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We present NiMARE (Neuroimaging Meta‑Analysis 
Research Environment; RRID:SCR_0173981), a Python 
library for neuroimaging meta‑analyses and meta‑ 
analysis‑related analyses. NiMARE is an open source, 
collaboratively‑developed package that implements 
a range of meta‑ analytic algorithms, including coor‑
dinate‑ and image‑based meta‑analyses, automated 
annotation, functional decoding, and meta‑analytic 
coactivation modeling. By consolidating meta‑ana‑
lytic methods under a common library and syntax, 
NiMARE makes it straightforward for users to employ 
the appropriate approach for a given analysis. In this 
paper, we describe NiMARE’s architecture and the 
methods implemented in the library. Additionally, we 
provide example code and results for each of the avail‑
able tools in the library.

INTRODUCTION

We introduce NiMARE (Neuroimaging Meta‑Analysis 
Research Environment), a Python package for analyz‑
ing meta‑analytic neuroimaging data. NiMARE is a new 
library developed as a component in a burgeoning 
open‑source meta‑analytic ecosystem for neuroimaging 
data, which currently includes Neurosynth, NeuroVault, 
NeuroQuery, and PyMARE.

While several libraries already exist for neuroimaging 
meta‑analysis, these libraries are generally algorithm‑ 
specific, and are provided in a range of very different user 
interfaces, languages, and licenses. This variability may 
prevent meta‑analysts from using the most appropriate 
algorithm for a given analysis. Further, having multiple 
meta‑analysis algorithms available in one library facilitates 

Fig. 1. A graphical representation of tools and methods implemented in NiMARE. This diagram outlines six of the most common use‑cases for NiMARE. (A) 
Coordinate‑Based Meta‑Analysis (CBMA) is performed by creating a NiMARE Dataset with coordinate information stored in the Dataset.coordinates attribute, which is 
then used in a CBMA Estimator. This produces a MetaResult object with statistical maps, which can then be used in a Corrector object for multiple comparisons correc‑
tion. Once the Corrector has been fitted, it will produce a corrected version of the MetaResult object, containing updated statistical maps. (B) Image‑Based Meta‑Analysis 
(IBMA) operates similarly to CBMA, except that IBMA Estimators use statistical maps stored in the Dataset.images attribute. (C) Meta‑Analytic Coactivation Modeling 
(MACM) uses a region of interest to select coordinate‑based studies within a Dataset, after which the standard CBMA workflow is performed. (D) Automated Annotation 
infers labels from textual (and sometimes other) data associated with the Dataset, as stored in the Dataset.texts attribute. The annotation functions produce labels which 
may be integrated into the Dataset as the Dataset.annotations attribute. (E) Functional decoding of continuous statistical maps operates similarly to discrete decoding, 
in that the input Dataset must have both coordinates and annotations attributes. The Dataset, along with an unthresholded statistical map to decode, is provided to the 
Decoder object, which then outputs measures of similarity or associativeness with each label. (F) Functional decoding of discrete inputs applies a selection criterion to 
a Dataset with both coordinates and annotations attributes, using a Decoder object. The decoding algorithm will output measures of similarity or associativeness with 
each label in the annotations.
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enable users to employ the most appropriate algorithm 
for a given question without introducing a steep learn‑
ing curve. This approach is modeled on the widely‑used 
scikit‑learn package,2,3 which implements a large number 
of machine learning algorithms ‑ all with simple, consis‑
tent interfaces. Regardless of the algorithm employed, 
data should be in the same format and the same class 
methods should be called to fit and/or generate predic‑
tions from the model.

