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Deep learning has proven highly effective in various medical imaging scenarios, yet the 
lack of an efficient distribution platform hinders developers from sharing models with 
end-users. Here, we describe brainchop, a fully functional web application that allows 
users to apply deep learning models developed with Python to local neuroimaging data 
from within their browser. While training artificial intelligence models is computationally 
expensive, applying existing models to neuroimaging data can be very fast; brainchop 
harnesses the end user’s graphics card such that brain extraction, tissue segmentation, 
and regional parcellation require only seconds and avoids privacy issues that impact 
cloud-based solutions. The integrated visualization allows users to validate the 
inferences, and includes tools to annotate and edit the resulting segmentations. Our pure 
JavaScript implementation includes optimized helper functions for conforming volumes 
and filtering connected components with minimal dependencies. Brainchop provides a 
simple mechanism for distributing models for additional image processing tasks, 
including registration and identification of abnormal tissue, including tumors, lesions 
and hyperintensities. We discuss considerations for other AI model developers to leverage 
this open-source resource. 

INTRODUCTION 

Neuroimaging has emerged as a powerful tool for studying 
brain structure, function, and connectivity, offering in
sights into the underlying neural mechanisms of various 
cognitive processes and disorders. As we describe next, re
cent AI models have proved to be more accurate, robust, 
and rapid than traditional image preprocessing stages, in
cluding brain extraction, tissue segmentation, regional par
cellation, and anomaly detection. The rate-limiting factor 
in bringing these AI models to academic and clinical set
tings is that they are difficult to deploy to end users, often 
requiring creation of project specific environments by ex
perts in the field. These complexities, coupled with the lack 
of a platform for deploying AI solutions to common neu
roimaging problems, severely limits the impact of these po
tentially revolutionary tools. 

THE PROMISE OF AI TO REVOLUTIONIZE BRAIN 
IMAGING 

Machine learning models have already proved capable of 
robustly, rapidly, and objectively solving many labor inten
sive and error-prone neuroimaging tasks. These benefits 
are particularly attractive given the burgeoning availability 
of large open-access datasets that allow teams to aggregate 
images across diverse populations to make new discoveries. 
Here we summarize a few notable breakthroughs. Critically, 
for each advance, we also highlight the barriers that hinder 
end users from exploiting these tools. Our goal is not to 
provide an exhaustive list of AI-based medical imaging 
software, but rather to provide an overview of the breadth 
of existing, and potential applications, by highlighting a 
few seminal solutions. We further restrict our review to the 
applications of machine learning to replace traditional im
age processing stages including brain extraction, brain seg
mentation, regional parcellation, coregistration, normal
ization, and anomaly detection; the prognostic benefits for 
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behavior and disease1‑6 are beyond the scope of the present 
work. 

BRAIN EXTRACTION 

Brain extraction, the segmentation of brain tissues from 
surrounding tissue, fat and bone, plays a vital role in brain 
imaging. The traditional FSL Brain Extraction Tool (BET) 
has been widely adopted as a first step towards restricting 
analyses to cortical regions and additionally aids algo
rithms responsible for registration of similar modalities 
(i.e., T1w structural scans) between individuals and co-reg
istration across modalities within a given subject (i.e., T1w 
to T2-FLAIR).7 Furthermore, accurately extracted brains 
are better anonymized than medical images de-identified 
using traditional defacing methods. This is particularly the 
case in clinical situations where scalp features may be rec
ognizable (dermoid cysts, craniotomy scars, ear shape).8 

FSL’s BET has already been ported to web assembly, pro
viding a zero-footprint solution.9 Recently, several machine 
learning-based brain extraction models have been shown to 
outperform BET. Two noteworthy examples are HD-BET10 

and SynthStrip,11 the latter of which has proven exemplary 
when working with disparate image modalities and images 
of inconsistent quality. However, the deployment of these 
machine learning tools is hampered by the fact that they re
quire local software installation and perform slowly, or not 
at all, without access to a local Nvidia graphics card. 

BRAIN SEGMENTATION 

FreeSurfer,12 FSL FAST,13 and SPM14 all provide elegant so
lutions to the problem of brain segmentation, and each ac
curately classifies voxels as white matter, gray matter or 
cerebral spinal fluid. The thousands of citations attributed 
to each of these programs demonstrates that these mea
sures provide users with access to a powerful biomarker for 
brain function and disease. Recently, several teams have in
troduced competitive machine-learning based models, in
cluding SynthSeg.15 SynthSeg is now included with recent 
FreeSurfer versions, making model distribution straightfor
ward. However, to gain the full speed benefits, users still 
need an Nvidia graphics card accompanied by properly in
stalled CUDA drivers. 

