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Similarity analyses between multiple correlation or covariance tables constitute the 
cornerstone of network neuroscience. Here, we introduce covSTATIS, a versatile, linear, 
unsupervised multi-table method designed to identify structured patterns in multi-table 
data, and allow for the simultaneous extraction and interpretation of both individual and 
group-level features. With covSTATIS, multiple similarity tables can now be easily 
integrated, without requiring a priori data simplification, complex black-box 
implementations, user-dependent specifications, or supervised frameworks. Applications 
of covSTATIS, a tutorial with Open Data and source code are provided. CovSTATIS offers a 
promising avenue for advancing the theoretical and analytic landscape of network 
neuroscience. 

Correlation, covariance and distance matrices are among 
the most commonly used data types in network neuro
science.1‑4 These matrices are typically built via pairwise 
comparisons of functional and/or structural neuroimaging 
data. In these matrices, one entry stores a numerical value 
quantifying the similarity between two spatial locations 
(i.e., brain voxels, vertices, regions, channels) and the pat
tern of these entries reflects an estimate of brain network 
organization. 

In network neuroscience, matrices—also called here data 
tables—are typically obtained from sets of variables col
lected on the same individuals (e.g., multiple scans or ses
sions, multiple imaging modalities),5‑9 or from the same 
variables collected on different individuals (e.g., one type 
of imaging scan on several participants).10‑13 Data tables 
are then compared to one another to assess temporal net
work structure,14‑17 multi-modal network organization,4,
18,19 individual differences,20‑25 and group or population 
effects.26‑30 Data tables are also contrasted with one an
other to investigate the statistical reliability of patterns de
rived from network neuroscience methods.31,32 Similarity 
analyses among multiple data tables thus constitute the 
cornerstone of network neuroscience research. 

In network neuroscience, similarity analyses are most 
often conducted via mass univariate approaches contrast
ing one edge at a time, or on aggregate information within 
data tables (e.g., graph theory analyses33) or across (e.g., 
categorical groupings), or on single tables with reduced di
mensions.34 While these approaches reduce the high di
mensionality of network neuroscience data and simplify the 
analytic landscape, they may limit the statistical robust
ness of network neuroscience findings and obscure impor
tant properties of brain function that could be revealed 
from the use of multivariate methods applied to full data 
tables. Multivariate approaches able to align and compare 
relational information from full data tables across multiple 
observations can augment the utility, precision, and applic
ability of network neuroscience data and advance our un
derstanding of brain network organization in health and 
disease. 

Statistical methods exist—called multi-table meth
ods35‑43—explicitly designed for multivariate similarity 
analyses of full data tables. Their goal is to identify struc
tured patterns within preserved high-dimensional multi-
table data, and explain and visualize their statistical depen
dencies. Multi-table methods serve as the basis of network 
investigations across scientific disciplines,44 yet they are 
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not well known in network neuroscience and therefore re
main underused. 

Network neuroscience presently counts a few multi-
table methods, including machine learning and deep learn
ing tools,45,46 graph neural networks,47,48 multi-layer and 
multiplex network approaches,18,49 similarity network fu
sion techniques50 and non-linear matrix decomposition al
gorithms.51‑53 These approaches have been applied to a 
variety of research questions about brain network orga
nization both in health and disease.54‑61 Yet, they often 
yield complex results challenging to interpret, potentially 
because these methods rely on complex mathematical im
plementations62,63 and supervised analytical frameworks51 

that do not allow results to be traced back to the original 
data. There is therefore a pressing need in network neuro
science for multi-table methods that preserve data fidelity 
and enhance interpretability. CovSTATIS solves this prob
lem by analyzing intact data tables in a linear, unsupervised 
manner, thus allowing for the simultaneous extraction and 
interpretation of both individual and group-level features. 

The covSTATIS method (and its variant DISTATIS) is a 
three-way extension of multidimensional scaling and Prin
cipal Component Analysis.64‑66 The name, covSTATIS, 
combines “covariance” with “STATIS” (a French acronym 
for “structuring three-way statistical tables”). CovSTATIS 
takes as input symmetric, positive semi-definite matrices 
(i.e. symmetric matrices such as cross-product, covariance 
and correlation matrices, with non-negative eigenvalues) 
and assesses their similarity.67‑69 While covSTATIS is 
specifically designed for correlation/covariance matrices, 
there exists an equivalent approach for distance matrices 
called DISTATIS.64 CovSTATIS and DISTATIS belong to the 
STATIS family of multi-table approaches. 

