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Distributions of BMI1

Here we present the distribution of BMI for each weight-loss group (suc-2

cessful versus unsuccessful) separately.3

Figure 1: BMI Distributions for each weight-loss group.
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Shen Atlas Regions in FN1 and FN24

On the following page is a list of Shen atlas regions (by atlas region5

number) included in our analyses. In bolded text are regions that belong6

to both FNs. Please note they are only included in our analysis one time,7

however.8
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FN1 FN2
15 13
23 14
25 34
35 37
36 48
37 52
40 53
61 61
78 68
83 72
84 82
100 92
102 95
111 146
124 149
158 164
159 169
161 170
163 180
168 182
169 185
170 188
173 198
180 205
181 207
212 228
218 231
219 235
221 254
241
247
248
253
261
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Additional Information on the Hidden Semi-Markov Model (HSMM)9

The complete data log-likelihood of the HSMM for one participant, given10

there are K unique network states, can be written as:11

ℓ∗(µ1: K ,Σ1: K , P, π, d1:K(u)) = log f(s̃, ỹ)

= log f(ỹ|s̃) + log f(s̃)

=
T∑
t=1

log f(yt|st) +
R−1∑
r=2

log(f(sr|sr−1)dsr(ur))

+ log(f(sR|sR−1)DsR(uR)) + log(f(s1)ds1(u1)),

(1)

where sr is the rth visited state, ur is the number of consecutive time points12

spent in that state, and ds1(u1) is the sojourn distribution for the first entered13

state.14

The first term is based on the conditional distribution of the observed15

BOLD signal vector given the underlying kth hidden network. This term16

takes on a Gaussian distribution:17

f(yt|st = k) ∼ N (µk, Σk). (2)

The second section of the equation is comprised of two parts. The first is a18

transition probability matrix, denoted P , where the probability at the ith row19

and jth column represents the probability of transitioning from network state20

i to state j (i.e., pij = P (St = j|St−1 = i)). The second, dsr(ur), represents21
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the sojourn distribution.22

The third term section accounts for the last state a participant enters.23

Note that:24

Di(u) =
∑

v>=u di(v)25

is the survivor function and pertains only to the sojourn time in the final26

state. It allows ones to not assume that the process is leaving the final state27

immediately after time T .28

The fourth term is the distribution of the network state at the first time29

point, multiplied by the distribution of how long a participant will remain in30

that state.31

Minimum State Distance Plot32

For our main analysis, we fit one set of network states using the data33

across all individuals in our sample. The number of states one can fit must34

be specified a-priori and is heavily dependent on the number of participants,35

number of timepoints, and number of ROIs. As the number of states in-36

creases, the number of parameters will similarly increase, as well. Given our37

sample size, we found that five states produced stable parameter estimates38

over multiple fittings of the model. Moreover, based on extensive simulations,39

what we have found is that an inaccurate specification of the number of states40

can lead to the identification of spurious or merged states. Our solution to41

this problem involves running the model with different numbers of states and42
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examining the Euclidean distance between the states. The distance between43

the states should indicate how similar or dissimilar the states are. Genuine44

brain states are very distinct from each other, while the structure of spurious45

states is very similar to genuine brain states. Therefore, we executed the46

model with varying numbers of states and subsequently assessed the mini-47

mum distance between the identified states in each run. The run exhibiting48

the highest minimum distance was the 5 state run, indicating that it had the49

highest distinctiveness in the estimated states. The figure below shows the50

minimum distance for each run of the model.51

Figure 2: Plot of minimum distance between state pairs in each run. The run with the
highest minimum distance between the pairs specifies the optimal number of states. Here
we found 5 states to be the optimal number.
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Dwell Time Distributions (Group Comparisons on Separate Plots)52

Here we present dwell time distributions for the successful vs. unsuccess-53

ful weight-loss groups, for each state separately, to facilitate viewing between-54

group differences.55

Figure 3: Estimated empirical sojourn distributions for each state for the successful and
unsuccessful weight loss groups, indicating that successful weight loss participants spent
less time in states 2 and 4 (p-values = 0.038, 0.046, respectively) and more time in state
1 (p-value = 0.033) than unsuccessful weight-loss participants before switching to another
state.

8