BRAIN MORPHOMETRY (PARCELLATION/VOLUME/
THICKNESS) 

Estimates of cortical thickness combined with parcellation 
into distinct regions, based on any variety of publicly avail
able brain atlases, has proved a powerful method for neu
roscientists. Indeed, the seminal FreeSurfer articles12,16‑18 

have each been cited thousands of times. Recently, a deep 
learning based implementation of FreeSurfer brain parcel
lation, FastSurfer,19 was developed. This new version pro
duces volume segmentation results that are similar to those 
produced by FreeSurfer, but in a fraction of the time. Addi
tionally, FastSurfer demonstrated better test-retest reliabil
ity than FreeSurfer in estimating cortical thickness in longi
tudinal studies. However, once again, users wishing to take 

advantage of this incredible speed-up must have access to a 
high-performance Nvidia GPU with appropriate CUDA dri
vers. 

SPATIAL COREGISTRATION AND NORMALIZATION 

Spatial coregistration methods play a crucial role in many 
neuroimaging pipelines. For example, multi-volume time 
series such as functional MRI (fMRI) and diffusion-
weighted imaging benefit from motion correction, a process 
in which all volumes are aligned to either the first volume 
or the mean volume of a series of images. It is also often 
necessary to coregister images of different modalities, or 
acquired at different timepoints, from the same individual. 
For example, aligning a low-resolution fMRI scan to a high-
resolution anatomical image is fundamental. Finally, it is 
common to spatially normalize images, warping each in
dividual’s brain to match the shape and alignment of a 
common anatomical template, a process that allows for 
comparisons between individuals as well as application of 
group-level statistics. EasyReg20 has provided a convolu
tional neural network that is fast, works across modalities, 
and does not require pre-processing (such as brain extrac
tion or bias field correction) to operate. An exception to the 
general rule, this FreeSurfer tool provides reasonable infer
ence speed without requiring a graphics card or other spe
cialized hardware. 

ANOMALY DETECTION 

Mapping the location and extent of brain injury can aid 
the diagnosis, prognosis and treatment of the brain2 with 
seminal work describing the methods for objective analyses 
highly cited.21,22 Within the field of medical imaging, sub
stantial effort has been put into the development of auto
mated algorithms for detecting various anomalies including 
but not limited to, white matter hyperintensities,23 mi
crobleeds,24 tumors,25 as well as both acute26 and chronic 
stroke27 lesions. These methods are important, especially 
within the field of stroke. For example, lesion studies can 
provide a stronger inference than activation measures by 
revealing brain regions that are necessary.28 However, man
ually drawing a lesion on a high-resolution scan can often 
take an hour, with demarcation along the edges being 
highly subjective.29 Seminal work used traditional spatial 
normalization with outlier detection and clustering to au
tomatically identify chronic30 and acute31 injuries. Both of 
these methods do depend on the robustness of the spatial 
normalization, which can be disrupted by the presence of 
brain injury,32 albeit the acute method cleverly uses both 
the diffusion-unweighted and weighted imaging pair and 
leverages the fact that acute injury only appears in the lat
ter (so spatial transforms are estimated for an image where 
the injury is invisible, while the lesion is identified from the 
image where it is visible). Another limitation of both ap
proaches is that they require Matlab software, which hin
ders web deployment. More recently, LINDA introduced a 
random forest machine learning algorithm to identify 
chronic lesions33 and ADS (Acute-stroke Detection Seg
mentation) employed a deep learning model to identify 
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acute injury.26 However, both of these tools rely on accurate 
initial normalization using traditional methods34 which do 
influence the robustness, deployability and performance of 
these algorithms. The emergence of clinical datasets with 
gold-standard human drawn lesions27 can allow objective 
competitions to identify accurate automated lesion identi
fication. 
In conclusion, AI-augmented image processing has the 

potential to provide fast, robust and objective solutions for 
many common and fundamental neuroimaging tasks. En
suring easy and fast deployment of these approaches is crit
ical for researchers and clinicians wishing to aggregate vast 
databases of medical images across multiple sites and/or 
studies. 

MECHANISMS FOR SHARING NEUROIMAGING AI 
MODELS 

Despite the proven utility of existing AI models, they re
main difficult to distribute to other scientists and clini
cians. Many models demand specific software and hardware 
configurations. The level of technical expertise required 
to install and maintain these configurations is beyond the 
ability of many researchers and clinicians. We briefly de
scribe four mutually inclusive solutions to distribute ma
chine learning models that fill different niches: native in
stallation, containers, cloud implementations, and 
edge-based web technologies. 

SOLUTION #1: NATIVE INSTALLATION 

Perhaps the most common method for distributing AI mod
els in the field of neuroimaging is through bare-metal in
stallations. This traditional approach requires users to in
stall the necessary drivers and software environments 
directly onto their local systems. This typically includes 
setting up a Python environment to manage and isolate de
pendencies effectively. Users must then clone the model’s 
repository from a version control system like GitHub, in
stall required dependencies using package managers like 
pip, and subsequently download the specific AI models 
needed for the task (which may be hosted on separate sites 
due to file size limitations imposed by most online code 
repositories). This time-consuming process assumes the 
availability of specific types of hardware (i.e., a x86 archi
tecture CPU and an Nvidia GPU equipped with the appro
priate CUDA drivers). Addressing these hardware and emer
gent software discrepancies places a considerable burden 
on both the model developers and the end users, with de
velopers being forced to ensure their models are compatible 
with a range of operating systems/hardware configurations, 
and end users being forced to buy and maintain specific 
hardware components. Indeed, maintenance of software 
ecosystems essential to properly train and use AI models 
often requires driver/software updates that can break the 

system, demanding painful and time-consuming complete 
reinstallations. 