In covSTATIS, the pair-wise similarity among I correla
tion/covariance matrices of dimension J × J (with J being 
the number of variables) is quantified by the RV coefficient 
– a measure analogous to a squared Product-Moment cor
relation coefficient with values in the interval [0,1].67,70 

Given I correlation/covariance matrices, the RV coefficients 
are stored in an I × I similarity matrix C, where the rows/
columns correspond to the I data tables (Figure 1 , step   
1). Next, covSTATIS performs an eigenvalue decomposition 
(EVD) on the C matrix and takes its first eigenvector (of di
mension I × 1) to derive weights for each data table. Note 
that because the RV is always positive all the entries for 
the first eigenvector of C are positive—a consequence of 
the Perron-Frobenius theorem. The first eigenvector maxi
mally explains the variance in C and quantifies how similar 
each table is to the common pattern. Weights for each data 
table are derived by scaling the first eigenvector to sum 
to 1. Higher weights identify tables that are more simi
lar to the common pattern, whereas lower weights identify 
tables less similar to the common pattern. These weights 
are then used to linearly combine the data tables by mul
tiplying each table by its weight and summing across all 
the weighted tables. This step generates a J × J weighted 
group matrix—called the compromise matrix (Figure 1 , step   
2)—which is next decomposed by EVD. Orthogonal com
ponents are extracted from this second EVD and serve as 

the main output of covSTATIS (Figure 1 , step 3  ). Compo
nents reveal the similarity between J variables with regards 
to the compromise—the ensemble of the similarity patterns 
across all I data tables. For each component, global factor 
scores of dimension J × L (with L being the number of com
ponents) capture the relationship between variables with 
respect to such compromise. For each component and each 
of the I correlation/covariance matrices, J × L partial fac
tor scores can be obtained to project table-specific relation
ships between variables onto the same component space 
(Figure 1 , step 4  ). By quantifying the deviation of each par
tial factor score from its corresponding global factor scores, 
we can assess differences between each table and the com
promise. 

For example, given a covSTATIS analysis of multiple 
functional connectivity matrices where only positive con
nectivity values are considered, global factor scores repre
sent the brain regions on the component space and illus
trate the associations in their connectivity profiles across 
the whole sample. Partial factor scores represent the brain 
regions of each individual’s connectivity matrix and illus
trate how regions are associated with each other in relation 
to the group pattern. Factor scores of any two components 
can be used as coordinates to draw scatter plots in the com
ponent space, where the distance between two scores rep
resents their similarity. Two global factor scores close to 
each other indicate high similarity in their respective con
nectivity patterns across the whole sample, while a partial 
factor score close to its corresponding global factor score 
represents high similarity between an individual’s regional 
connectivity profile and the regional profile from the whole 
sample. In sum, covSTATIS provides an unsupervised, lin
ear framework to characterize the similarity among sets of 
correlation/covariance matrices, and it allows for a one-
to-one mapping between input (i.e., whole set of tables 
and single tables) and output (i.e., global and partial factor 
scores). This approach can both identify group-level pat
terns as well as provide individual-specific expressions of 
the patterns. 

CovSTATIS has both commonalities and differences com
pared with other dimensionality reduction methods used 
in neuroscience: (1) Principal Component Analysis (PCA)71,
72 and Multidimensional Scaling (MDS)73—these two tech
niques incorporate a single data table; PCA is performed 
on an observation-by-variable table, and MDS on a dissim
ilarity matrix between observations. They rely on the same 
dimensionality reduction technique as covSTATIS, but cov
STATIS extends MDS by analyzing multiple similarity ma
trices; (2) Multiple Factor Analysis (MFA)74,75 and STA
TIS64—these are other component-based methods that 
incorporate multiple data tables, and they are particularly 
suitable for rectangular data structures. Such data struc
tures are less common in network neuroscience, making 
MFA and STATIS less desirable methods than covSTATIS. 
CovSTATIS combines MDS and STATIS to deal with multiple 
squared, symmetric, correlation/covariance matrices–the 
standard format of network neuroscience data; (3) Repre
sentation Similarity Analysis (RSA)76—this method com
putes a dissimilarity matrix, akin to the matrix of RV coef