To this end, we have adopted an object‑oriented 
approach to NiMARE’s core API that organizes tools 
based on the type of inputs and outputs they operate 
over. The key data structure is the Dataset class, which 
stores a range of neuroimaging data amenable to var‑
ious forms of meta‑analysis. There are two main types 
of tools that operate on a Dataset class. Transformer 
classes, as their name suggests, perform some transfor‑
mation on a Dataset‑ i.e., they take a Dataset instance 
as input, and return a modified version of that Dataset 
instance as output (for example, with newly generated 
maps stored within the object). Estimator classes apply 
a meta‑analytic algorithm to a Dataset and return a set of 
statistical images stored in a MetaResult container class. 
The key methods supported by each of these base class‑
es, as well as the main arguments to those methods, are 
consistent throughout the hierarchy (e.g., all Transformer 
classes must implement a transform() method), minimiz‑
ing the learning curve and ensuring a high degree of pre‑
dictability for users.

direct comparisons of methods. With NiMARE, we con‑
solidate meta‑analytic algorithms from a range of libraries 
and publications, and provide a common Python syntax 
and well documented application program interfaces. 
Additionally, NiMARE is a collaboratively‑developed  
open source package, enabling researchers to contrib‑
ute new methods not included in the current version.

In this paper, we describe NiMARE’s aims, architec‑
ture and the functionality it supports—including tools for 
database extraction, automated annotation, meta‑anal‑
ysis, meta‑analytic coactivation modeling, and functional 
decoding. The text is accompanied by extensive code 
samples and results (also available online in the form of 
Python scripts; https://github.com/NBCLab/nimare‑paper 
with additional documentation in https://github.com/neu‑
rodatascience/meta_analysis_notebook), ensuring that 
users can follow along interactively.

NIMARE OVERVIEW

NiMARE is designed to be modular and object‑oriented, 
with an interface that mimics popular Python libraries, includ‑
ing scikit‑learn and nilearn. This standardized interface allows 
users to employ a wide range of meta‑analytic algorithms 
without having to familiarize themselves with the idiosyncra‑
sies of algorithm‑specific tools. This lets users use whatever 
method is most appropriate for a given research question 
with minimal mental overhead from switching methods. 
Additionally, NiMARE emphasizes citability, with references 
in the documentation and citable boilerplate text that can be 
copied directly into manuscripts, in order to ensure that the 
original algorithm developers are appropriately recognized.

NiMARE works with Python versions 3.6 and higher, 
and can easily be installed with pip. Its source code is 
housed and version controlled in a GitHub repository at 
https://github.com/neurostuff/NiMARE.

NiMARE is under continued active development, and 
we anticipate that the user‑facing API (application pro‑
gramming interface) may change over time. Our emphasis 
in this paper is thus primarily on reviewing the functionality 
implemented in the package and illustrating the general 
interface, and not on providing a detailed and static user 
guide that will be found within the package documentation.

Tools in NiMARE are organized into several mod‑
ules, including nimare.meta, nimare.correct, nimare.
annotate, nimare.decode, and nimare.workflows. 
In addition to these primary modules, there are sever‑
al secondary modules for data wrangling and internal 
helper functions, including nimare.io, nimare.dataset, 
nimare.extract, nimare.stats, nimare.utils, and nimare.
base. These modules are summarized in Application 
Programming Interface, as well as in Table 1.

Application programming interface

One of the principal goals of NiMARE is to implement 
a range of methods with a set of shared interfaces, to 

Fig. 2. A schematic figure of Datasets, Estimators, Transformers, and MetaResults 
in NiMARE.

https://github.com/NBCLab/nimare-paper
https://github.com/neurodatascience/meta_analysis_notebook
https://github.com/neurodatascience/meta_analysis_notebook
https://github.com/neurostuff/NiMARE
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utility functions, respectively. These modules are sum‑
marized in Table 1.

Dependencies

NiMARE depends on the standard SciPy stack, as well as 
a small number of widely‑used packages. Dependencies 
from the SciPy stack include scipy,4 numpy,5,6 pandas,7 
and scikit‑learn.2,3 Additional requirements include fuzzy‑
wuzzy, nibabel,8 nilearn9, statsmodels,10 and tqdm.11

