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Morphometric measures in humans derived from magnetic resonance imaging (MRI) have 
provided important insights into brain differences and changes associated with 
development and disease in vivo. Deformation-based morphometry (DBM) is a 
registration-based technique that has been shown to be useful in detecting local volume 
differences and longitudinal brain changes while not requiring a priori segmentation or 
tissue classification. Typically, DBM measures are derived from registration to common 
template brain space (one-level DBM). Here, we present a two-level DBM technique: first, 
the Jacobian determinants are calculated for each individual input MRI at the subject 
level to capture longitudinal individual brain changes; then, in a second step, an unbiased 
common group space is created, and the Jacobians co-registered to enable the comparison 
of individual morphological changes across subjects or groups. This two-level DBM is 
particularly suitable for capturing longitudinal intra-individual changes in vivo, as 
calculating the Jacobians within-subject space leads to superior accuracy. Using artificially 
induced volume differences, we demonstrate that this two-level DBM pipeline is 4.5x more 
sensitive in detecting longitudinal within-subject volume changes compared to a typical 
one-level DBM approach. It also captures the magnitude of the induced volume change 
much more accurately. Using 150 subjects from the OASIS-2 dataset, we demonstrate 
that the two-level DBM is superior in capturing cortical volume changes associated with 
cognitive decline across patients with dementia and cognitively healthy individuals. This 
pipeline provides researchers with a powerful tool to study longitudinal brain changes 
with superior accuracy and sensitivity. It is publicly available and has already been used 
successfully, proving its utility. 
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INTRODUCTION 

Magnetic resonance imaging is uniquely capable of cap
turing brain anatomy in vivo in humans with ever-improv
ing accuracy.1 MRI-derived measures of brain morphometry 
have been demonstrated to be powerful biomarkers cap
turing differences and changes associated with plasticity,2,3 

aging and development,4,5 and disease and disease progres
sion.6‑8 Deformation-based morphometry (DBM) is a reg
istration-based technique that uses local volume changes 
derived from nonlinear deformation fields as a means of de
tecting local morphological differences/changes.9‑11 DBM 
does not require prior segmentation or definition of regions 
of interest (ROI), allowing for the detection of morpholog
ical changes in brain regions beyond the common tech
niques of classifier-driven voxel-based morphometry and 
cortical thickness analysis. 

This technique has been extraordinarily useful in study
ing rodent models and local volume differences12‑20 where 
a readily accessible toolbox is available.21,22 In preclinical 
models, it has been shown that the volume changes de
tected by DBM are associated with cellular modifications, 
such as changing synaptic density across brain networks.23 

While DBM can be used to compare subjects or groups of 
subjects cross-sectionally, it is particularly powerful when 
multiple measures of the same subject are available to 
model intra-individual time-dependent changes in vivo.24 

In humans, DBM has been shown to be sensitive and re
liable in detecting local disease progression,6,25,26 learn
ing-induced plastic brain changes associated with musical 
training,27 and individual brain changes following neuro
modulatory treatments.28,29 

Classically, DBM uses registration to a common template 
space (e.g. MNI15230) to derive the necessary deformation 
fields.9,10 Previous work has shown that registration bias 
and risk of registration error are larger the greater the dif
ferences between the template and the individual 
brain.31‑33 These are especially relevant in the case of lon
gitudinal studies, where the focus is on changes that occur 
within each individual brain. To capture these longitudinal 
individual changes, the deformation fields are best com
puted using within-subject registration, as even the use of 
a group-specific template would introduce bias and regis
tration error. The superiority of the general principle of this 
technique was demonstrated by earlier work by Scahill and 
colleagues34 who used serial fluid nonlinear registration 
to capture longitudinal within-subject changes in patients 
with presymptomatic, mild and moderate Alzheimer’s dis
ease. 

Here we present a publicly available35 two-level DBM 
pipeline using state-of-the-art registration tools36,37 de
signed to capture within-subject changes accurately and 
allow for the comparison of individual morphological 
changes across subjects or groups. This two-level DBM 
technique first calculates the Jacobian determinants for 
each individual input MRI at the subject level using un
biased subject-specific templates and within-subject defor
mation fields; then, in a second step, the Jacobian determi
nants are transformed to an unbiased population common 

space to be used for statistical analysis. Using artificially 
induced volume changes and longitudinal images from the 
OASIS-2 dataset,38 we demonstrate the superior sensitivity 
and accuracy of the two-level DBM pipeline and its lower 
probability of false positive results when studying longitu
dinal changes. 

