 160 1mm
thick slices with an in-plane acceleration factor of 2.5. This

Brainchop: Providing an Edge Ecosystem for Deployment of Neuroimaging Artificial Intelligence Models

Aperture Neuro 7

https://kitware.github.io/vtk-js/i
https://kitware.github.io/vtk-js/i
https://brainchop.org/
https://github.com/neuroneural/brainchop
https://github.com/neuroneural/brainchop
https://github.com/neurolabusc/dcm_qa

image was chosen as no images from this manufacturer
were included in any of the training datasets. All tests
were conducted on a 16GB Apple MacBook Pro with an Ap
ple M2 Pro CPU and integrated GPU running MacOS with
the Chrome browser version 124 as well as an AMD Ryzen
7950X3D CPU with 128GB of RAM and aNVIDIA RTX 4070
Ti 12GB graphics card running Linux with the Firefox v 128
browser. All tests were run 3 times with the median time re
ported.
Brainchop 4 allows the user to select between 15 models,

providing three families of operation: tissue segmentation,
brain extraction, and parcellation. The performance of
these models on the test image is shown in Figure 2. Spe
cific models vary in terms of the number of segmentation
classes (e.g., number of regions for a parcellation) and
hardware demands (e.g., the FreeSurfer 104 region parcel
lation provides both a slow, low memory model as well as
a faster, higher memory model). For evaluation, we tested
one exemplar from each family. We chose the Tissue GWM
(light) segmentation model that identifies white and gray
matter throughout the brain. The representative brain ex
traction model was Extract the Brain (FAST). Finally, the
FreeSurfer 104 region model was the representative parcel
lation model, using the Low Memory variation for the MacOS
computer (which used integrated graphics) and the High
Memory variation for the Linux computer (which had a dis
crete graphics card).
While all subsequent measures focus on the time to per

form tasks, it is worth noting that our revisions also dra
matically reduce memory demands. In particular, the older
version of brainchop downloads and runs Python code in
emulation to conform data, with this code cached in mem
ory to accelerate future runs. After running this stage, a
brainchop web page reports consuming around 270MB of
memory, and after several runs of models this can exceed
500MB of memory usage. In contrast, the new pure
JavaScript conform function is very compact, and, by forc
ing web workers to terminate when the process is com
pleted, we can ensure thorough garbage collection, with
memory usage reported around 8MB when not actively cal
culating a model.
Memory differences are also observed for the 104 region

parcellation. This model failed with brainchop 2 using the
MacOS computer. This model succeeded with brainchop 3,
which we believe reflects the improvements in memory us
age. However, brainchop 4 dramatically reduces heap mem
ory usage relative to version 3 (as previously noted, adding
web workers required optimization of heap usage). Specif
ically, version 4 has 173 times less peak heap usage than
version 3 (7.7 vs 1338.2MB).
Figure 3 illustrates the performance improvement of

brainchop versions 3 and 4 relative to brainchop 2. This fig
ure illustrates performance on the conform function as well
as the time to compute the segmentation, extraction and
parcellation models.
The first stage with all processing was to conform the

data to be 256×256×256 voxels with a 1mm resolution using
an unsigned 8-bit data type. This timing is excluded from
all subsequent tests, which used the conformed image as

Figure 3. Acceleration of brainchop 4 (green) and
brainchop 3 (red) relative to brainchop 2.
This reflects the cumulative effect of all optimizations on the total time to apply differ
ent image processing steps. The MacOS computer (bright bars) used the Chrome browser
and an integrated graphics card (Apple M2 Pro). The Linux computer (dark bars) used
the Firefox browser with a discrete graphics card (AMD 7950X3D with Nvidia 4070 Ti).
The acceleration is shown as percent, so a 100% speedup reflects half the time to com
plete an operation. The asterisk notes that parcellation crashed with version 2 on the
MacOS computer, and therefore the bright green bar illustrates the speedup of version 4
versus 3.