DOWNLOAD THE DATA

Package organization

At present, the package is organized into 14 distinct 
modules. nimare.dataset defines the Dataset class. 
nimare.meta includes Estimators for coordinate‑ and 
image‑based meta‑analysis methods. nimare.results 
defines the MetaResult class, which stores statistical 
maps produced by meta‑analyses. nimare.correct 
implements Corrector classes for family‑wise error (FWE) 
and false discovery rate (FDR) multiple comparisons cor‑
rection. nimare.annotate implements a range of auto‑
mated annotation methods, including latent Dirichlet  
allocation (LDA) and generalized correspondence latent 
Dirichlet allocation (GCLDA). nimare.decode imple‑
ments a number of meta‑analytic functional decoding 
and encoding algorithms. nimare.io provides functions 
for converting alternative meta‑analytic dataset struc‑
ture, such as Sleuth text files or Neurosynth Datasets, 
to NiMARE format. nimare.transforms implements a 
range of spatial and data type transformations, includ‑
ing a function to generate new images in the Dataset 
from existing image types. nimare.extract provides 
methods for fetching Datasets and models across the 
internet. nimare.generate includes functions for gen‑
erating data for internal testing and validation. nimare.
base defines a number of base classes used through‑
out the rest of the package. Finally, nimare.stats and 
nimare.utils are modules for statistical and generic 

Table 1. Summaries of modules in NiMARE.

Module Description

dataset This module stores the Dataset class, which contains NiMARE Datasets.

meta This module contains Estimators for image‑ and coordinate‑based meta‑analysis algorithms, as well as KernelTransformers, which are used in 
conjunction with coordinate‑based methods.

results This module stores the MetaResult class, which in turn is used to manage statistical maps produced by meta‑analytic algorithms.

correct This module contains classes for multiple comparisons correction, including FWECorrector (family‑wise error rate correction) and FDRCorrector (FDR 
correction).

annotate This module includes a range of tools for automated annotation of studies. Methods in this module include: topic models, such as LDA and GCLDA; 
ontology‑based annotation, such as Cognitive Atlas term extract from text; and general text‑based feature extraction, such as count or tf‑idf 
extraction from text.

decode This module includes a number of methods for functional characterization analysis, also known as functional decoding. Methods in this module are 
divided into three groups: discrete, for decoding regions of interest or subsets of the Dataset; continuous, for decoding unthresholded statistical 
maps; and encoding, for simulating statistical maps from labels.

io This module contains functions for converting common file types, such as Neurosynth‑ or Sleuth‑format files, into NiMARE‑ compatible formats, such 
as Dataset objects.

transforms This module contains classes and functions for converting between common data types. Two important classes in this module are the 
ImageTransformer, which uses available images and metadata to produce new images in a Dataset, and the ImagesToCoordinates, which extracts 
peak coordinates from images in the Dataset, so that image‑based studies can be used for coordinate‑based meta‑analyses.

extract This module contains functions for downloading external resources, such as the Neurosynth Dataset and the Cognitive Atlas ontology.

stats This module contains miscellaneous statistical methods used throughout the rest of the library. 

generate This module contains functions for generating useful data for internal testing and validation.

utils This module contains miscellaneous utility functions used throughout the rest of the library.

workflows This module contains a number of common workflows that can be run from the command line, such as an activation likelihood estimation (ALE) 
meta‑analysis or a contrast‑permutation image‑based meta‑analysis. All of the workflow functions additionally generate boilerplate text that can be 
included in manuscript methods sections.

base This module defines a number of base classes used throughout the rest of the library.

# First, import the necessary modules and 
functions
import os

from repo2data.repo2data import Repo2Data

# Install the data if running locally, 
or points to cached data if running on 
neurolibre
DATA_REQ_FILE = os.path.abspath(“../binder/data_requirement.
json”)
repo2data = Repo2Data(DATA_REQ_FILE)
data_path = repo2data.install()
data_path = os.path.join(data_path[0], “data”)
print(f”Data are located at {data_path}”)
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integrated into the database. Finally, a manually anno‑
tated database like BrainMap will be biased by which 
subdomains within the literature are annotated. While 
outside contributors can add and annotate studies to 
the database, the main source of annotations has been 
researchers associated with the BrainMap project.

While BrainMap is a semi‑closed resource (i.e., a collab‑
oration agreement is required to access the full database), 
registered users may search the database using the Sleuth 
search tool, in order to collect samples for meta‑analyses. 
Sleuth can export these study collections as text files with 
coordinates. NiMARE provides a function to import data 
from Sleuth text files into the NiMARE Dataset format.