SOLUTION #2: CONTAINERS 

Containers like Docker and Singularity/Apptainer offer 
valuable solutions for managing and distributing complex 
software more efficiently. These tools act as encapsulated 
environments, allowing developers to package their appli
cations along with all of the necessary dependencies and 
configurations required to use them successfully. By doing 
so, they mitigate compatibility concerns and streamline the 
deployment process across different computing environ
ments. Moreover, Docker and Singularity/Apptainer enable 
precise version control, ensuring that software behaves 
consistently regardless of the underlying system thereby 
simplifying software distribution while, at the same time, 
enhancing reproducibility and reliability of computational 
tasks. Field-general solutions like Docker and Singularity/
Apptainer have thus far dominated the field of neuroimag
ing-relevant tools. However, infrastructure specific to the 
deployment of brain-data based inference generation mod
els has recently emerged. Nobrainer (https://github.com/
neuronets/nobrainer) pioneered an infrastructure for shar
ing algorithms from different organizations including Syn
thMorph,35 SynthSeg15 SynthSR,36 SynthStrip,11 kwyk,37 

and DeepCSR.38 Nobrainer provides a unified container for 
running all of these models, simplifying the distribution 
and usage of AI inference. However, as of this writing this 
container only supports the x86 architecture, is only tuned 
for Linux, and inference is only accelerated with NVidia 
graphics cards 1. Another more generalized example of this 
approach is neurodesk39 which allows loading of specific 
software versions as self-contained packages. For example, 
one could load either current or previous releases of 
FreeSurfer to replicate studies that used previously de
scribed models from that team (e.g. easyReg, SynthSeg, 
SynthStrip, SynthSR). 

SOLUTION #3: CLOUD COMPUTING 

For many use cases, cloud computing can provide an el
egant method for deploying machine learning inferences. 
In this case, a centralized computer houses the specific 
software, versioning and hardware required to compute in
ferences. The user simply needs to select the images to 
process, and upload their data. A clear example of this ap
proach is brainlife40 (brainlife.io) which allows users to ap
ply machine learning inferences like SynthSR and Synth
Strip to either a user’s personal data or from linked 
open-access repositories such as OpenNeuro.41 Another ex
ample is neurodesk which can be deployed as cloud in
stances.39 An important benefit of cloud resources is their 
ability to scale on demand, whereas other methods are con
strained by local hardware. This advantage makes them 
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particularly apt for processing large datasets that would be 
difficult to analyze in a timely manner using local compute 
resources. Therefore, cloud computing enhances efficiency 
by allowing multiple users to concurrently share a pool of 
resources, eliminating the need for each user to maintain 
sufficient resources to handle their peak demands indepen
dently. However, cloud resources are not ideal for every ap
plication. One significant limitation is that images must be 
shared with another organization. This is not a viable op
tion in many situations for ethical, regulatory, or legal rea
sons (particularly prior to anonymization measures such 
as removing the face or scalp from images). Further, cloud 
computing can incur a penalty for transferring large data 
between a user’s computer and the remote service. Another 
serious limitation with current cloud implementations is 
that the results are not interactive; a strong assumption 
is that all input data are similar and that the output from 
the automated models is without error. In practice, both of 
these assumptions are rarely correct. Interactive visualiza
tion and editing tools are required to help confirm and en
sure that the inference model processed the images suc
cessfully. 

SOLUTION #4: EDGE-BASED DEPLOYMENT 

The final method of distributing neuroimaging machine 
learning models leverages edge-based web technologies. 
This method harnesses the power of end users’ local com
pute resources to process images and generate and save 
the derivatives. This approach leverages two properties of 
most inference models: estimating the inferences of exist
ing models is much less computationally taxing than train
ing new models, and application of existing models to ex
isting data is a task that is ideally suited for graphics cards’ 
advantage for massively parallel operations. Of particular 
interest, the Open Neural Network Exchange (ONNX) web 
runtime and TensorFlowJS JavaScript packages allow mod
els to be run using the WebGL and WebGPU libraries which 
harness the local graphics card regardless of manufacturer, 
thanks to the browser acting as an operating system remov
ing the need for the user to provide specific hardware and 
drivers (e.g., Nvidia graphics cards with CUDA libraries). 
Since the image data is not shared with the cloud, edge 
computing can address the privacy concerns associated 
with cloud computing. From the model developer’s per
spective, a key advantage of edge computing is that it har
nesses the end user’s hardware for computation, allowing 
it to scale effortlessly with the number of users. This is in 
contrast to cloud computing, where demands on central
ized hardware increase as the number of active users grows, 
requiring continuous resource allocation and management. 
Edge-based deployment is simple for the user, with no 