METHODS 

IMPLEMENTATION 

The two-level DBM pipeline is implemented as a Python 
wrapper around antsMultivariateTemplateConstruction2.
sh39 from the Advanced Normalization Tools (ANTs/
2.5.0).40 In the basic implementation, template construc
tion is applied at two levels: the first level (typically within 
subject) is computed, generating an unbiased subject model 
and encoding the volumetric differences between input im
ages in a deformation field relative to the subject-specific 
template (Figure 1). The first-level average templates are 
then fed into a second-level model build, which constructs 
an average representation of the population. Two types of 
Jacobian determinants are then computed at the first level: 
an absolute Jacobian, encoding voxel-wise, the nonlinear 
deformation field, combined with the affine determinant, 
and a relative Jacobian, where residual affine components 
present in the nonlinear deformation field are removed. 
The Jacobian maps are then resampled into the final com
mon space and smoothed with a Gaussian kernel with a 
full-width-half-maximum of twice the smallest voxel size. 
An optional feature allows the unbiased average to be reg
istered to a common space, such as an MNI model. The Ja
cobians can then be resampled into that space without con
taminating estimated volume differences. 

VALIDATION 

RECOVERY OF ARTIFICIALLY INDUCED VOLUME 
DIFFERENCES 

In order to test the sensitivity of this pipeline to volumetric 
differences in both one-level (i.e., cross-sectional, registra
tion to one common template) and two-level (i.e., longitu
dinal, within-subject calculation of Jacobian determinants, 
followed by transformation to common space) implemen
tations, we induced known volumetric changes in the left 
habenula and right anterior caudate in a set of T1w MRI 
scans and then used the various DBM pipelines to detect 
and recover those changes. We chose to use identical im
ages with synthetic alterations in order to estimate the per
formance in an (artificial) best-case scenario, enabling an 
analysis of the upper bound of achieved sensitivity. 

20 randomly selected T1w (11 female, age: 61-89 years, 
mean: 75.45 years ±7.95; 9 male, age: 66-84 years, mean: 
72.44 years ±5.63) scans from the OASIS-2 dataset were 
preprocessed (minc-bpipe-library)41 and affinely registered 
to MNI space. The left habenula and right anterior caudate 
were then semi-automatically segmented using MAGeT
brain.42 These two structures were chosen as previous work 
demonstrated that region characteristics such as size have 
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Figure 1. Illustration of the processing underlying the two-level DBM pipeline proposed.           
Jacobian determinants for each individual input MRI are calculated at the subject level to capture differences and changes with maximal accuracy. The subject-level average brain is 
then used to generate an unbiased common space, and the Jacobians are transformed into that space for statistical analysis. 

a small influence on registration sensitivity.43 The labels 
were then used to generate deformation fields for specified 
Jacobian determinants of 0.5%, 1%, 2.11%, 4.47%, 9.45% 
and 20% (log spaced 0.5% to 20%) using disptools.44 The re
sulting deformation fields were applied to a random subset 
of 10 of the subjects to produce a pseudo-second timepoint 
with an enlarged right habenula and reduced left anterior 
caudate volume of 0.5%, 1%, 2.11%, 4.47%, 9.45% and 20% 
(see supplementary video for an example of a modified cau
date at 20%). The other 10 subjects were duplicated un
changed. The resulting datasets were constructed as a lon
gitudinal study, with the original brains being used as the 
first time point, and the 10 modified brains used as the sec
ond time point while keeping the remaining 10 unchanged 
for the second time point (Figure 2). The resulting 6 (levels 
of local volume change) datasets were processed through 
the pipeline as both two-level (longitudinal within-subject 
registration to calculate Jacobian determinant, transformed 

to the unbiased average space for statistical comparison) 
and one-level (cross-sectional registration with Jacobian 
determinants generated relative to the unbiased group av
erage). 

Voxel-wise statistical modelling was performed using R/
3.4.4 and RMINC/1.5.2.2 using mixed-effect linear models, 
with a fixed effect of (pseudo) timepoint and a random in
tercept by subject. Results were corrected for multiple com
parisons using False Discovery Rate (FDR).45 In addition 
to voxel-wise modelling, the individual segmentations were 
resampled into the final template space and merged via ma
jority vote to produce masks. These masks were then used 
to calculate the volume of the target region by integration 
of the Jacobian values within the mask to be compared to 
the true segmentation volumes, thus allowing for an esti
mation of the effective volume difference captured by each 
of the pipeline implementations. 
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Figure 2. Two sets of brains, 10 brains that remained unchanged and a second set of 10 brains with synthetically                   
induced volume changes to the habenula and caudate regions, were used to assess the sensitivity and accuracy of                   
the two-level DBM.    
The upper row shows an example of the increased volume in the right habenula region, and the lower row shows the decreased volume in the right caudate region. 