covSTATIS: A multi-table technique for network neuroscience

Aperture Neuro 2



Figure 1. CovSTATIS is used to analyze multiple correlation/covariance matrices obtained either within or between              
individuals. We provide an example using functional connectivity matrices, collected on several individuals, as               
input to covSTATIS.    (1)  First, covSTATIS combines all connectivity matrices by quantifying their overall similarity            
via their R  V  coefficients. These coefficients are then stored in the         RV  matrix (C). Next, covSTATIS uses the first        
eigenvector ( u1) of the    RV  matrix to derive weights for each connectivity matrix.         (2)  With these weights, covSTATIS     
computes the linear combination of all matrices to generate a common space, the compromise, which best                 
represents the connectivity pattern across the sample.        (3)  The compromise then undergoes eigenvalue      
decomposition and orthogonal components are extracted to characterize the variance in the whole-sample              
connectivity pattern.   (4)  The variables of the compromise (illustrated by different shapes of green dots; i.e.,              
individual brain regions) are represented as global factor scores in the component space. Global factor scores                 
represent the connectivity pattern of each brain region across the entire sample. The same variables from each                  
individual matrix can also be back projected onto the same space as partial factor scores (indicated by points with                    
the same shape of different colors). Partial factor scores represent the connectivity pattern of each brain region for                   
a specific individual. Importantly, the weighted means of all partial factor scores of a given variable equal to their                    
global factor scores (i.e., barycentric property). In this component space, the distance between factor scores provides                 
meaningful and interpretable information about the similarity in the connectivity profile of any two brain regions.                 
The closer the (global or partial) factor scores of two brain regions, the more similar their connectivity profiles.                   
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ficients in covSTATIS, from a set of correlation/covariance 
matrices. RSA extracts components from this dissimilarity 
matrix to characterize differences between the correlation/
covariance matrices. These components are the main out
put of RSA. CovSTATIS, on the other hand, derives weights 
from these components to compute the compromise—the 
linear combination of all correlation/covariance matri
ces—and further extracts components from it. These com
ponents are the main outputs of covSTATIS; (4) Graph The
ory approaches33—while used as meaningful statistical 
descriptors of network neuroscience data, they operate on 
aggregated pairwise information (e.g., connectivity), not 
on full data tables; and (5) Gradient Analysis51‑53—this 
method is the most similar to covSTATIS in terms of func
tionality and implementation. It offers complementary out
puts to covSTATIS, ones that are however further removed 
from the original data. Gradient Analysis relies on non-
linear dimensionality reduction methods of affinity ma
trices of correlation/covariance profiles. Given that Gradi
ent Analysis does not construct a compromise-like space, 
each correlation/covariance matrix needs to be projected 
onto the affinity-derived component space to infer similar
ity/differences in the data. CovSTATIS, instead, obtains the 
component space from a direct decomposition of the com
promise–a linear combination of the original correlation/
covariance matrices. As such, covSTATIS provides a multi
variate framework that promotes more interpretable links 
between the output and the original data. 

There are numerous other dimensionality reduction 
techniques, each having its particular strengths and weak
nesses. Though almost any dimensionality reduction ap
proach can be applied to neural data, we believe that cov
STATIS is particularly well suited for the specific structure 
and format of network neuroscience data for its flexibility 
to linearly handle multiple symmetric correlation/covari
ance tables. 

APPLICATIONS OF COVSTATIS IN NETWORK 
NEUROSCIENCE 

In neuroimaging, STATIS-based methods have been applied 
in a limited capacity.77‑83 As such, the potential of covSTA
TIS as a tool for network neuroscience remains largely un
tapped. Recent work from our group applied covSTATIS to 
compare spatial patterns of fMRI connectivity across task 
states,84 and to estimate resting-state fMRI connectivity 
dynamics.85 Here, we guide the reader through the former 
application and provide a step-by-step tutorial with data86 

and code. The tutorial can be accessed here: https://giu
liabaracc.github.io/covSTATIS_netneuro/pages/tutor
ial.html. 

Briefly, in this application of covSTATIS, we used task-
based fMRI functional connectivity data from a healthy 
adult lifespan sample of 144 individuals, to examine how 
fMRI-derived functional connectivity reconfigures across 
task conditions with different cognitive load. Note that in 
the original paper we had 3 different tasks,84 but here and 
in the tutorial, we focus on only one (i.e., n-back with 0-, 
1-, 2-back conditions). 