input. Because the time to download the large Python li
braries depends on internet bandwidth, and the fact that
this step is only required for the first run, we only report
the time to compute the conform stage. This stage uses
identical code for brainchop versions prior to version 4, so
only one set of comparisons is provided. On the MacOS
computer, version 4’s native code was 6.8 times (676ms vs
4611ms; or 582%) faster than the emulated Python, while
conforming was 4.9 times (739ms vs 3655ms) faster on
Linux.
Brainchop 4 is dramatically faster than brainchop 2. On

the MacOS computer, tissue segmentation was 4.2 times
faster (2144ms vs 9001ms), brain extraction was 4.2 times
faster (1962ms vs 9251ms) and the 104 model parcellation
only ran using the optimized code (23196ms). For the Linux
computer, tissue segmentation was 13.2 times faster
(898ms vs 11820ms), brain extraction was 13.9 times faster
(911ms vs 12646ms) and the parcellation was 7.0 times
faster (1627ms vs 12428ms)
Brainchop 4 is also reliably faster than brainchop 3. On

the MacOS computer, tissue segmentation was 2.6 times
faster (2144ms vs 5519ms), brain extraction was 2.7 times
faster (1962ms vs 5788ms) and the 104 model parcellation
was 37 times faster (23196ms vs 85048). For the Linux com
puter, tissue segmentation was 9.3 times faster (898ms vs
8387ms), brain extraction was 10.3 times faster (911ms vs

Brainchop: Providing an Edge Ecosystem for Deployment of Neuroimaging Artificial Intelligence Models

Aperture Neuro 8

https://apertureneuro.org/article/123059-brainchop-providing-an-edge-ecosystem-for-deployment-of-neuroimaging-artificial-intelligence-models/attachment/243627.png

9419ms) and the parcellation was 4.8 times faster (1627ms
vs 8444ms).

DISCUSSION

The brainchop web page provides fast and robust brain ex
traction, tissue classification and parcellation with a simple
drag and drop interface. The models work across hardware
and software, merely requiring any modern web browser.
All computations are conducted locally, protecting the pri
vacy of the user’s data. By leveraging the user’s graphics
card, most models run in a few seconds. The graphical in
terface lets the user inspect the results. The user can also
edit errors, save the resulting images and provide diagnos
tics back to the developers. Taken together, this showcases
an end-to-end ecosystem for deploying image processing
AI models for voxel-based neuroimaging data.
Furthermore, brainchop provides a framework for other

developers to extend. Developers can fork the project to
distribute their own models, or contribute new models to
enhance the core brainchop distribution. In particular, we
look forward to models that can provide image registration
and anomaly detection, as well as those that are not modal
ity dependent.
We recognize that most neuroimaging AI model develop

ment teams use Python-based model training frameworks
like PyTorch and TensorFlow, and utilize the mature and
well supported set of Python libraries such as numpy and
nibabel. One of our primary goals was to provide optimized,
high performance JavaScript helper functions to allow these
developers to easily bring their models to web pages. In
the future, we hope to expand these functions to meet the
needs of the community. For example, we have already in
troduced a function to conform data, but some may also
want methods to reverse this process (to transform a clas
sification image back to the native space of the source im
age).

LIMITATIONS

Our objective is to create an ecosystem that will help other
model developers disseminate their work to end users. Our
initial models are purposefully restricted to tissue segmen
tation, brain extraction and brain parcellation, but this
need not be the case as brainchop continues to evolve.
As noted previously, other groups have described models
for spatial registration, and mapping abnormalities (acute
stroke, chronic stroke, tumor, white matter hyperintensi
ties) that could be converted too, but these are not available
as edge applications. Furthermore, all of our current mod
els require T1-weighted MR scans as input, and will fail
with other modalities. Of course models could be trained
to use other modalities, especially given the demonstrated
multi-modality robustness of models like SynthStrip.11 An
other limitation is that many of the technologies we are
using are emergent, and there are clear early-stage diffi
culties. First, while our current code runs across operating
systems (Linux, Windows, MacOS) and graphics card ven
dors (Apple, AMD, Intel, NVidia) during our development

we identified interactions, such that a specific graphics card
would work on one operating system and not another. A
nice aspect of having live demos is that it was easy for the
vendor to duplicate our problem, which is a necessary first
step towards resolution of core issues that create compati
bility issues for TFJS users. Second, as we note above, some
web worker implementations and access to the OffScreen
canvas remain immature which impacts performance. De
spite using web standards, we note that at the time of this
writing many tablets and phones do not currently support
our TFJS models. Also, it is worth noting that efforts to im
prove the privacy of web browsers can interfere with frame
works like ONNX and TFJS that use the graphics card for
computation. For example, Firefox features an advanced
function named privacy.resistFingerprinting which falsely
reports artificially constrained graphics card capabilities so
the variabilities in hardware cannot be used to identify a
user. With this security feature set, frameworks will report
that the hardware is insufficient to run typical machine
learning models.