EXPLORATORY ANALYSIS OF SAME DAY TEST-RETEST 
DATASET AND COMPARISON OF DBM 
IMPLEMENTATIONS 

In order to explore the robustness of the pipeline to the 
intrinsic variations of repeated acquisitions, we obtained 
15 subjects (15 randomly selected with two same day T1w 
images; 9 female, age: 19.6-55.6 years, mean: 33.0 years 
±11.7; 6 male, age: 19.6-37.3 years, mean: 27.8 years ±6.5) 
from the Welsh Advanced Neuroimaging Database (WAND, 
[https://doi.gin.g-node.org/10.12751/g-node.5mv3bf/). Im
ages were pre-processed using minc-bpipe-library 
(https://github.com/cobralab/minc-bpipe-library), and 
processed through 3 variants of the pipeline: 

The third variant aimed at comparing the results to more 
‘traditional’ DBM pipelines that use a common brain tem
plate while maintaining the same registration tools.9,10 The 
2-level (longitudinal) and one-level (cross-sectional) final 
averages were post-registered to the MNI152 ICBM09c sym 
template using antsRegistrationSyN.sh (ANTS/2.5.0), and 
transformations were applied to statistical results so that 
final statistical maps could be compared head-to-head. 

ANALYSIS OF AN ALZHEIMER’S DISEASE DATASET 
COMPARING DBM IMPLEMENTATIONS 

In order to explore the sensitivity of the pipeline in cap
turing effects in a real dataset, we obtained the OASIS-2 
dataset, which contains 150 subjects with 2-5 imaging ses
sions (mean 2.49, SD 0.69) for a total of 372 longitudinal 
T1w scans. The dataset consisted of 72 elderly healthy con
trols (HC; 50 female, Age: 75.5 ± 8.2), 64 participants with 
dementia (28 female, Age: 75.1 ± 6.7), and 14 patients (10 
female, Age: 77.1 ± 7.7) who transitioned during the study 
between clinical classifications (i.e. from healthy to a diag
nosis of dementia). Individuals underwent neurocognitive 
evaluation at each time point, including the Mini-Mental 
State Examination (MMSE). The T1W images were pre-
processed using minc-bpipe-library (https://github.com/

1. The recommended two-level longitudinal pipeline is 
rigidly initialized with the skull-stripped MNI model 
and upsampled to 0.5 mm isotropic 
(mni_icbm152_nlin_sym_09c). In this two-level 
pipeline, the Jacobian determinants for each individ
ual input MRI are first calculated at the subject level 
using the within-subject deformation field. In a sec
ond step, these Jacobian determinants are then co-
registered to an unbiased common space for statisti
cal analysis. 

2. The one-level pipeline with the same initialization. 
Here, the unbiased group average is used as the reg
istration target, and the Jacobian determinants are 
calculated from the deformation field encompassing 
the full registration from the subject to the unbiased 
group average. 

3. A modified version of the one-level pipeline to sim
ulate classical DBM, where the previously mentioned 
model (MNI model upsampled to 0.5 mm isotropic) 
was used as the full-registration target, and only a 
single registration was completed. 
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cobralab/minc-bpipe-library), and the skull-stripped brains 
were processed through 3 variants of the pipeline as de
scribed above. 

The 2-level (longitudinal) and one-level (cross-sec
tional) final averages were post-registered to the MNI152 
ICBM09c sym template using antsRegistrationSyN.sh 
(ANTS/2.5.0), and transformations were applied to statisti
cal results so that final statistical maps could be compared 
head-to-head; however, analysis was performed in the un
biased space in each case. Voxel-wise statistical modelling 
was performed using R/3.4.4 and RMINC/1.5.2.2 using 
mixed-effect linear models. The model tested the interac
tion effect of MMSE and days since first scan (as a proxy for 
disease progression), covaried for sex and age at first scan. 