software to install. To start using pre-trained deep learning 
models a user just needs to open a URL in their browser, 
which in our case takes around 200 ms to load six seg
mentation models and provide 15 ways to run them. These 
packages run the models locally within the sandbox of the 
user’s browser without the need for data exchange with a 
remote server, as there is no back-end. Since image data 
remains local, this approach bypasses privacy concerns of 

cloud solutions and is therefore ideally suited for clinical 
applications (such as lesion detection) and image de-facing 
or brain extraction which remove recognizable features to 
allow subsequent sharing of anonymized images. The 
brainchop42,43 project from the Nobrainer team showcases 
this approach, providing models for brain extraction, tissue 
segmentation and parcelation as shown in Figure 1. 
Rather than assume that all inferences are successful, 

brainchop allows users to interactively view the input and 
segmented images, ensuring model accuracy. In this way, 
brainchop is an ideal framework for customization and 
user-driven model tuning that could eventually allow end-
users to further refine/tailor AI models to their specific 
needs or the needs of the research community. One way 
this could be accomplished is by including the ability to 
adjust model parameters, like threshold levels, segmenta
tion boundaries, and coregistration points directly within 
the visualization/feedback module. For instance, in cases 
where automated image segmentation fails due to atypical 
anatomy or poor image quality, users could manually refine 
the segmentation boundaries. This interactive approach 
could be used to iteratively provide AI model developers 
with error feedback, that could then be used to justify 
change in the AI model, perhaps resulting in an improved 
ability to process both normal data and handle occasional 
edge-cases. We envision that this on-the-fly feedback could 
be part of a virtuous cycle that would allow AI systems to 
continuously ‘learn’ and improve their performance over 
time. It is worth noting that visualization is useful for ma
chine learning regardless of the form of distribution (e.g., 
native, container, cloud or edge), and a web-based visual
ization module could be shared across all these methods. 
Indeed, this could allow crowdsourced training for huge 
datasets, leveraging the diversity of aggregated datasets 
and editors. 

MISSION STATEMENT 

Our primary objective is to provide a method to deploy 
neuroimaging AI models that is simple, efficient, ensures 
data safety, and provides users with sufficient feedback to 
catch and fix errors. This method should allow developers 
to quickly and easily deploy their AI models and allow users 
to confidently apply these solutions to their images. We 
believe the best way to achieve this objective is through 
edge-based computing which protects privacy by using lo
cal hardware, has zero footprint (no specialized software 
to install) and is universal (works on any operating system 
and graphics card). To achieve this aim, we comprehen
sively refined and optimized brainchop, bringing it from a 
prototype to a robust tool that can be directly used by end 
users with existing models and harnessed by other teams 
with their own models. These refinements include remov
ing dependencies, improving performance, and adding fea
tures such as the ability to manually edit AI-generated na
tive space segmentations. The Methods section describes 
our implementation and the Results section describes the 
performance improvements relative to the initial prototype. 
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Figure 1. Examples for each of the three model families currently supported by brainchop.             
The segmentation (top) identifies gray (red) and white (white) matter. The brain extraction (middle) creates a mask of the brain voxels (red). The parcellation classifies 104 cortical 
regions. The colors and regions come from the FreeSurfer Color Look Up Table. 

METHODS 

DESIGN CONSIDERATIONS 

Here we describe refinements since brainchop version 2, 
which we have previously described.42,43 The Results sec
tion provides objective measures for the cumulative benefit 
of these optimizations. The major performance difference 
between version 2 and 3 is implementing 16-bit instead of 
32-bit textures for the models which significantly improved 
the performance by reducing memory usage and data trans
fer times. In contrast, the version 4 optimizations focused 
on new features, reducing idle time, reducing time spent on 
concurrent tasks and the image processing stages that oc
cur before and after the model inferences. Therefore, it is 
worth noting that the changes from version 2 to 3 impact 
the actual inference time of the model, while the changes 
from version 3 to 4 largely focus on processing operations 
that occur before and after the inference. Therefore, the 
version 4 optimizations will have smaller proportional ben
efits as the inference model complexity increases (though 
it is worth noting that the introduction of web workers can 
reduce time spent idle or waiting for concurrent tasks). 
The new user interface is shown in Figure 2. The user can 

drag and drop a voxel-based medical image of the head, in 
any of the supported formats (with NiiVue already provid
ing support for the NIfTI, NRRD, MRtrix MIF, AFNI HEAD/
BRIK, MGH/MGZ, ITK MHD, ECAT7, and DICOM formats) 
and select any of the pre-specified image processing models 
from the drop down menu. The results are shown as an in
teractive overlay on top of the source image, with sliders 
allowing the user to independently adjust the visibility of 