FUTURE DIRECTIONS

The current brainchop distribution has a deliberate mini
malism, providing a basic recipe for delivering AI models to
users. However, we have a clear vision for upcoming forks
that can address specific niches. Specifically, we are actively
working with teams that are using ONNX,51 an interopera
ble format for many training frameworks, to support a di
verse variety of models and TinyGrad (an emerging light
weight deep learning library) rather than only supporting
TFJS. These solutions all rely on the same core helper func
tions, but leverage the specific strengths of each of these
platforms. NiiVue also supports boostlets that can allow a
user to interactively select a region of an image and ap
ply a filter, with initial functions already supporting the
Segment Anything Model.52 As noted, we envision a future
in which dynamic models will learn in real time as users
make corrections, propagating this knowledge downstream.
To ensure privacy, web pages are intentionally constrained.
However, the modular design of NiiVue and brainchop make
it easy to embed in desktop applications. Indeed, the Ni
iVue project already includes electron applications and Ap
ple applications (built using Swift) that embed the visual
ization into a desktop application. This can aid niches such
as processing BIDS datasets (where features like the in
heritance principle are incompatible with a web page’s re
stricted permissions). While our current models offer solu
tions for brain extraction, tissue segmentation, and region
parcellation, we envision teams leveraging these core func
tions for additional applications. For instance, future mod
els could be utilized for anomaly detection, lesion mapping,
spatial registration, and quantifying structural and func
tional brain connectivity.

ACKNOWLEDGEMENTS

MM, SSG were supported by the NIH grant RF1-MH121885.
SMP was in part supported by NIH 2R01-EB006841 and
NSF 2112455. CD, CR and RNN are supported by NIH

Brainchop: Providing an Edge Ecosystem for Deployment of Neuroimaging Artificial Intelligence Models

Aperture Neuro 9

RF1-MH133701 and P50-DC01466. TH is supported by core
funding from the Wellcome Trust (203139/Z/16/Z and
203139/A/16/Z). Special thanks to Alex Fedorov, Mike Doan
and Thu Le for helping with model training.

CONFLICTS OF INTEREST

The authors declare no competing interests.

Submitted: May 17, 2024 CDT, Accepted: August 26, 2024 CDT

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License

(CCBY-4.0). View this license’s legal deed at http://creativecommons.org/licenses/by/4.0 and legal code at http://creativecom

mons.org/licenses/by/4.0/legalcode for more information.

Brainchop: Providing an Edge Ecosystem for Deployment of Neuroimaging Artificial Intelligence Models

Aperture Neuro 10

REFERENCES

1. Nenning KH, Langs G. Machine learning in
neuroimaging: from research to clinical practice.
Radiologie (Heidelb). 2022;62:1-10. doi:10.1007/
s00117-022-01051-1

2. Moore MJ, Demeyere N, Rorden C, Mattingley JB.
Lesion mapping in neuropsychological research: A
practical and conceptual guide. Cortex.
2024;170:38-52. doi:10.1016/j.cortex.2023.10.001

3. Monsour R, Dutta M, Mohamed AZ, Borkowski A,
Viswanadhan NA. Neuroimaging in the Era of
Artificial Intelligence: Current Applications. Fed
Pract. 2022;39:S14-S20. doi:10.12788/fp.0231

4. Sui J, Jiang R, Bustillo J, Calhoun V. Neuroimaging-
based Individualized Prediction of Cognition and
Behavior for Mental Disorders and Health: Methods
and Promises. Biol Psychiatry. 2020;88:818-828.