RESULTS 

RECOVERY OF ARTIFICIALLY INDUCED VOLUME 
DIFFERENCES 

Voxel-wise whole-brain mixed-effect models of the artifi
cially induced volume changes are highly sensitive. Statis
tically significant effects are detected at FDR 5% thresh
old starting at the artificially induced 2% volume difference. 
Figure 3A shows a voxel-wise t-statistics map thresholded 
at 5% FDR. The one-level DBM statistical analysis does not 
reach statistically significant effects at FDR 5% until the 9% 
induced volume difference but only detects the caudate dif
ference, not the habenula. Thus, from a voxel-wise analysis 
perspective, the two-level DBM detects volumetric differ
ences that are ~4.5x smaller compared to a cross-sectional 
DBM model. 

In addition to examining results on a voxel-wise statis
tical level, we also examine the inferred volumes estimated 
through the integration of the absolute Jacobians gener
ated from the DBM within a consensus label. We can ex
amine the resulting volumes with regard to how well they 
recover the volume difference between the original and in
duced-volume difference scans. Figure 3B shows the vol
ume change captured by the DBM vs the induced volume 
difference for the habenula and caudate. The average values 
are reported in Table 1 showing that the two-level DBM 
captures the magnitude of the induced change with greater 
fidelity. Longitudinal volume effect sizes are recovered at 
approximately 50% of true volume as estimated by the inte
gration of absolute Jacobians within a majority vote mask. 
Unmodified subjects in longitudinal DBM result in very 
small volume differences, as expected, whereas in one-level 
DBM, individual subjects can have volumetric error differ
ence estimates of up to 5%. 

To examine the possibility of bias in the DBM-based vol
ume estimation, we generated plots illustrating estimated 
volume change and variance across all subjects (Supple
mentary Figure 1), which show the difference between true 
and estimated volumes compared to the true structure vol
ume. The range of estimated volumes is substantially larger 
in the one-level models than the longitudinal models due 
to scan-wise volume estimates now being contaminated 
with deformations intended to create the final unbiased av

erage, this is also an excellent visualization of the potential 
origin of method-related spurious results in the one-level 
model. 

Considering that the only volumetric differences which 
exist between the subject-wise scans are known a priori, 
and the within-subject mixed-effect models, we can exam
ine the potential findings incurred due to errors and biases 
related to methodological differences. The two ‘timepoints’ 
are composed of identical images except for the changes to 
the caudate and habenula regions, and we expect no find
ings beyond that. Computing a main effect of timepoint, 
we do find sizable groups of significant voxels showing ef
fects using the one-level model (p<0.01, uncorrected). The 
two-level model, on the other hand, shows very few spu
rious voxels (p<0.01, uncorrected) (Figure 4). These spuri
ous findings are most likely due to registration errors at 
the group average stage. As the Jacobian determinants for 
the two-level model are derived at the first within-subject 
stage, these errors likely have a much smaller effect on the 
final statistical comparison. 

EXPLORATORY ANALYSIS OF SAME DAY TEST-RETEST 
DATASET AND COMPARISON OF DBM 
IMPLEMENTATIONS 

DBM modelling of immediate (same day) test-retest T1w 
images demonstrates that the two-level DBM pipeline is ro
bust and sensitivity, and less prone to produce potentially 
erroneous results as compared to the other implementa
tions (Figure 5). This shows that results obtained using the 
two-level DBM pipeline likely more reliable. 

ANALYSIS OF AN ALZHEIMER’S DISEASE DATASET 
COMPARING DBM IMPLEMENTATIONS 

DBM modelling of the OASIS-2 dataset under the optimized 
longitudinal configuration reveals a global pattern of rel
ative volume changes associated with a decrease in the 
MMSE score of participants. Firstly, increases in ventricular 
volume and CSF space adjacent to the temporal lobes were 
found, indicating an overall reduction in the volume of 
brain tissue. Secondly, a pattern of gray matter volume re
duction in the temporal, frontal and parietal cortices. These 
effects are highly significant, surviving 1% FDR correction. 
When comparing the cross-sectional results of the same 
data, substantially fewer regions of frontal and parietal ef
fects are present at the same threshold, indicating a reduc
tion in sensitivity. Most concerningly, new effects showing 
an increase in volume of the right superior parietal cor
tex with increasing MMSE, indicating contamination of the 
longitudinal brain changes by a group-wise difference pre
sent at the start of the study, these effects are method-
related spurious findings, as within-subject effects do not 
show these findings. Figure 6 shows the head-to-head com
parison of the change in MMSE by time interaction in each 
of the respective unbiased spaces. 

