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Morphometric measures in humans derived from magnetic resonance imaging (MRI) have
provided important insights into brain differences and changes associated with
development and disease in vivo. Deformation-based morphometry (DBM) is a
registration-based technique that has been shown to be useful in detecting local volume
differences and longitudinal brain changes while not requiring a priori segmentation or
tissue classification. Typically, DBM measures are derived from registration to common
template brain space (one-level DBM). Here, we present a two-level DBM technique: first,
the Jacobian determinants are calculated for each individual input MRI at the subject
level to capture longitudinal individual brain changes; then, in a second step, an unbiased
common group space is created, and the Jacobians co-registered to enable the comparison
of individual morphological changes across subjects or groups. This two-level DBM is
particularly suitable for capturing longitudinal intra-individual changes in vivo, as
calculating the Jacobians within-subject space leads to superior accuracy. Using artificially
induced volume differences, we demonstrate that this two-level DBM pipeline is 4.5x more
sensitive in detecting longitudinal within-subject volume changes compared to a typical
one-level DBM approach. It also captures the magnitude of the induced volume change
much more accurately. Using 150 subjects from the OASIS-2 dataset, we demonstrate
that the two-level DBM is superior in capturing cortical volume changes associated with
cognitive decline across patients with dementia and cognitively healthy individuals. This
pipeline provides researchers with a powerful tool to study longitudinal brain changes
with superior accuracy and sensitivity. It is publicly available and has already been used
successfully, proving its utility.
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INTRODUCTION

Magnetic resonance imaging is uniquely capable of cap-
turing brain anatomy in vivo in humans with ever-improv-
ing accuracy.! MRI-derived measures of brain morphometry
have been demonstrated to be powerful biomarkers cap-
turing differences and changes associated with plasticity,23
aging and development, %5 and disease and disease progres-
sion.®-8 Deformation-based morphometry (DBM) is a reg-
istration-based technique that uses local volume changes
derived from nonlinear deformation fields as a means of de-
tecting local morphological differences/changes.’"11 DBM
does not require prior segmentation or definition of regions
of interest (ROI), allowing for the detection of morpholog-
ical changes in brain regions beyond the common tech-
niques of classifier-driven voxel-based morphometry and
cortical thickness analysis.

This technique has been extraordinarily useful in study-
ing rodent models and local volume differences!2-20 where
a readily accessible toolbox is available.2-22 In preclinical
models, it has been shown that the volume changes de-
tected by DBM are associated with cellular modifications,
such as changing synaptic density across brain networks.23
While DBM can be used to compare subjects or groups of
subjects cross-sectionally, it is particularly powerful when
multiple measures of the same subject are available to
model intra-individual time-dependent changes in vivo.24
In humans, DBM has been shown to be sensitive and re-
liable in detecting local disease progression,®25:2¢ learn-
ing-induced plastic brain changes associated with musical
training,2’ and individual brain changes following neuro-
modulatory treatments.28.29

Classically, DBM uses registration to a common template
space (e.g. MNI15230) to derive the necessary deformation
fields.>10 Previous work has shown that registration bias
and risk of registration error are larger the greater the dif-
ferences between the template and the individual
brain.31-33 These are especially relevant in the case of lon-
gitudinal studies, where the focus is on changes that occur
within each individual brain. To capture these longitudinal
individual changes, the deformation fields are best com-
puted using within-subject registration, as even the use of
a group-specific template would introduce bias and regis-
tration error. The superiority of the general principle of this
technique was demonstrated by earlier work by Scahill and
colleagues3* who used serial fluid nonlinear registration
to capture longitudinal within-subject changes in patients
with presymptomatic, mild and moderate Alzheimer’s dis-
ease.

Here we present a publicly available3> two-level DBM
pipeline using state-of-the-art registration tools3:37 de-
signed to capture within-subject changes accurately and
allow for the comparison of individual morphological
changes across subjects or groups. This two-level DBM
technique first calculates the Jacobian determinants for
each individual input MRI at the subject level using un-
biased subject-specific templates and within-subject defor-
mation fields; then, in a second step, the Jacobian determi-
nants are transformed to an unbiased population common

space to be used for statistical analysis. Using artificially
induced volume changes and longitudinal images from the
OASIS-2 dataset,38 we demonstrate the superior sensitivity
and accuracy of the two-level DBM pipeline and its lower
probability of false positive results when studying longitu-
dinal changes.