The function convert_sleuth_to_dataset() can be used 
to convert text files exported from Sleuth into NiMARE 
Datasets. Here, we convert two files from a previous publica‑
tion by NiMARE contributors18 into two separate Datasets.

We will also create a directory in which to save files that 
are generated within the book.

EXTERNAL META‑ANALYTIC RESOURCES

Large‑scale meta‑analytic databases have made sys‑
tematic meta‑analyses of the neuroimaging literature 
possible. These databases combine results from neuro‑
imaging studies, whether represented as coordinates of 
peak activations or unthresholded statistical images, with 
important study metadata, such as information about 
the samples acquired, stimuli used, analyses performed, 
and mental constructs putatively manipulated. The two 
most popular coordinate‑based meta‑analytic databases 
are BrainMap and Neurosynth, while the most popular 
image‑based database is NeuroVault.

The studies archived in these databases may be either 
manually or automatically annotated—often with reference 
to a formal ontology or controlled vocabulary. Ontologies 
for cognitive neuroscience define what mental states or 
processes are postulated to be manipulated or measured 
in experiments, and may also include details of said exper‑
iments (e.g., the cognitive tasks employed), relationships 
between concepts (e.g., verbal working memory is a kind 
of working memory), and various other metadata that can 
be standardized and represented in a machine‑readable 
form.12–14 Some of these ontologies are very well‑defined, 
such as expert‑generated taxonomies designed specifi‑
cally to describe only certain aspects of experiments and 
the relationships between elements within the taxonomy, 
while others are more loosely defined, in some cases sim‑
ply building a vocabulary based on which terms are com‑
monly used in cognitive neuroscience articles.

BrainMap

BrainMap 15–17 relies on expert annotators to label individ‑
ual comparisons within studies according to its internally 
developed ontology, the BrainMap Taxonomy.15 While 
this approach is likely to be less noisy than an automated 
annotation method using article text or imaging results 
to predict content, it is also subject to a number of lim‑
itations. First, there are simply not enough annotators 
to keep up with the ever‑expanding literature. Second, 
any development of the underlying ontology has the 
potential to leave the database outdated. For example, 
if a new label is added to the BrainMap Taxonomy, then 
each study in the full BrainMap database needs to be 
evaluated for that label before that label can be properly 

Files generated by the book will be saved to /Users/taylor/
Documents/nbc/nimarepaper/ outputs

os.makedirs(“../outputs/”, exist_ok=True)
print(f”Files generated by the book will be saved to {os.path.
abspath(‘../outputs/’)}”)

from nimare import io

sleuth_dset1 = io.convert_sleuth_to_dataset(
  os.path.join(data_path, “contrast-CannabisMinusControl_

space-talairach_sleuth.txt”)
)
sleuth_dset2 = io.convert_sleuth_to_dataset(
  os.path.join(data_path, “contrast-ControlMinusCannabis_

space-talairach_sleuth.txt”)
)
print(sleuth_dset1)
print(sleuth_dset2)

# Save the Datasets to files for future use 
sleuth_dset1.save(os.path.join(out_dir,  “sleuth_dset1.pkl.gz”)) 
sleuth_dset2.save(os.path.join(out_dir,  “sleuth_dset2.pkl.gz”))

Dataset(41 experiments, space='ale_2mm') Dataset 
(41 experiments, space='ale_2mm')

Neurosynth

Neurosynth19 uses a combination of web scraping and 
text mining to automatically harvest neuroimaging stud‑
ies from the literature and to annotate them based on 
term frequency within article abstracts. As a consequence 
of its relatively crude automated approach, Neurosynth 
has its own set of limitations. First, Neurosynth is unable 
to delineate individual comparisons within studies, and 
consequently uses the entire paper as its unit of measure‑
ment, unlike BrainMap. This risks conflating directly con‑
trasted comparisons (e.g., A>B and B>A), as well as com‑
parisons which have no relation to one another. Second, 
coordinate extraction and annotation are noisy. Third, 
annotations automatically performed by Neurosynth are 
also subject to error, although the reasons behind this are 
more nuanced and will be discussed later in this paper. 
Given Neurosynth’s limitations, we recommend that it 
be used for casual, exploratory meta‑analyses rather 

http://www.brainmap.org/
http://neurosynth.org/
https://neurovault.org/
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Converting the large Neurosynth and NeuroQuery 
Datasets to NiMARE Dataset objects can be a very 
memory‑intensive process. For the sake of this book, we 
show how to perform the conversions below, but actually 
load and use pre‑converted Datasets.