the source and classified image. A button allows the user 
to save the model as a NIfTI-format image. Alternatively, a 
button allows the user to save the entire scene (background 
image, overlay, drawings, contrast settings, crosshair loca
tion and annotations) as a single file (using NiiVue’s doc
ument format with the .nvd extension) that can be viewed 
with any NiiVue instance. As we note, this provides a vir
tuous cycle between model developers and users, providing 
a mechanism for sharing edge cases where models do not 
act as expected. A checkbox allows users to select whether 
models are run on an independent thread (web worker) or 
on the main thread. Simple drawing tools allow the user to 
modify segmentation models, with the ability to edit model 
results. To provide a minimal user interface, these tools 
currently only provide binary operations, but the underly
ing NiiVue visualization system can support more compli
cated drawings (e.g., using different pen colors to edit spe
cific classes for the segmentation and parcelation models). 
We also provide a diagnostics model, which provides text-
based details on the user’s system and the execution of the 
most recent model. These details can help troubleshoot un
expected behavior. The user interface is built using pure 
HTML, rather than using a widget framework (e.g., Angular, 
React, or Vue). This minimal, framework agnostic approach 
aids users who wish to embed these models in their pre
ferred framework, as the web page directly interacts with 
the modular NiiVue and brainchop functions. 
Segmentation accuracy and out-of-sample robustness 

are the driving objective measures for selecting between 
competing neuroimaging machine learning models. How
ever, considerations regarding the speed and resource de
mands of the inference models have clear implications. 
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Figure 2. The brainchop web page (    https://neuroneural.net/brainchop/  ) allows users to select between tissue        
segmentation, brain extraction and parcelation models from a drop down menu.            
Users can drag and drop their own images. The integrated visualization allows users to interact with the images. Note that the name of the region selected by the crosshairs is shown 
in the status bar in the bottom left. Users can save the resulting classification results as NIfTI images or edit them as required prior to saving them which allows for improved quality 
control. 

Users at well-resourced institutions working with huge 
datasets would clearly prefer fast but demanding solutions. 
On the other hand, catering to these users excludes many 
potential users. Brainchop supports both groups by having 
both fast but demanding, as well as slow but lean variations 
for some of the more complex models. The current brain
chop models are all based on MeshNet44 models that are 
renowned for their modest computational requirements. 
These models were converted to TensorFlow.JS (TFJS).45 

Beyond the basic model inference, we also provide Tensor
FlowJS filters for attenuating noisy voxels to improve seg
mentation accuracy. Both models and filters currently use 
the WebGL2 TFJS backend that leverages the graphics card 
of the user’s computer (and can be extended to the WebGPU 
backend if this matures to support 3D convolutions). In
deed, the recent releases of brainchop conduct more of the 
computations on the graphics card, improving the speed. 

INPUT IMAGE HARMONIZATION 

Raw neuroimaging data is often acquired with a range of 
resolutions and voxel sizes. However, machine learning 
models are typically trained on images of a specific resolu
tion. Similar to many other neuroimaging AI tools, brain
chop requires that the input images are 256×256×256 voxels 
with a 1mm isotropic resolution. The original brainchop 
used the Python code from FastSurfer19 to reslice input im
ages of any resolution to these dimensions. However, this 
choice added a large number of dependencies including 
matplotlib, cycler, six, fonttools, kiwisolver, pillow, python-
dateutil, pytz, scipy, nibabel, and numpy all of which 
needed to be emulated via pyodide. As we demonstrate in 
the Results section, downloading these packages to con
form an initial image is slow (particularly penalizing users 
with limited internet bandwidth), retaining these packages 
for subsequent images holds on to local memory, and the 
emulation for reslicing is slow. To address this, we ported 
these routines to pure JavaScript. 

THREADS AND WEB WORKERS 

The original brainchop ran all computations on the web 
page’s main thread, which impacted performance and inter
activity. The current version of brainchop allows the user 
to specify whether the models run on the main thread (us
ing timers and callback functions to return results) or in
dependently on a web worker thread (using asynchronous 
calls when necessary and messaging to return results to the 
main thread). This feature required numerous changes as 
we found that contemporary web workers have constrained 
heap size relative to the main thread. To address this, we 
preallocated arrays of known sizes rather than dynamically 
growing arrays. Fortuitously, this led to speed benefits. We 
maintain code for both the main thread and web worker for 
two reasons. First, a web worker requires access to an Off
Screen canvas that has only recently been introduced in the 
WebKit-based browsers such as Safari and is not yet sup
ported by TensorFlowJS (so at the time of this writing our 
models must run on the main thread for these browsers). 
Second, there is no intuitive way to predict whether a given 
task will perform better on the main thread or using a 
web worker. Pragmatically testing the Chrome and Firefox 
browsers we have observed that some models are faster 
with web workers while others are faster on the main thread 
in a complex manner that interacts with the choice of 
browsers. We speculate that this reflects differences in re
sources provided to these different threads. Regardless, 
these differences might change with future web browser 
updates, so providing both methods allows the developers 
and users to choose the fastest solution for their situation. 

CONNECTED COMPONENTS 

The results of many AI image segmentation models benefit 
from refinement for connected components. For example, it 
is often necessary to ensure that voxels in a given area are 
contiguous with each other. For instance, proper considera
tion of connected components prevents erroneous identifi
cation of two areas (connected by a narrow bridge) as a sin
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gle contiguous region. We developed a fast, pure javascript 
solution based on the algorithm of Thurfjell and col
leagues.46 Specifically, we ported the C code from SPM’s 
bwlabel function.47 Crucially, since parcellations can in
clude many classes (for example, our FreeSurfer parcella
tion model generates 104 distinct regions), we modified the 
algorithm to identify the largest connected components of 
all classes in a single pass. 