METHODS

IMPLEMENTATION

The two-level DBM pipeline is implemented as a Python
wrapper around antsMultivariateTemplateConstruction2.
sh3 from the Advanced Normalization Tools (ANTs/
2.5.0).40 In the basic implementation, template construc-
tion is applied at two levels: the first level (typically within
subject) is computed, generating an unbiased subject model
and encoding the volumetric differences between input im-
ages in a deformation field relative to the subject-specific
template (Figure 1). The first-level average templates are
then fed into a second-level model build, which constructs
an average representation of the population. Two types of
Jacobian determinants are then computed at the first level:
an absolute Jacobian, encoding voxel-wise, the nonlinear
deformation field, combined with the affine determinant,
and a relative Jacobian, where residual affine components
present in the nonlinear deformation field are removed.
The Jacobian maps are then resampled into the final com-
mon space and smoothed with a Gaussian kernel with a
full-width-half-maximum of twice the smallest voxel size.
An optional feature allows the unbiased average to be reg-
istered to a common space, such as an MNI model. The Ja-
cobians can then be resampled into that space without con-
taminating estimated volume differences.

VALIDATION

RECOVERY OF ARTIFICIALLY INDUCED VOLUME
DIFFERENCES

In order to test the sensitivity of this pipeline to volumetric
differences in both one-level (i.e., cross-sectional, registra-
tion to one common template) and two-level (i.e., longitu-
dinal, within-subject calculation of Jacobian determinants,
followed by transformation to common space) implemen-
tations, we induced known volumetric changes in the left
habenula and right anterior caudate in a set of T1lw MRI
scans and then used the various DBM pipelines to detect
and recover those changes. We chose to use identical im-
ages with synthetic alterations in order to estimate the per-
formance in an (artificial) best-case scenario, enabling an
analysis of the upper bound of achieved sensitivity.

20 randomly selected T1w (11 female, age: 61-89 years,
mean: 75.45 years *#7.95; 9 male, age: 66-84 years, mean:
72.44 years +5.63) scans from the OASIS-2 dataset were
preprocessed (minc-bpipe-library)?! and affinely registered
to MNI space. The left habenula and right anterior caudate
were then semi-automatically segmented using MAGeT-
brain.42 These two structures were chosen as previous work
demonstrated that region characteristics such as size have
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Figure 1. Illustration of the processing underlying the two-level DBM pipeline proposed.

Jacobian determinants for each individual input MRI are calculated at the subject level to capture differences and changes with maximal accuracy. The subject-level average brain is
then used to generate an unbiased common space, and the Jacobians are transformed into that space for statistical analysis.

a small influence on registration sensitivity.#> The labels
were then used to generate deformation fields for specified
Jacobian determinants of 0.5%, 1%, 2.11%, 4.47%, 9.45%
and 20% (log spaced 0.5% to 20%) using disptools.44 The re-
sulting deformation fields were applied to a random subset
of 10 of the subjects to produce a pseudo-second timepoint
with an enlarged right habenula and reduced left anterior
caudate volume of 0.5%, 1%, 2.11%, 4.47%, 9.45% and 20%
(see supplementary video for an example of a modified cau-
date at 20%). The other 10 subjects were duplicated un-
changed. The resulting datasets were constructed as a lon-
gitudinal study, with the original brains being used as the
first time point, and the 10 modified brains used as the sec-
ond time point while keeping the remaining 10 unchanged
for the second time point (Figure 2). The resulting 6 (levels
of local volume change) datasets were processed through
the pipeline as both two-level (longitudinal within-subject
registration to calculate Jacobian determinant, transformed

to the unbiased average space for statistical comparison)
and one-level (cross-sectional registration with Jacobian
determinants generated relative to the unbiased group av-
erage).

Voxel-wise statistical modelling was performed using R/
3.4.4 and RMINC/1.5.2.2 using mixed-effect linear models,
with a fixed effect of (pseudo) timepoint and a random in-
tercept by subject. Results were corrected for multiple com-
parisons using False Discovery Rate (FDR).4> In addition
to voxel-wise modelling, the individual segmentations were
resampled into the final template space and merged via ma-
jority vote to produce masks. These masks were then used
to calculate the volume of the target region by integration
of the Jacobian values within the mask to be compared to
the true segmentation volumes, thus allowing for an esti-
mation of the effective volume difference captured by each
of the pipeline implementations.
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Habenula

Volume unchanged

Volume changed (Decrease)

Figure 2. Two sets of brains, 10 brains that remained unchanged and a second set of 10 brains with synthetically
induced volume changes to the habenula and caudate regions, were used to assess the sensitivity and accuracy of

the two-level DBM.