than for publication‑quality analyses. Nevertheless, while 
individual meta‑analyses should not be published from 
Neurosynth, many derivative analyses have been per‑
formed and published (e.g.20–23). As evidence of its util‑
ity, Neurosynth has been used to define a priori regions 
of interest (e.g.24–26) or perform meta‑analytic function‑
al decoding (e.g.27–29, ) in many first‑order (rather than 
meta‑analytic) fMRI studies.

Here, we show code that would download the 
Neurosynth database from where it is stored (https://
github.com/neurosynth/neurosynth‑data) and convert it 
to a NiMARE Dataset using fetch_neurosynth(), for the 
first step, and convert_neurosynth_to_dataset(), for the 
second.

INFO:nimare.extract.utils:Dataset found in ./../data/nimare-paper/
data/neurosynth

INFO:nimare.extract.extract:Searching for any feature files 
matching the following criteria: [(‘source-abstract’, ‘vocab-terms’, 
‘data-neurosynth’, ‘version-7’)]

Downloading data-neurosynth_version-7_coordinates.tsv.gz

File exists and overwrite is False. Skipping.
Downloading data-neurosynth_version-7_metadata.tsv.gz

File exists and overwrite is False. Skipping.
Downloading data-neurosynth_version-7_vocab-terms_source-
abstract_type-tfidf_features.npz

File exists and overwrite is False. Skipping.
Downloading data-neurosynth_version-7_vocab-terms_
vocabulary.txt

‘vocabulary’: ‘/Users/taylor/Documents/nbc/nimare-paper/
data/nimare- paper/data/neurosynth/data-neurosynth_version-7_
vocab-terms_vocabulary.txt’}],

‘metadata’: ‘/Users/taylor/Documents/nbc/nimare-paper/data/
nimare- paper/data/neurosynth/data-neurosynth_version-7_
metadata.tsv.gz’}]

# Convert the files to a Dataset.
# This may take a while (~10 minutes)
neurosynth_dset = io.convert_neurosynth_to_dataset(

coordinates_file=neurosynth_db["coordinates"], 
metadata_file=neurosynth_db["metadata"], 
annotations_files=neurosynth_db["features"],

)
print(neurosynth_dset)

# Save the Dataset for later use.
neurosynth_dset.save(os.path.join(out_dir, "neurosynth_dataset.
pkl.gz"))

Here, we load a pre‑generated version of the 
Neurosynth Dataset.

from nimare import extract

# Download the desired version of Neurosynth 
from GitHub.
files = extract.fetch_neurosynth(
 data_dir=data_path,
 version=”7”,
 source=”abstract”,
 vocab=”terms”, 
 overwrite=False,
)
pprint(files) neurosynth_db = files[0]

Dataset(14371 experiments, space='mni152_2mm')

from nimare import dataset

neurosynth_dset = dataset.Dataset.load(os.path.join(data_path, 
"neurosynth_dataset.pkl.gz"))
print(neurosynth_dset)

Many of the methods in NiMARE can be very time‑con‑
suming or memory‑intensive. Therefore, for the sake of 
ensuring that the analyses in this article may be repro‑
duced by as many people as possible, we will use a 
reduced version of the Neurosynth Dataset, only con‑
taining the first 500 studies, for those methods which 
may not run easily on the full database.

neurosynth_dset_first_500 = neurosynth_dset.slice(neurosynth_
dset.ids[:500]) print(neurosynth_dset)

# Save this Dataset for later use.
neurosynth_dset_first_500.save(os.path.join(out_dir,  
"neurosynth_dataset_first500.pkl.gz"))