5. Tejavibulya L et al. Predicting the future of
neuroimaging predictive models in mental health.
Mol Psychiatry. 2022;27:3129-3137.

6. Plis SM et al. Deep learning for neuroimaging: a
validation study. Front Neurosci. 2014;8:229.

7. Smith SM. Fast robust automated brain extraction.
Hum Brain Mapp. 2002;17:143-155. doi:10.1002/
hbm.10062

8. Cali RJ et al. The Influence of Brain MRI Defacing
Algorithms on Brain-Age Predictions via 3D
Convolutional Neural Networks. Conf Proc IEEE Eng
Med Biol Soc. 2023;2023:1-6.

9. Harmouche A et al. WebMRI: Brain extraction and
linear registration in the web browser. Bildgebung.
2023;15:31-36. doi:10.1556/1647.2023.00111

10. Isensee F et al. Automated brain extraction of
multisequence MRI using artificial neural networks.
Hum Brain Mapp. 2019;40:4952-4964.

11. Hoopes A, Mora JS, Dalca AV, Fischl B, Hoffmann
M. SynthStrip: skull-stripping for any brain image.
Neuroimage. 2022;260:119474. doi:10.1016/
j.neuroimage.2022.119474

12. Dale AM, Fischl B, Sereno MI. Cortical surface-
based analysis. I. Segmentation and surface
reconstruction. Neuroimage. 1999;9:179-194.
doi:10.1006/nimg.1998.0395

13. Zhang Y, Brady M, Smith S. Segmentation of brain
MR images through a hidden Markov random field
model and the expectation-maximization algorithm.
IEEE Trans Med Imaging. 2001;20(13):45-57.
doi:10.1109/42.906424

14. Ashburner J, Friston KJ. Unified segmentation.
Neuroimage. 2005;26:839-851. doi:10.1016/
j.neuroimage.2005.02.018

15. Billot B et al. SynthSeg: Segmentation of brain
MRI scans of any contrast and resolution without
retraining. Med Image Anal. 2023;86:102789.

16. Desikan RS et al. An automated labeling system
for subdividing the human cerebral cortex on MRI
scans into gyral based regions of interest.
Neuroimage. 2006;31(16):968-980. doi:10.1016/
j.neuroimage.2006.01.021

17. Fischl B. FreeSurfer. Neuroimage.
2012;62:774-781. doi:10.1016/
j.neuroimage.2012.01.021

18. Fischl B et al. Whole brain segmentation:
automated labeling of neuroanatomical structures in
the human brain. Neuron. 2002;33:341-355.
doi:10.1016/S0896-6273(02)00569-X

19. Henschel L et al. FastSurfer - A fast and accurate
deep learning based neuroimaging pipeline.
Neuroimage. 2020;219:117012. doi:10.1016/
j.neuroimage.2020.117012

20. Iglesias JE. A ready-to-use machine learning tool
for symmetric multi-modality registration of brain
MRI. Sci Rep. 2023;13:6657.

21. Rorden C, Karnath HO, Bonilha L. Improving
lesion-symptom mapping. J Cogn Neurosci.
2007;19(21):1081-1088.

22. Bates E et al. Voxel-based lesion-symptom
mapping. Nat Neurosci. 2003;6:448-450.

23. Sundaresan V, Zamboni G, Rothwell PM,
Jenkinson M, Griffanti L. Triplanar ensemble U-Net
model for white matter hyperintensities
segmentation on MR images. Med Image Anal.
2021;73:102184.

24. Fan P et al. Cerebral Microbleed Automatic
Detection System Based on the ‘Deep Learning.’ Front
Med. 2022;9:807443.

Brainchop: Providing an Edge Ecosystem for Deployment of Neuroimaging Artificial Intelligence Models

Aperture Neuro 11

https://doi.org/10.1007/s00117-022-01051-1
https://doi.org/10.1007/s00117-022-01051-1
https://doi.org/10.1016/j.cortex.2023.10.001
https://doi.org/10.12788/fp.0231
https://doi.org/10.1002/hbm.10062
https://doi.org/10.1002/hbm.10062
https://doi.org/10.1556/1647.2023.00111
https://doi.org/10.1016/j.neuroimage.2022.119474
https://doi.org/10.1016/j.neuroimage.2022.119474
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1109/42.906424
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/S0896-6273(02)00569-X
https://doi.org/10.1016/j.neuroimage.2020.117012
https://doi.org/10.1016/j.neuroimage.2020.117012

25. Boaro A et al. Deep neural networks allow expert-
level brain meningioma segmentation and present
potential for improvement of clinical practice. Sci
Rep. 2022;12:15462.