The upper row shows an example of the increased volume in the right habenula region, and the lower row shows the decreased volume in the right caudate region.

EXPLORATORY ANALYSIS OF SAME DAY TEST-RETEST
DATASET AND COMPARISON OF DBM
IMPLEMENTATIONS

In order to explore the robustness of the pipeline to the
intrinsic variations of repeated acquisitions, we obtained
15 subjects (15 randomly selected with two same day T1w
images; 9 female, age: 19.6-55.6 years, mean: 33.0 years
+11.7; 6 male, age: 19.6-37.3 years, mean: 27.8 years +6.5)
from the Welsh Advanced Neuroimaging Database (WAND,
[https://doi.gin.g-node.org/10.12751/g-node.5mv3bf/). Im-
ages were pre-processed using minc-bpipe-library
(https://github.com/cobralab/minc-bpipe-library), and
processed through 3 variants of the pipeline:

1. The recommended two-level longitudinal pipeline is
rigidly initialized with the skull-stripped MNI model
and upsampled to 0.5 mm isotropic
(mni_icbm152 _nlin_sym_09c). In this two-level
pipeline, the Jacobian determinants for each individ-
ual input MRI are first calculated at the subject level
using the within-subject deformation field. In a sec-
ond step, these Jacobian determinants are then co-
registered to an unbiased common space for statisti-
cal analysis.

2. The one-level pipeline with the same initialization.
Here, the unbiased group average is used as the reg-
istration target, and the Jacobian determinants are
calculated from the deformation field encompassing
the full registration from the subject to the unbiased
group average.

3. A modified version of the one-level pipeline to sim-
ulate classical DBM, where the previously mentioned
model (MNI model upsampled to 0.5 mm isotropic)
was used as the full-registration target, and only a
single registration was completed.

The third variant aimed at comparing the results to more
‘traditional’ DBM pipelines that use a common brain tem-
plate while maintaining the same registration tools.>10 The
2-level (longitudinal) and one-level (cross-sectional) final
averages were post-registered to the MNI152 ICBM09c sym
template using antsRegistrationSyN.sh (ANTS/2.5.0), and
transformations were applied to statistical results so that
final statistical maps could be compared head-to-head.

ANALYSIS OF AN ALZHEIMER’S DISEASE DATASET
COMPARING DBM IMPLEMENTATIONS

In order to explore the sensitivity of the pipeline in cap-
turing effects in a real dataset, we obtained the OASIS-2
dataset, which contains 150 subjects with 2-5 imaging ses-
sions (mean 2.49, SD 0.69) for a total of 372 longitudinal
T1w scans. The dataset consisted of 72 elderly healthy con-
trols (HC; 50 female, Age: 75.5 * 8.2), 64 participants with
dementia (28 female, Age: 75.1 = 6.7), and 14 patients (10
female, Age: 77.1 £ 7.7) who transitioned during the study
between clinical classifications (i.e. from healthy to a diag-
nosis of dementia). Individuals underwent neurocognitive
evaluation at each time point, including the Mini-Mental
State Examination (MMSE). The T1W images were pre-
processed using minc-bpipe-library (https://github.com,
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cobralab/minc-bpipe-library), and the skull-stripped brains
were processed through 3 variants of the pipeline as de-
scribed above.

The 2-level (longitudinal) and one-level (cross-sec-
tional) final averages were post-registered to the MNI152
ICBM09c sym template using antsRegistrationSyN.sh
(ANTS/2.5.0), and transformations were applied to statisti-
cal results so that final statistical maps could be compared
head-to-head; however, analysis was performed in the un-
biased space in each case. Voxel-wise statistical modelling
was performed using R/3.4.4 and RMINC/1.5.2.2 using
mixed-effect linear models. The model tested the interac-
tion effect of MMSE and days since first scan (as a proxy for
disease progression), covaried for sex and age at first scan.