To benchmark the sensitivity of the unbiased DBM 
methods against classical methods, we also derived the Ja
cobian determinant performing a one-level DBM pipeline 
direct to MNI space similar to classical DBM methods.9,10 
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Figure 3. Results of the statistical analysis quantifying demonstrating the superior ability of the two-level DBM               
to detect and capture the magnitude of the induced volume change.            
A) Axial section showing significant (FDR q<0.05) voxel-wise changes. The two-level DBM detects changed volumes at the habenula and caudate regions reliably from a magnitude of 
0.021 onwards, while the one-level DBM only detects the induced change at the larger caudate region at 0.095 magnitudes of induced change. The one-level DBM only captures the 
volume change at the habenula region at an induced change of 0.2 magnitudes (20% increased voxel volume). B) Two-level DBM is superior to one level in capturing the magnitude of 
the induced change at about 50% level. 

The classical DBM using MNI space instead of an unbiased 
group average shows a pattern of results that is very sim
ilar to the unbiased one-level DBM, including many of the 
same method-related spurious effects (Supplementary Fig
ure 2). However, the sensitivity seems to be much reduced 
compared to the unbiased one-level DBM, as the sizes of 
groups of significant voxels are markedly reduced. 

DISCUSSION 

The collection of longitudinal data is fast becoming com
mon in both public and private datasets, as well as preclin
ical, clinical, and population studies. Handling this data in 
an optimized two-level longitudinal way can yield higher 
power for a study than using one-level cross-sectional 
methods. In this study, we introduced a new deformation-
based morphometry pipeline which implemented a multi-
level unbiased template approach to measuring within-sub
ject whole-brain volumetric change. We validated and 
compared it against other methods with both synthetic data 
and a real-world dataset. DBM, as opposed to voxel-based 
morphometry (VBM) pipelines, is usable without any tissue 
classification or atlas priors, allowing for arbitrary contrasts 
and application to novel species or anatomy. In addition, 
the absence of a classification stage means that datasets in 
which successful tissue classification cannot be performed 
are still usable for DBM. Finally, there are increasing con
cerns that the classical VBM implementations result in sta
tistical bias due to circularity in their implementations.46,

47 These prior-free implementations do not rely on such as
sumptions. 

Validation of this pipeline using synthetic data reveals 
a supremely sensitive tool, approximately 4.5x more sensi
tive than cross-sectional modelling in detecting volumet
ric within-subject changes in group-wise comparisons. This 
result is obtained despite the variability in exact synthetic 
changes induced by the original manual segmentation 
process involved in defining the ROI for induced volume 
change. Very little work has been done in the area of syn
thetic DBM validation; only van Eede et. al43 examined 
DBM in a rodent model. The two-level DBM implementa
tion is able to capture roughly 50% of the intended change. 
It is most likely the case that the induced volume change 
did not reach the full level intended. This is due to resolu
tion limitations, the resulting interpolation combined with 
the synthetic volume modification when creating an ap
proximate deformation field. These factors will cause the 
final synthetic volume modification to be smaller than in
tended, making the fact that the two-level DBM imple
mentation is able to capture roughly 50% of the intended 
change more remarkable. 

It is also noteworthy that the induced volume changes 
are small. Given 1 mm isotropic MRI resolution, even a 20% 
voxel volume increase would not cause the outer boundary 
of a spherical structure, such as the structures used here, to 
change by a single voxel. 

The two-level DBM not only demonstrates superior sen
sitivity in detecting longitudinal changes, it also demon
strates a diminished likelihood of providing method-related 
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Table 1. Volume change in either structure (caudate - volume decreased; habenula - volume increased) captured               
by one and two level DBM pipeline        

Image type 
Brain 

structure 
Magnitude of induced 

change (in %) 
Two-Level analysis volume 

change captured (in %) 
One-Level analysis volume 

change captured (in %) 