26. Liu CF et al. Deep learning-based detection and
segmentation of diffusion abnormalities in acute
ischemic stroke. Commun Med. 2021;1:61.

27. Liew SL et al. A large, curated, open-source stroke
neuroimaging dataset to improve lesion
segmentation algorithms. Sci Data. 2022;9:320.

28. Rorden C, Karnath HO. Using human brain lesions
to infer function: a relic from a past era in the fMRI
age? Nat Rev Neurosci. 2004;5:813-819.

29. de Haan B, Clas P, Juenger H, Wilke M, Karnath
HO. Fast semi-automated lesion demarcation in
stroke. Neuroimage Clin. 2015;9:69-74. doi:10.1016/
j.nicl.2015.06.013

30. Seghier ML, Ramlackhansingh A, Crinion J, Leff
AP, Price CJ. Lesion identification using unified
segmentation-normalisation models and fuzzy
clustering. Neuroimage. 2008;41:1253-1266.
doi:10.1016/j.neuroimage.2008.03.028

31. Mah YH, Jager R, Kennard C, Husain M, Nachev P.
A new method for automated high-dimensional
lesion segmentation evaluated in vascular injury and
applied to the human occipital lobe. Cortex.
2014;56:51-63. doi:10.1016/j.cortex.2012.12.008

32. Brett M, Leff AP, Rorden C, Ashburner J. Spatial
normalization of brain images with focal lesions
using cost function masking. Neuroimage.
2001;14:486-500. doi:10.1006/nimg.2001.0845

33. Pustina D et al. Automated segmentation of
chronic stroke lesions using LINDA: Lesion
identification with neighborhood data analysis. Hum
Brain Mapp. 2016;37:1405-1421.

34. Avants BB et al. A reproducible evaluation of
ANTs similarity metric performance in brain image
registration. Neuroimage. 2011;54:2033-2044.
doi:10.1016/j.neuroimage.2010.09.025

35. Hoffmann M et al. SynthMorph: Learning
Contrast-Invariant Registration Without Acquired
Images. IEEE Trans Med Imaging. 2022;41:543-558.
doi:10.1109/TMI.2021.3116879

36. Iglesias JE et al. SynthSR: A public AI tool to turn
heterogeneous clinical brain scans into high-
resolution T1-weighted images for 3D morphometry.
Sci Adv. 2023;9:eadd3607. doi:10.1126/sciadv.add3607

37. McClure P et al. Knowing What You Know in Brain
Segmentation Using Bayesian Deep Neural Networks.
Front Neuroinform. 2019;13:479876.

38. Cruz RS et al. DeepCSR: A 3D deep learning
approach for cortical surface reconstruction. In: 2021
IEEE Winter Conference on Applications of Computer
Vision (WACV). IEEE; 2021. doi:10.1109/
wacv48630.2021.00085

39. Renton AI et al. Neurodesk: an accessible, flexible
and portable data analysis environment for
reproducible neuroimaging. Nat Methods. Published
online 2024. doi:10.1038/s41592-023-02145-x

40. Hayashi S et al. brainlife.io: a decentralized and
open-source cloud platform to support neuroscience
research. Nat Methods. Published online 2024.
doi:10.1038/s41592-024-02237-2

41. Markiewicz CJ et al. The OpenNeuro resource for
sharing of neuroscience data. Elife. 2021;10.
doi:10.7554/eLife.71774

42. Masoud M, Hu F, Plis S. Brainchop: In-browser
MRI volumetric segmentation and rendering. J Open
Source Softw. 2023;8:5098.