RESULTS

RECOVERY OF ARTIFICIALLY INDUCED VOLUME
DIFFERENCES

Voxel-wise whole-brain mixed-effect models of the artifi-
cially induced volume changes are highly sensitive. Statis-
tically significant effects are detected at FDR 5% thresh-
old starting at the artificially induced 2% volume difference.
Figure 3A shows a voxel-wise t-statistics map thresholded
at 5% FDR. The one-level DBM statistical analysis does not
reach statistically significant effects at FDR 5% until the 9%
induced volume difference but only detects the caudate dif-
ference, not the habenula. Thus, from a voxel-wise analysis
perspective, the two-level DBM detects volumetric differ-
ences that are ~4.5x smaller compared to a cross-sectional
DBM model.

In addition to examining results on a voxel-wise statis-
tical level, we also examine the inferred volumes estimated
through the integration of the absolute Jacobians gener-
ated from the DBM within a consensus label. We can ex-
amine the resulting volumes with regard to how well they
recover the volume difference between the original and in-
duced-volume difference scans. Figure 3B shows the vol-
ume change captured by the DBM vs the induced volume
difference for the habenula and caudate. The average values
are reported in Table 1 showing that the two-level DBM
captures the magnitude of the induced change with greater
fidelity. Longitudinal volume effect sizes are recovered at
approximately 50% of true volume as estimated by the inte-
gration of absolute Jacobians within a majority vote mask.
Unmodified subjects in longitudinal DBM result in very
small volume differences, as expected, whereas in one-level
DBM, individual subjects can have volumetric error differ-
ence estimates of up to 5%.

To examine the possibility of bias in the DBM-based vol-
ume estimation, we generated plots illustrating estimated
volume change and variance across all subjects (Supple-
mentary Figure 1), which show the difference between true
and estimated volumes compared to the true structure vol-
ume. The range of estimated volumes is substantially larger
in the one-level models than the longitudinal models due
to scan-wise volume estimates now being contaminated
with deformations intended to create the final unbiased av-

erage, this is also an excellent visualization of the potential
origin of method-related spurious results in the one-level
model.

Considering that the only volumetric differences which
exist between the subject-wise scans are known a priori,
and the within-subject mixed-effect models, we can exam-
ine the potential findings incurred due to errors and biases
related to methodological differences. The two ‘timepoints’
are composed of identical images except for the changes to
the caudate and habenula regions, and we expect no find-
ings beyond that. Computing a main effect of timepoint,
we do find sizable groups of significant voxels showing ef-
fects using the one-level model (p<0.01, uncorrected). The
two-level model, on the other hand, shows very few spu-
rious voxels (p<0.01, uncorrected) (Figure 4). These spuri-
ous findings are most likely due to registration errors at
the group average stage. As the Jacobian determinants for
the two-level model are derived at the first within-subject
stage, these errors likely have a much smaller effect on the
final statistical comparison.

EXPLORATORY ANALYSIS OF SAME DAY TEST-RETEST
DATASET AND COMPARISON OF DBM
IMPLEMENTATIONS

DBM modelling of immediate (same day) test-retest Tlw
images demonstrates that the two-level DBM pipeline is ro-
bust and sensitivity, and less prone to produce potentially
erroneous results as compared to the other implementa-
tions (Figure 5). This shows that results obtained using the
two-level DBM pipeline likely more reliable.

ANALYSIS OF AN ALZHEIMER’S DISEASE DATASET
COMPARING DBM IMPLEMENTATIONS

DBM modelling of the OASIS-2 dataset under the optimized
longitudinal configuration reveals a global pattern of rel-
ative volume changes associated with a decrease in the
MMSE score of participants. Firstly, increases in ventricular
volume and CSF space adjacent to the temporal lobes were
found, indicating an overall reduction in the volume of
brain tissue. Secondly, a pattern of gray matter volume re-
duction in the temporal, frontal and parietal cortices. These
effects are highly significant, surviving 1% FDR correction.
When comparing the cross-sectional results of the same
data, substantially fewer regions of frontal and parietal ef-
fects are present at the same threshold, indicating a reduc-
tion in sensitivity. Most concerningly, new effects showing
an increase in volume of the right superior parietal cor-
tex with increasing MMSE, indicating contamination of the
longitudinal brain changes by a group-wise difference pre-
sent at the start of the study, these effects are method-
related spurious findings, as within-subject effects do not
show these findings. Figure 6 shows the head-to-head com-
parison of the change in MMSE by time interaction in each
of the respective unbiased spaces.