IMAGE VISUALIZATION 

The prior releases of brainchop used the WebGL1-based 
Papaya for visualizations. Unfortunately, the development 
of Papaya has been suspended and WebGL1 does not sup
port 3D textures that can aid interactive volume rendering. 
Therefore, brainchop also depended on a WebGL2-based 
ThreeJS volume rendering module. To address this, we up
graded brainchop to use the WebGL2-based NiiVue which 
supports volume loading (allowing brainchop to import im
ages in the NIfTI, NRRD, MRtrix MIF, AFNI HEAD/BRIK, 
MGH/MGZ, ITK MHD, ECAT7, and DICOM formats), planar 
visualization and volume rendering using a single context 
(reducing resource usage) without requiring Papaya or 
ThreeJS. While our reference implementation uses NiiVue 
for our visualization, our modular code can be embedded 
in other web-capable viewers including BioImage Suite 
Web,48 the OHIF viewer,49 and VTK.js (https://kit
ware.github.io/vtk-js/i). Since NiiVue has already been 
adopted by the AFNI, brainlife, FreeSurfer, FSL and Open
Neuro teams and is supported by an active grant (NIH 
RF1MH121885), sustained development is ensured. Addi
tionally, NiiVue provides several important capabilities to 
enhance brainchop. First, NiiVue provides drawing tools 
that allow users to edit models, for example removing mis-
classified tissue before saving the result. In the future, we 
envision dynamic models, where a user can correct a single 
slice and the model uses this feedback for other slices. Sec
ond, NiiVue provides an ability to not only save NIfTI-for
mat images, but also annotate images and save the entire 
scene. This allows one user to interactively adjust the con
trast, crosshair position and write comments that they can 
send as an email attachment to another user. A nice feature 
of web pages is that they are required to live in a sandbox, 
without access to a computer’s file system and restricted 
memory. Therefore, web pages provide relatively safe at
tachments. This can help create a virtuous cycle between 
model users and model developers, allowing end users to 
document edge cases. 

REFACTORING 

The original brainchop code was monolithic, with the ma
chine learning code interleaved with Papaya specific visu
alization calls as well as diagnostics. The desire to support 
NiiVue as well as the move to support image processing 
using either web workers (which must communicate with 
the main thread via serialized objects) and the main thread 
(which can pass data directly via callbacks) encouraged us 
to modularize the code. Separating the visualization from 
the image processing can allow future developers to replace 

NiiVue with another visualization tool, or even remove the 
visualization entirely (for example, running the image pro
cessing from the command line using node.js). Likewise, 
brainchop functions for acquiring machine specific diag
nostic data (which can help resolve machine specific issues) 
are now provided in a separate file. 

LICENSE 

Our implementation uses the permissive and open BSD 
2-Clause (NiiVue) and MIT (brainchop) licenses. We see 
these licenses as being universal donors, allowing inclusion 
in all other projects and not restricting contributions from 
researchers at different institutions.50 

INSTALLATION 

Anyone with access to a web browser can use brainchop 
(https://brainchop.org/). This provides drag-and-drop sup
port for any voxel-based format that NiiVue supports (e.g. 
NIfTI, NRRD, MRtrix MIF, FreeSurfer MGH, ITK MHD, DI
COM). Developers can easily clone the main repository to 
create forks that support their own models 
(https://github.com/neuroneural/brainchop) and if they 
wish they can make pull requests to contribute to the core 
functions. The source code is also available at github 
(https://github.com/neuroneural/brainchop) with a com
mand to host a local hot-reloadable web page (npm run dev) 
that can run on the Linux, Windows, and MacOS operating 
system. The hot-reloadable page automatically refreshes 
when any of the source files are modified, allowing devel
opers to interactively modify the underlying code. 

RESULTS 

The impetus for our optimization of brainchop was to im
prove compatibility (support for constrained hardware), en
hance interactivity (with web workers running in the back
ground), reduce dependencies (easing deployment) and 
adding features (e.g., the ability to edit model predictions). 
The benefits of these modifications are impossible to objec
tively quantify. However, a consequence of these changes 
is that the resulting models are faster and require less re
sources. Here we quantify the improvements in these met
rics. 
We evaluated the performance of brainchop release 4.0 