43. Masoud M, Reddy P, Hu F, Plis S. Brainchop: Next
Generation Web-Based Neuroimaging Application.
arXiv preprint arXiv:231016162. Published online
2023.

44. Fedorov A et al. End-to-end learning of brain
tissue segmentation from imperfect labeling.
doi:10.1109/IJCNN.2017.7966333

45. Abadi M et al. TensorFlow: Large-scale machine
learning on heterogeneous systems. doi:10.5281/
ZENODO.4724125

46. Thurfjell L, Bengtsson E, Nordin B. A new three-
dimensional connected components labeling
algorithm with simultaneous object feature
extraction capability. CVGIP Graph Models Image
Process. 1992;54:357-364.

47. Andersson JLR, Skare S, Ashburner J. How to
correct susceptibility distortions in spin-echo echo-
planar images: application to diffusion tensor
imaging. Neuroimage. 2003;20:870-888. doi:10.1016/
S1053-8119(03)00336-7

48. Papademetris X et al. BioImage Suite: An
integrated medical image analysis suite: An update.
Insight J. 2006(2006):209.

Brainchop: Providing an Edge Ecosystem for Deployment of Neuroimaging Artificial Intelligence Models

Aperture Neuro 12

https://doi.org/10.1016/j.nicl.2015.06.013
https://doi.org/10.1016/j.nicl.2015.06.013
https://doi.org/10.1016/j.neuroimage.2008.03.028
https://doi.org/10.1016/j.cortex.2012.12.008
https://doi.org/10.1006/nimg.2001.0845
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1109/TMI.2021.3116879
https://doi.org/10.1126/sciadv.add3607
https://doi.org/10.1109/wacv48630.2021.00085
https://doi.org/10.1109/wacv48630.2021.00085
https://doi.org/10.1038/s41592-023-02145-x
https://doi.org/10.1038/s41592-024-02237-2
https://doi.org/10.7554/eLife.71774
https://doi.org/10.1109/IJCNN.2017.7966333
https://doi.org/10.5281/ZENODO.4724125
https://doi.org/10.5281/ZENODO.4724125
https://doi.org/10.1016/S1053-8119(03)00336-7
https://doi.org/10.1016/S1053-8119(03)00336-7

49. Ziegler E et al. Open Health Imaging Foundation
Viewer: An Extensible Open-Source Framework for
Building Web-Based Imaging Applications to Support
Cancer Research. JCO Clin Cancer Inform.
2020;4:336-345. doi:10.1200/CCI.19.00131

50. Rorden C et al. niimath and fslmaths: replication
as a method to enhance popular neuroimaging tools.
Aperture Neuro. 2024;4:50. doi:10.52294/001c.94384

51. Dao T, Ye X, Rorden C, et al. Developing a secure,
browser-based, and interactive image segmentation
system for medical images. Published online 2024.

52. Meyer, et al. WebGL-based Image Processing
through JavaScript Injection. WEB3D ’24: Proceedings
of the 29th International ACM Conference on 3D Web
Technology. 2024;20:1-5. doi:10.1145/3665318.367716

Brainchop: Providing an Edge Ecosystem for Deployment of Neuroimaging Artificial Intelligence Models

Aperture Neuro 13

https://doi.org/10.1200/CCI.19.00131
https://doi.org/10.52294/001c.94384
https://doi.org/10.1145/3665318.367716

	Brainchop: Providing an Edge Ecosystem for Deployment of Neuroimaging Artificial Intelligence Models
	Introduction
	The promise of AI to revolutionize brain imaging
	Brain Extraction
	Brain Segmentation
	Brain Morphometry (Parcellation/Volume/Thickness)
	Spatial Coregistration and Normalization
	Anomaly Detection

	Mechanisms for Sharing Neuroimaging AI Models
	Solution #1: Native Installation
	Solution #2: Containers
	Solution #3: Cloud Computing
	Solution #4: Edge-Based Deployment

	Mission Statement

	Methods
	Design Considerations
	Input Image Harmonization
	Threads and Web Workers
	Connected Components
	Image Visualization
	Refactoring

	License
	Installation

	Results
	Discussion
	Limitations
	Future Directions
	Acknowledgements
	Conflicts of Interest

	References