Individual-specific functional connectivity matrices 
were calculated for each task condition. These tables were 
weighted based on their respective RV similarity coeffi
cients, and linearly combined to create the compromise ma
trix—the optimum weighted average of all connectivity ta
bles across task conditions and individuals. The 
compromise was then submitted to an eigenvalue decom
position to assess the similarity of the connectivity patterns 
across task conditions and subjects. Global factor scores rep
resented the average connectivity profile of single brain re
gions across task conditions and individuals, and partial 
factor scores represented how the regional connectivity pro
file for each individual and task condition mapped onto the 
group average. In sum, covSTATIS allowed us to estimate 
(1) regional differences in functional connectivity patterns 
across all tasks and individuals, and (2) individual differ
ences in functional connectivity patterns across task con
ditions. A more detailed breakdown of all steps involved in 
covSTATIS can be found in our tutorial, including guide
lines in the choice of covSTATIS’ parameters based on the 
type of input data. 

Other examples of potential applications of covSTATIS 
include investigations of individual and group differences 
in spatial and/or temporal network structure in health and 
disease (Figure 2 , bottom panel  ), deep phenotyping of 
connectivity metrics, and multimodal assessments of net
work measures within and across individuals (Figure 2 ,  
top panel ). Another promising avenue for covSTATIS is 
the exploration of brain-behavior relationships within a 
single framework. Through covSTATIS, participants’ corre
lations—computed from high dimensional brain and be
havioral data tables—can be integrated in a unified compro
mise space from which the shared variance between tables 
can be extracted. 

Importantly, as covSTATIS only requires symmetric posi
tive semi-definite matrices, it provides a general framework 
to assess shared and distinct patterns across many type of 
similarity matrices, beyond functional connectivity. With 
proper matrix preprocessing steps (e.g., taking the Lapla
cian of a connectivity graph), covSTATIS can analyze other 
network matrices, such as structural connectivity, similarly 
to other methods (e.g., network portrait divergence,87 net
simile,88 and others, see this paper89 for a comprehensive 
list). 

While not exhaustive, these applications of covSTATIS 
highlight the versatility of the method. We hope that the 
network neuroscience community will benefit from covS
TATIS and collectively further refine and expand the ap
proach. Ongoing developments of covSTATIS can be found 
on our website: https://giuliabaracc.github.io/covSTA
TIS_netneuro/. 

CONCLUSIONS 

CovSTATIS serves as a theoretically and computationally 
accessible tool for similarity analyses, capable of preserving 
and integrating high dimensional, complex multi-table 
data typical of network neuroscience. Its linear, unsuper
vised, user-independent implementation makes covSTATIS 
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Figure 2. Top panel:   examples of applications of covSTATIS in network neuroscience.         Bottom panel:   examples of   
extractable features from covSTATIS. For instance,       (A)  illustrates how we can extract, from global factor scores,          
group means of partial factor scores, derive their bootstrap confidence intervals, and use them to interpret group                  
differences in network configurations.     (B)  demonstrates how we can quantify the overall heterogeneity among all           
partial factor scores via computing the area of the hull.           (C)  shows how such heterogeneity can also be evaluated for          
different groups separately.    
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a more interpretable and versatile tool compared to other 
commonly used approaches, ultimately paving the path for 
new discoveries in network neuroscience. 

METHODS 

NOTATIONS 

A matrix is denoted by a bold, uppercase letter (e.g., X), a 
vector is denoted by a bold, lowercase letter (e.g., x), and 
an element of a matrix is denoted by a lowercase italic let
ter (e.g., x). The cardinal of a set is denoted by an upper
case italic letter (e.g., I). Given I data tables, we used the 
subscript i to identify individual data tables (e.g., ). The 
boldface capital letter I denotes the identity matrix. The 
transpose of a matrix is denoted by the superscript T (e.g., 
XT). 

The jth column of matrix X is denoted by , and the 
value on the kth row and the jth column is denoted by . 
For an I × J matrix, the minimum of I and J is the largest 
possible rank, denoted by L, of X. The trace(X) operator 
gives the sum of the diagonal elements of the square matrix 
X. 