(which incorporates all the features described in the previ
ous section) with brainchop release 2.1 (which incorporates 
feedback from the review of our earlier publications42), as 
well as release 3.2.1. For brevity, we refer to these releases 
as versions 2, 3 and 4 respectively, though we note that 
each version has multiple releases that each introduce in
cremental improvements. All testing used a T1-weighted 
3D gradient echo with inversion recovery scan (TI = 750ms, 
TR = 7.25ms, TE = 3.1ms) acquired using a UIH scanner 
(https://github.com/neurolabusc/dcm_qa) with the raw im
age having an interpolated resolution of 460x512 in the 
sagittal plane (230x256mm field of view) with 160 1mm 
thick slices with an in-plane acceleration factor of 2.5. This 
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image was chosen as no images from this manufacturer 
were included in any of the training datasets. All tests 
were conducted on a 16GB Apple MacBook Pro with an Ap
ple M2 Pro CPU and integrated GPU running MacOS with 
the Chrome browser version 124 as well as an AMD Ryzen 
7950X3D CPU with 128GB of RAM and aNVIDIA RTX 4070 
Ti 12GB graphics card running Linux with the Firefox v 128 
browser. All tests were run 3 times with the median time re
ported. 
Brainchop 4 allows the user to select between 15 models, 

providing three families of operation: tissue segmentation, 
brain extraction, and parcellation. The performance of 
these models on the test image is shown in Figure 2. Spe
cific models vary in terms of the number of segmentation 
classes (e.g., number of regions for a parcellation) and 
hardware demands (e.g., the FreeSurfer 104 region parcel
lation provides both a slow, low memory model as well as 
a faster, higher memory model). For evaluation, we tested 
one exemplar from each family. We chose the Tissue GWM 
(light) segmentation model that identifies white and gray 
matter throughout the brain. The representative brain ex
traction model was Extract the Brain (FAST). Finally, the 
FreeSurfer 104 region model was the representative parcel
lation model, using the Low Memory variation for the MacOS 
computer (which used integrated graphics) and the High 
Memory variation for the Linux computer (which had a dis
crete graphics card). 
While all subsequent measures focus on the time to per

form tasks, it is worth noting that our revisions also dra
matically reduce memory demands. In particular, the older 
version of brainchop downloads and runs Python code in 
emulation to conform data, with this code cached in mem
ory to accelerate future runs. After running this stage, a 
brainchop web page reports consuming around 270MB of 
memory, and after several runs of models this can exceed 
500MB of memory usage. In contrast, the new pure 
JavaScript conform function is very compact, and, by forc
ing web workers to terminate when the process is com
pleted, we can ensure thorough garbage collection, with 
memory usage reported around 8MB when not actively cal
culating a model. 
Memory differences are also observed for the 104 region 

parcellation. This model failed with brainchop 2 using the 
MacOS computer. This model succeeded with brainchop 3, 
which we believe reflects the improvements in memory us
age. However, brainchop 4 dramatically reduces heap mem
ory usage relative to version 3 (as previously noted, adding 
web workers required optimization of heap usage). Specif
ically, version 4 has 173 times less peak heap usage than 
version 3 (7.7 vs 1338.2MB). 
Figure 3 illustrates the performance improvement of 

brainchop versions 3 and 4 relative to brainchop 2. This fig
ure illustrates performance on the conform function as well 
as the time to compute the segmentation, extraction and 
parcellation models. 
The first stage with all processing was to conform the 

data to be 256×256×256 voxels with a 1mm resolution using 
an unsigned 8-bit data type. This timing is excluded from 
all subsequent tests, which used the conformed image as 

Figure 3. Acceleration of brainchop 4 (green) and       
brainchop 3 (red) relative to brainchop 2.        
This reflects the cumulative effect of all optimizations on the total time to apply differ
ent image processing steps. The MacOS computer (bright bars) used the Chrome browser 
and an integrated graphics card (Apple M2 Pro). The Linux computer (dark bars) used 
the Firefox browser with a discrete graphics card (AMD 7950X3D with Nvidia 4070 Ti). 
The acceleration is shown as percent, so a 100% speedup reflects half the time to com
plete an operation. The asterisk notes that parcellation crashed with version 2 on the 
MacOS computer, and therefore the bright green bar illustrates the speedup of version 4 
versus 3. 

input. Because the time to download the large Python li
braries depends on internet bandwidth, and the fact that 
this step is only required for the first run, we only report 
the time to compute the conform stage. This stage uses 
identical code for brainchop versions prior to version 4, so 
only one set of comparisons is provided. On the MacOS 
computer, version 4’s native code was 6.8 times (676ms vs 
4611ms; or 582%) faster than the emulated Python, while 
conforming was 4.9 times (739ms vs 3655ms) faster on 
Linux. 
Brainchop 4 is dramatically faster than brainchop 2. On 

the MacOS computer, tissue segmentation was 4.2 times 
faster (2144ms vs 9001ms), brain extraction was 4.2 times 
faster (1962ms vs 9251ms) and the 104 model parcellation 
only ran using the optimized code (23196ms). For the Linux 
computer, tissue segmentation was 13.2 times faster 
(898ms vs 11820ms), brain extraction was 13.9 times faster 
(911ms vs 12646ms) and the parcellation was 7.0 times 
faster (1627ms vs 12428ms) 
Brainchop 4 is also reliably faster than brainchop 3. On 

the MacOS computer, tissue segmentation was 2.6 times 
faster (2144ms vs 5519ms), brain extraction was 2.7 times 
faster (1962ms vs 5788ms) and the 104 model parcellation 
was 37 times faster (23196ms vs 85048). For the Linux com
puter, tissue segmentation was 9.3 times faster (898ms vs 
8387ms), brain extraction was 10.3 times faster (911ms vs 
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9419ms) and the parcellation was 4.8 times faster (1627ms 
vs 8444ms). 