Dataset(14371 experiments, space=’mni152_2mm’)

File exists and overwrite is False. Skipping.
[{‘coordinates’: ‘/Users/taylor/Documents/nbc/nimare-paper/
data/nimare- paper/data/neurosynth/data-neurosynth_version-7_
coordinates.tsv.gz’,

‘features’: [{‘features’: ‘/Users/taylor/Documents/nbc/nimare-
paper/data/nimare- paper/data/neurosynth/data-neurosynth_
version-7_vocab-terms_source-abstract_type- tfidf_features.npz’,

https://github.com/neurosynth/neurosynth-data
https://github.com/neurosynth/neurosynth-data
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Here, we load a pre‑generated version of the 
NeuroQuery Dataset.

In addition to a large corpus of coordinates, Neurosynth 
provides term frequencies derived from article abstracts 
that can be used as annotations.

One additional benefit to Neurosynth is that it has 
made available the coordinates for a large number 
of studies for which the study abstracts are also readi‑
ly available. This has made the Neurosynth database a 
common resource upon which to build other automat‑
ed ontologies. Data‑driven ontologies which have been 
developed using the Neurosynth database include the 
GCLDA30 topic model and Deep Boltzmann machines.31

NeuroQuery

A related resource is NeuroQuery.32 NeuroQuery is an 
online service for large‑scale predictive meta‑analysis. 
Unlike Neurosynth, which performs statistical inference 
and produces statistical maps, NeuroQuery is a supervised 
learning model and produces a prediction of the brain 
areas most likely to contain activations. These maps predict 
locations where studies investigating a given area (deter‑
mined by the text prompt) are likely to produce activations, 
but they cannot be used in the same manner as statistical 
maps from a standard coordinate‑based meta‑analysis. In 
addition to this predictive meta‑analytic tool, NeuroQuery 
also provides a new database of coordinates, text annota‑
tions, and metadata via an automated extraction approach 
that improves on Neurosynth’s original methods.

While NiMARE does not currently include an interface to 
NeuroQuery’s predictive meta‑analytic method, there are 
functions for downloading the NeuroQuery database and 
converting it to NiMARE format, much like Neurosynth. 
The functions for downloading the NeuroQuery database 
and converting it to a Dataset are fetch_neuroquery() 
and convert_neurosynth_to_dataset(), respectively. We 
are able to use the same function for converting the data‑
base to a Dataset for NeuroQuery as Neurosynth because 
both databases store their data in the same structure.

INFO:nimare.extract.utils:Dataset found in ./../data/nimare-paper/
data/neuroquery

INFO:nimare.extract.extract:Searching for any feature files 
matching the following criteria: [('source-combined', 'vocab-
neuroquery6308', 'type-tfidf', 'data-neuroquery', 'version-1')]

Downloading data-neuroquery_version-1_coordinates.tsv.gz

File exists and overwrite is False. Skipping.
Downloading data-neuroquery_version-1_metadata.tsv.gz

File exists and overwrite is False. Skipping.
Downloading data-neuroquery_version-1_vocab-
neuroquery6308_source-combined_typetfidf_
features.npz

File exists and overwrite is False. Skipping.
Downloading data-neuroquery_version-1_vocab-
neuroquery6308_vocabulary.txt

File exists and overwrite is False. Skipping.
[{'coordinates': '/Users/taylor/Documents/nbc/nimare-paper/
data/nimarepaper/data/neuroquery/data-neuroquery_version-1_
coordinates.tsv.gz',

'features': [{'features': '/Users/taylor/Documents/nbc/nimare-
paper/data/nimarepaper/data/neuroquery/data-neuroquery_
version-1_vocab-neuroquery6308_sourcecombined_type-tfidf_
features.npz',

'vocabulary': '/Users/taylor/Documents/nbc/nimare-paper/
data/nimarepaper/data/neuroquery/data-neuroquery_version-1_
vocab-neuroquery6308_vocabulary.txt'}],

'metadata': '/Users/taylor/Documents/nbc/nimare-paper/
data/nimarepaper/data/neuroquery/data-neuroquery_version-1_
metadata.tsv.gz'}]