Volume 
Changed 

caudate -0.5 -0.28 -0.16 

Volume 
Changed 

caudate -1.0 -0.50 -0.33 

Volume 
Changed 

caudate -2.1 -1.12 -0.45 

Volume 
Changed 

caudate -4.5 -2.29 -0.83 

Volume 
Changed 

caudate -9.5 -4.85 -1.84 

Volume 
Changed 

caudate -20.0 -10.14 -3.59 

Volume 
Changed 

habenula +0.5 +0.13 -0.13 

Volume 
Changed 

habenula +1.0 +0.42 +0.26 

Volume 
Changed 

habenula +2.1 +0.69 +0.20 

Volume 
Changed 

habenula +4.5 +1.74 +0.50 

Volume 
Changed 

habenula +9.5 +3.58 +1.63 

Volume 
Changed 

habenula +20.0 +7.37 +2.12 

Volume 
Unchanged 

caudate 0.0 (control for -0.5) +0.01 +0.04 

Volume 
Unchanged 

caudate 0.0 (control for -1.0) +0.02 +0.07 

Volume 
Unchanged 

caudate 0.0 (control for -2.1) -0.05 +0.17 

Volume 
Unchanged 

caudate 0.0 (control for -4.5) +0.01 -0.34 

Volume 
Unchanged 

caudate 0.0 (control for -9.5) +0.04 -0.01 

Volume 
Unchanged 

caudate 0.0 (control for -20.0) +0.01 -0.39 

Volume 
Unchanged 

habenula 0.0 (control for +0.5) -0.02 +0.06 

Volume 
Unchanged 

habenula 0.0 (control for +1.0) +0.06 +0.14 

Volume 
Unchanged 

habenula 0.0 (control for +2.1) -0.05 -0.12 

Volume 
Unchanged 

habenula 0.0 (control for +4.5) +0.03 -0.24 

Volume 
Unchanged 

habenula 0.0 (control for +9.5) +0.06 +0.13 

Volume 
Unchanged 

habenula 0.0 (control for +20.0) -0.01 -0.51 

spurious positive results. Deriving the Jacobians from 
within-subject registration allows the minimization of reg
istration bias. Bias grows when using different brain tem
plates for registration, an unbiased group average or the 
MNI template.31‑33 This is apparent in the results when ex
amining the much-expanded variance in the volume esti

mation in one version two-level DBM (Supplementary Fig
ure 1), the method-related spurious positive findings 
(Figure 4 & Figure 5) and the differences in the pattern of 
significant voxels in the analysis of the OASIS-2 data (Fig
ure 6, Supplementary Figure 2). These are likely caused by 
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Figure 4. Statistical analysis using Jacobians derived      
using two-level DBM is less likely to produce method-        
related spurious findings.    
Voxel-wise t-statistical maps (p<0.01) of the main effect of time computed using Jaco
bians derived from the two-level DBM (upper row) and one-level DBM (lower row). Ex
cept for the induced volume change to the caudate and habenula region in 10 of the 20 
brains, identical brains were used for both ‘timepoints’, no effect of time should be 
found in this data. 

Figure 5. Axial sections showing uncorrected (p<0.001)      
apparent voxel-wise volume changes in 15 subjects        
scanned repeatedly (on the same day) captured using         
the Jacobians derived using two-level DBM, one-level,        
and one-level DBM to template space (the “classical”         
DBM method).   

registration errors. The two-level DBM reduces this leading 
to more reliable findings. 

The two-level DBM pipeline reported here has already 
been applied successfully, detecting changes in patients 
following neuromodulatory treatment for refractory ag
gressive behaviour28 or mood disorder,29 identifying dif
ferences in patients with schizophrenic behaviour,48 and 
aiding the localization of physiological effects of drug 
treatments in psychosis.49 It has been applied to show how 
cerebellar and subcortical atrophy contribute to psychiatric 
symptoms in frontotemporal dementia.50 It has also been 
adapted to investigate brain morphology differences and 
changes in preclinical models.51,52 

CONCLUSION 

Here, we present a two-level DBM technique, where the Ja
cobian determinants are first calculated at the subject level 

Figure 6. Axial sections showing significant (FDR      
q<0.01) voxel-wise volume changes captured using the        
Jacobians derived using one and two-level DBM        
associated with increasing MMSE score over time.        
Red circles highlight areas where the one-level DBM fails to capture a difference or 
where it produces spurious results. 

followed by co-registration to an unbiased common group 
average. This two-level DBM is particularly suitable for cap
turing longitudinal intra-individual changes in vivo, being 
4.5x more sensitive in detecting longitudinal within-sub
ject volume changes compared to a typical one-level DBM 
approach and capturing the magnitude of the change much 
more accurately. The pipeline is publicly available35,53 and 
will provide users with a superior alternative to analyze 
brain morphology, especially when using longitudinal data. 

DATA AND CODE AVAILABILITY 

This study utilizes open-access data. The code used for 
data processing and analysis is publicly available at GitHub: 
https://github.com/CoBrALab/twolevel_ants_dbm & 
https://github.com/CoBrALab/optimized_antsMultivari
ateTemplateConstruction (accessed March 19, 2025) 
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