To benchmark the sensitivity of the unbiased DBM
methods against classical methods, we also derived the Ja-
cobian determinant performing a one-level DBM pipeline
direct to MNI space similar to classical DBM methods.?10
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Figure 3. Results of the statistical analysis quantifying demonstrating the superior ability of the two-level DBM
to detect and capture the magnitude of the induced volume change.

A) Axial section showing significant (FDR q<0.05) voxel-wise changes. The two-level DBM detects changed volumes at the habenula and caudate regions reliably from a magnitude of
0.021 onwards, while the one-level DBM only detects the induced change at the larger caudate region at 0.095 magnitudes of induced change. The one-level DBM only captures the
volume change at the habenula region at an induced change of 0.2 magnitudes (20% increased voxel volume). B) Two-level DBM is superior to one level in capturing the magnitude of

the induced change at about 50% level.

The classical DBM using MNI space instead of an unbiased
group average shows a pattern of results that is very sim-
ilar to the unbiased one-level DBM, including many of the
same method-related spurious effects (Supplementary Fig-
ure 2). However, the sensitivity seems to be much reduced
compared to the unbiased one-level DBM, as the sizes of
groups of significant voxels are markedly reduced.

DISCUSSION

The collection of longitudinal data is fast becoming com-
mon in both public and private datasets, as well as preclin-
ical, clinical, and population studies. Handling this data in
an optimized two-level longitudinal way can yield higher
power for a study than using one-level cross-sectional
methods. In this study, we introduced a new deformation-
based morphometry pipeline which implemented a multi-
level unbiased template approach to measuring within-sub-
ject whole-brain volumetric change. We validated and
compared it against other methods with both synthetic data
and a real-world dataset. DBM, as opposed to voxel-based
morphometry (VBM) pipelines, is usable without any tissue
classification or atlas priors, allowing for arbitrary contrasts
and application to novel species or anatomy. In addition,
the absence of a classification stage means that datasets in
which successful tissue classification cannot be performed
are still usable for DBM. Finally, there are increasing con-
cerns that the classical VBM implementations result in sta-
tistical bias due to circularity in their implementations.46:

47 These prior-free implementations do not rely on such as-
sumptions.

Validation of this pipeline using synthetic data reveals
a supremely sensitive tool, approximately 4.5x more sensi-
tive than cross-sectional modelling in detecting volumet-
ric within-subject changes in group-wise comparisons. This
result is obtained despite the variability in exact synthetic
changes induced by the original manual segmentation
process involved in defining the ROI for induced volume
change. Very little work has been done in the area of syn-
thetic DBM validation; only van Eede et. al*3 examined
DBM in a rodent model. The two-level DBM implementa-
tion is able to capture roughly 50% of the intended change.
It is most likely the case that the induced volume change
did not reach the full level intended. This is due to resolu-
tion limitations, the resulting interpolation combined with
the synthetic volume modification when creating an ap-
proximate deformation field. These factors will cause the
final synthetic volume modification to be smaller than in-
tended, making the fact that the two-level DBM imple-
mentation is able to capture roughly 50% of the intended
change more remarkable.

It is also noteworthy that the induced volume changes
are small. Given 1 mm isotropic MRI resolution, even a 20%
voxel volume increase would not cause the outer boundary
of a spherical structure, such as the structures used here, to
change by a single voxel.

The two-level DBM not only demonstrates superior sen-
sitivity in detecting longitudinal changes, it also demon-
strates a diminished likelihood of providing method-related
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Table 1. Volume change in either structure (caudate - volume decreased; habenula - volume increased) captured