# Convert the files to a Dataset.
# This may take a while (~10 minutes)
neuroquery_dset = io.convert_neurosynth_to_dataset(
 coordinates_file=neuroquery_db["coordinates"],
 metadata_file=neuroquery_db["metadata"],
 annotations_files=neuroquery_db["features"],
)
print(neuroquery_dset)

# Save the Dataset for later use.
neuroquery_dset.save(os.path.join(out_dir, "neuroquery_dataset.
pkl.gz"))

# Download the desired version of 
NeuroQuery from GitHub.
files = extract.fetch_neuroquery(  
 data_dir=data_path,  
 version="1",  
 source="combined",  
 vocab="neuroquery6308",  
 type="tfidf", 

 overwrite=False,
)
pprint(files)  
neuroquery_db = files[0]

Dataset(13459 experiments, space='mni152_2mm')

neuroquery_dset = dataset.Dataset.load(os.path.join(data_path,
"neuroquery_dataset.pkl.gz"))
print(neuroquery_dset)
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a spatial Kernel to produce study‑specific modeled acti‑
vation maps, then combining those modeled activation 
maps into a sample‑wise map, which is compared to a 
null distribution to evaluate voxel‑wise statistical signifi‑
cance. Additionally, for each of the following approach‑
es, except for specific coactivation likelihood estimation 
(SCALE), voxel‑ or cluster‑level multiple comparisons 
correction may be performed using Monte Carlo simu‑
lations or FDR36 correction. Basic multiple‑comparisons 
correction methods (e.g., Bonferroni correction) are also 
supported.

CBMA kernels

CBMA kernels are available as KernelTransformers in 
the nimare.meta.kernel module. There are three stan‑
dard kernels that are currently available: MKDAKernel, 
KDAKernel, and ALEKernel. Each class may be config‑
ured with certain parameters when a new object is ini‑
tialized. For example, MKDAKernel accepts an r param‑
eter, which determines the radius of the spheres that will 
be created around each peak coordinate. ALEKernel 
automatically uses the sample size associated with each 
experiment in the Dataset to determine the appropri‑
ate full‑width‑at‑half‑maximum of its Gaussian distri‑
bution, as described in Eickhoff et al.37; however, users 
may provide a constant sample_size or fwhm parameter 
when sample size information is not available within the 
Dataset metadata.

Here we show how these three kernels can be applied 
to the same Dataset.

NeuroVault

NeuroVault33 is a public repository of user‑uploaded, 
whole‑brain, unthresholded brain maps. Users may asso‑
ciate their image collections with publications, and can 
annotate individual maps with labels from the Cognitive 
Atlas, which is the ontology of choice for NeuroVault. 
NiMARE includes a function, convert_neurovault_to_
dataset(), with which users can search for images in 
NeuroVault, download those images, and convert them 
into a Dataset object.

COORDINATE‑BASED META‑ANALYSIS

Coordinate‑based meta‑analysis (CBMA) is currently the 
most popular method for neuroimaging meta‑analysis, 
given that the majority of fMRI papers currently report 
their findings as peaks of statistically significant clusters in 
standard space and do not release unthresholded statis‑
tical maps. These peaks indicate where significant results 
were found in the brain, and thus do not reflect an effect 
size estimate for each hypothesis test (i.e., each voxel) as 
one would expect for a typical meta‑analysis. As such, 
standard methods for effect size‑based meta‑analysis 
cannot be applied. Over the past two decades, a number 
of algorithms have been developed to determine wheth‑
er peaks converge across experiments in order to identi‑
fy locations of consistent or specific activation associated 
with a given hypothesis.34,35

Kernel‑based methods evaluate convergence of 
coordinates across studies by first convolving foci with 

Fig. 3. A flowchart of the typical workflow for coordinate‑based meta‑analyses 
in NiMARE.

Fig. 4. Modeled activation maps produced by NiMARE’s KernelTransformer 
classes.
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In NiMARE, the MKDA meta‑analyses can be per‑
formed with the MKDADensity class. This class, like most 
other CBMA classes in NiMARE, accepts a null_method 
parameter, which determines how voxel‑wise (uncorrect‑
ed) statistical significance is calculated.