DISCUSSION 

The brainchop web page provides fast and robust brain ex
traction, tissue classification and parcellation with a simple 
drag and drop interface. The models work across hardware 
and software, merely requiring any modern web browser. 
All computations are conducted locally, protecting the pri
vacy of the user’s data. By leveraging the user’s graphics 
card, most models run in a few seconds. The graphical in
terface lets the user inspect the results. The user can also 
edit errors, save the resulting images and provide diagnos
tics back to the developers. Taken together, this showcases 
an end-to-end ecosystem for deploying image processing 
AI models for voxel-based neuroimaging data. 
Furthermore, brainchop provides a framework for other 

developers to extend. Developers can fork the project to 
distribute their own models, or contribute new models to 
enhance the core brainchop distribution. In particular, we 
look forward to models that can provide image registration 
and anomaly detection, as well as those that are not modal
ity dependent. 
We recognize that most neuroimaging AI model develop

ment teams use Python-based model training frameworks 
like PyTorch and TensorFlow, and utilize the mature and 
well supported set of Python libraries such as numpy and 
nibabel. One of our primary goals was to provide optimized, 
high performance JavaScript helper functions to allow these 
developers to easily bring their models to web pages. In 
the future, we hope to expand these functions to meet the 
needs of the community. For example, we have already in
troduced a function to conform data, but some may also 
want methods to reverse this process (to transform a clas
sification image back to the native space of the source im
age). 

LIMITATIONS 

Our objective is to create an ecosystem that will help other 
model developers disseminate their work to end users. Our 
initial models are purposefully restricted to tissue segmen
tation, brain extraction and brain parcellation, but this 
need not be the case as brainchop continues to evolve. 
As noted previously, other groups have described models 
for spatial registration, and mapping abnormalities (acute 
stroke, chronic stroke, tumor, white matter hyperintensi
ties) that could be converted too, but these are not available 
as edge applications. Furthermore, all of our current mod
els require T1-weighted MR scans as input, and will fail 
with other modalities. Of course models could be trained 
to use other modalities, especially given the demonstrated 
multi-modality robustness of models like SynthStrip.11 An
other limitation is that many of the technologies we are 
using are emergent, and there are clear early-stage diffi
culties. First, while our current code runs across operating 
systems (Linux, Windows, MacOS) and graphics card ven
dors (Apple, AMD, Intel, NVidia) during our development 

we identified interactions, such that a specific graphics card 
would work on one operating system and not another. A 
nice aspect of having live demos is that it was easy for the 
vendor to duplicate our problem, which is a necessary first 
step towards resolution of core issues that create compati
bility issues for TFJS users. Second, as we note above, some 
web worker implementations and access to the OffScreen 
canvas remain immature which impacts performance. De
spite using web standards, we note that at the time of this 
writing many tablets and phones do not currently support 
our TFJS models. Also, it is worth noting that efforts to im
prove the privacy of web browsers can interfere with frame
works like ONNX and TFJS that use the graphics card for 
computation. For example, Firefox features an advanced 
function named privacy.resistFingerprinting which falsely 
reports artificially constrained graphics card capabilities so 
the variabilities in hardware cannot be used to identify a 
user. With this security feature set, frameworks will report 
that the hardware is insufficient to run typical machine 
learning models. 

FUTURE DIRECTIONS 

The current brainchop distribution has a deliberate mini
malism, providing a basic recipe for delivering AI models to 
users. However, we have a clear vision for upcoming forks 
that can address specific niches. Specifically, we are actively 
working with teams that are using ONNX,51 an interopera
ble format for many training frameworks, to support a di
verse variety of models and TinyGrad (an emerging light
weight deep learning library) rather than only supporting 
TFJS. These solutions all rely on the same core helper func
tions, but leverage the specific strengths of each of these 
platforms. NiiVue also supports boostlets that can allow a 
user to interactively select a region of an image and ap
ply a filter, with initial functions already supporting the 
Segment Anything Model.52 As noted, we envision a future 
in which dynamic models will learn in real time as users 
make corrections, propagating this knowledge downstream. 
To ensure privacy, web pages are intentionally constrained. 
However, the modular design of NiiVue and brainchop make 
it easy to embed in desktop applications. Indeed, the Ni
iVue project already includes electron applications and Ap
ple applications (built using Swift) that embed the visual
ization into a desktop application. This can aid niches such 
as processing BIDS datasets (where features like the in
heritance principle are incompatible with a web page’s re
stricted permissions). While our current models offer solu
tions for brain extraction, tissue segmentation, and region 
parcellation, we envision teams leveraging these core func
tions for additional applications. For instance, future mod
els could be utilized for anomaly detection, lesion mapping, 
spatial registration, and quantifying structural and func
tional brain connectivity. 
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