by one and two level DBM pipeline

| t Brain Magnitude of induced Two-Level analysis volume One-Level analysis volume
mage type structure change (in %) change captured (in %) change captured (in %)
CV;]’;‘;]?; caudate 05 -0.28 -0.16
C\/r‘]’;‘r‘ge% caudate -1.0 -0.50 -0.33
cvﬁa'ﬁ;”ei caudate 21 112 -045
éf;‘;rg“eed caudate 45 2229 -0.83
CV;]’;‘;]?; caudate 95 -4.85 -1.84
C\/r‘]’;‘r‘ge% caudate 200 -10.14 -3.59
cvﬁa'ﬁ;”ei habenula 105 1013 013
é’ﬁ;‘;rg“eed habenula +1.0 +0.42 +0.26
CV;]’;‘;]?; habenula +2.1 +0.69 +0.20
C\/r‘]’;‘r‘ge% habenula +4.5 +1.74 +0.50
cvﬁa'ﬁ;”ei habenula +95 +3.58 +1.63
éf;‘;rg“eed habenula +200 +7.37 1212
u;:/fr:l;:;e J caudate 0.0 (control for -0.5) +0.01 +0.04
UrYSP:gnmgeed caudate 0.0 (control for -1.0) +0.02 +0.07
UrYffi:nm;ed caudate 0.0 (control for-2.1) -0.05 +0.17
UrY:r::nmgeed caudate 0.0 (control for -4.5) +0.01 -0.34
UIY:;‘;:; J caudate 0.0 (control for -9.5) +0.04 -0.01
UrYSP:gnmgeed caudate 0.0 (control for -20.0) +0.01 -0.39
Ur\]’fri‘;:;e 4 habenula 00 (control for +0.5) -002 +0.06
UrYfr::?;e J habenula 0.0 (control for +1.0) +0.06 +0.14
u;:/fr:l;:;e J habenula 0.0 (control for +2.1) -0.05 -0.12
UrYSP:gnmgeed habenula 0.0 (control for +4.5) +0.03 -0.24
Ur\]’fri‘;:;e 4 habenula 00 (controlfor +9.5) +0.06 1013
UrYfr::?;e J habenula 0.0 (control for +20.0) -0.01 -0.51

spurious positive results. Deriving the Jacobians from
within-subject registration allows the minimization of reg-
istration bias. Bias grows when using different brain tem-
plates for registration, an unbiased group average or the
MNI template.31-33 This is apparent in the results when ex-
amining the much-expanded variance in the volume esti-

mation in one version two-level DBM (Supplementary Fig-
ure 1), the method-related spurious positive findings
(Figure 4 & Figure 5) and the differences in the pattern of
significant voxels in the analysis of the OASIS-2 data (Fig-
ure 6, Supplementary Figure 2). These are likely caused by
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Figure 4. Statistical analysis using Jacobians derived
using two-level DBM is less likely to produce method-
related spurious findings.

Voxel-wise t-statistical maps (p<0.01) of the main effect of time computed using Jaco-
bians derived from the two-level DBM (upper row) and one-level DBM (lower row). Ex-
cept for the induced volume change to the caudate and habenula region in 10 of the 20
brains, identical brains were used for both ‘timepoints’, no effect of time should be
found in this data.
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Figure 5. Axial sections showing uncorrected (p<0.001)
apparent voxel-wise volume changes in 15 subjects
scanned repeatedly (on the same day) captured using
the Jacobians derived using two-level DBM, one-level,
and one-level DBM to template space (the “classical”
DBM method).

registration errors. The two-level DBM reduces this leading
to more reliable findings.

The two-level DBM pipeline reported here has already
been applied successfully, detecting changes in patients
following neuromodulatory treatment for refractory ag-
gressive behaviour?8 or mood disorder,2? identifying dif-
ferences in patients with schizophrenic behaviour,48 and
aiding the localization of physiological effects of drug
treatments in psychosis.49 It has been applied to show how
cerebellar and subcortical atrophy contribute to psychiatric
symptoms in frontotemporal dementia.>C It has also been
adapted to investigate brain morphology differences and
changes in preclinical models.51:52

CONCLUSION

Here, we present a two-level DBM technique, where the Ja-
cobian determinants are first calculated at the subject level

2-Level DBM

1-Level DBM

=
o
o
°©

>

]
=
o~

1-Level DBM

FDRqL 0.001

Figure 6. Axial sections showing significant (FDR
q<0.01) voxel-wise volume changes captured using the
Jacobians derived using one and two-level DBM
associated with increasing MMSE score over time.

Red circles highlight areas where the one-level DBM fails to capture a difference or
where it produces spurious results.

followed by co-registration to an unbiased common group
average. This two-level DBM is particularly suitable for cap-
turing longitudinal intra-individual changes in vivo, being
4.5x more sensitive in detecting longitudinal within-sub-
ject volume changes compared to a typical one-level DBM
approach and capturing the magnitude of the change much
more accurately. The pipeline is publicly available3553 and
will provide users with a superior alternative to analyze
brain morphology, especially when using longitudinal data.

DATA AND CODE AVAILABILITY

This study utilizes open-access data. The code used for
data processing and analysis is publicly available at GitHub:
https://github.com/CoBrALab/twolevel_ants_dbm &
https://github.com/CoBrALab/optimized_antsMultivari-

ateTemplateConstruction (accessed March 19, 2025)
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