COVSTATIS 

To generate the compromise space that best represents the 
common pattern across all data tables (e.g., correlation/
covariance matrices), covSTATIS first derives weights from 
a pairwise similarity matrix, called the RV matrix, which 
quantifies the similarity between data tables via the RV co
efficient. Formally, given two J × J data tables  and 
(e.g., two connectivity matrices with J ROIs from the 2 ob
servations i and i’, e.g., participants or tasks), the RV coef
ficient between these two matrices is computed as: 

Akin to a squared correlation coefficient, the RV coefficient 
takes values in the interval [0 1]. The RV coefficients be
tween all matrices are then stored in an  matrix, 
denoted by C, where the cell  stores the value of the 
RV coefficient between  and . As C stores the simi
larity between data tables, the first component of C best 
represents the common pattern across tables, and the first 
eigenvector of C (u1) quantifies how similar each table is 
to this common pattern. As a result, to build the compro
mise space, weights for each data table are derived by u1, 
rescaled to sum to 1. Formally, C undergoes an eigenvalue 
decomposition (EVD): 

where Ω is an R × R diagonal matrix of eigenvalues of C with 
R denoting the rank of C, and U is a I × R matrix of eigen
vectors of C. Next, the weights of  (denoted by αi) are ob
tained as: 

where ui,1 is the ith value of u1, a value that corresponds to 
. The compromise (X+) is then computed as the weighted 

sum of all data matrices, where 

and decomposed by an EVD: 

where Λ is an L × L diagonal matrix of eigenvalues of X+  
with L denoting the rank of X+, and P is a J × L matrix 
of eigenvectors of X+. From EVD, the global factor scores F  
(i.e., factor scores from the compromise) are computed as: 

and the partial factor scores  (i.e., the factor scores de
rived from the projection of individual tables onto the com
promise) are computed as: 

It is worth noting that these partial factor scores have a 
barycentric property, that is their weighted sums equate to 
the global factor scores: 

THE OPTIMIZATION PROBLEM IN COVSTATIS 

Optimization in covSTATIS is a two-part problem. The first 
part is akin to the optimization problem of principal com
ponent analysis, the second part is the same as the opti
mization problem of eigenvalue decomposition. 

FIRST PART 

First, weights for each data table are obtained to compute 
the compromise, such that the similarity between the com
promise and all input matrices is maximal. Second, compo
nents are computed that best explain the compromise’s in
ertia (i.e., variance in more than two dimensions). Formally, 
the first optimization problem can be written as the follow
ing maximization problem: 

and the sum of squared scalar products can be developed 
and simplified: 

Therefore, the solution of the optimization problem de
fined by Equation 9 is the first eigenvector of C2, which is 
the same as the first eigenvector of C. According to the Per
ron-Frobenius theorem, the elements of α will all have the 
same sign (chosen as positive). These elements are then 
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scaled to sum to 1 to ensure that partial factor scores will 
be barycentric for their respective global factor scores (cf. 
Equation 8). Note that we ignored the denominator of the 
RV in the first line as it is a fixed scalar equal to J2 and has 
no effect on the maximization problem. 

This optimization problem is similar to the optimization 
problem of Principal Component Analysis (PCA). In PCA, 
weights are searched for each variable to compute factor 
scores—which are computed as linear combinations of 
these variables. In covSTATIS, weights are searched for each 
data table to compute the compromise—the linear combi
nation of these data tables. 

SECOND PART 

The second optimization problem is equivalent to the opti
mization problem of an eigen-decomposition. In the eigen-
decomposition, for each component, weights (i.e., loadings) 
of each row/column are searched to compute factor scores 
(F). Factor scores are linear combinations of the loadings 
that have the largest possible variance (as evaluated by 
their associated eigenvalues). This optimization problem 
can be written as the minimization problem of approximat
ing the sum of squared factor scores to the compromise: 

Here, P is the matrix of eigenvectors and Λ is the diagonal 
matrix of eigenvalues. 

The detailed proofs and descriptions of the optimization 
problems of covSTATIS can be found in the Appendix of a 
previous publication.64 
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DATA AVAILABILITY 

Data used in the tutorial are available online (https://osf.io/
hnj7s/) and are described in detail in our previous publica
tion.86 

CODE AVAILABILITY 

The original source code for covSTATIS can be found here: 
https://cran.r-project.org/web/packages/DistatisR/ and its 
helper file here: https://cran.r-project.org/web/packages/
DistatisR/DistatisR.pdf. All code used to apply covSTATIS 
in network neuroscience and replicate our tutorial, along 
with all documentation, can be accessed here: https://giu
liabaracc.github.io/covSTATIS_netneuro/pages/tutor
ial.html. For the tutorial, a downloadable qmd file can be 
accessed here: https://github.com/giuliabaracc/covSTA
TIS_netneuro/blob/main/pages/tutorial.qmd. The following 
GitHub (https://github.com/giuliabaracc/covSTATIS_net
neuro/tree/main) and website (https://giuli
abaracc.github.io/covSTATIS_netneuro/) links serve as cen
tralized resources for covSTATIS’ applications in network 
neuroscience. 
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