The null_method parameter allows two options: 
“approximate” or “montecarlo.” The “approximate” 
option builds a histogram‑based null distribution of 
summary‑statistic values, which can then be used to 
determine the associated p‑value for observed sum‑
mary‑statistic values (i.e., the values in the meta‑analytic 
map). The “montecarlo” option builds a null distribution 
of summary‑statistic values by randomly shuffling the 
coordinates the Dataset many times, and computing the 
summary‑statistic values for each permutation. In gen‑
eral, the “montecarlo” method is slightly more accurate 
when there are enough permutations, while the “approx‑
imate” method is much faster.

Fitting the CBMA Estimator to a Dataset will produce 
p‑value, z‑statistic, and summary‑statistic maps, but 
these are not corrected for multiple comparisons.

When performing a meta‑analysis with the goal of sta‑
tistical inference, you will want to perform multiple com‑
parisons correction with NiMARE’s Corrector classes. 
Please see the multiple comparisons correction chapter 
for more information.

Here we perform an MKDADensity meta‑analysis 
on one of the Sleuth‑based Datasets. We will use the 
“approximate” null method for speed.

from nimare.meta import kernel

mkda_kernel = kernel.MKDAKernel(r=10)
mkda_ma_maps = mkda_kernel.transform(sleuth_dset1)
kda_kernel = kernel.KDAKernel(r=10)
kda_ma_maps = kda_kernel.transform(sleuth_dset1)
ale_kernel = kernel.ALEKernel(sample_size=20)
ale_ma_maps = ale_kernel.transform(sleuth_dset1)

from nimare import dataset, meta

neurosynth_dset_first500 = dataset.Dataset.load(
os.path.join(data_path, "neurosynth_dataset_first500.pkl.gz")
)

# Specify where images for this Dataset 
should be located
target_folder = os.path.join(out_dir, "neurosynth_dataset_maps")
os.makedirs(target_folder, exist_ok=True)
neurosynth_dset_first500.update_path(target_folder)

# Initialize a kernel transformer to use
kern = meta.kernel.MKDAKernel(memory_limit="500mb")

# Run the kernel transformer with return_
type set to "dataset" to return an updated
Dataset
# with the MA maps stored as files within 
its "images" attribute.
neurosynth_dset_first500 = kern.
transform(neurosynth_dset_first500,
return_type="dataset")
neurosynth_dset_first500.save(

os.path.join(out_dir, "neurosynth_dataset_first500_with_mkda_
ma.pkl.gz"),

)

INFO:nimare.utils:Shared path detected: '/Users/
taylor/Documents/nbc/nimarepaper/ outputs/
neurosynth_dataset_maps/'

Multilevel Kernel density analysis

Multilevel Kernel density analysis (MKDA)38 is a 
Kernel‑based method that convolves each peak from 
each study with a binary sphere of a set radius. These 
peak‑specific binary maps are then combined into 
study‑specific maps by taking the maximum value for 
each voxel. Study‑specific maps are then averaged 
across the meta‑analytic sample. This averaging is gen‑
erally weighted by studies’ sample sizes, although other 
covariates may be included, such as weights based on 
the type of inference (random or fixed effects) employed 
in the study’s analysis. An arbitrary threshold is generally 
employed to zero‑out voxels with very low values, and 
then a Monte Carlo procedure is used to assess statisti‑
cal significance, either at the voxel or cluster level.

from nimare.meta.cbma import mkda

mkdad_meta = mkda.MKDADensity(null_method="approximate")
mkdad_results = mkdad_meta.fit(sleuth_dset1)

The MetaResult class

Fitting an Estimator to a Dataset produces a MetaResult 
object. The MetaResult class is a light container holding 
the different statistical maps produced by the Estimator.

print(mkdad_results)

<nimare.results.MetaResult object at 0x7fdaeb186640>

This result is also retained as an attribute in the 
Estimator.

print(mkdad_meta.results)

<nimare.results.MetaResult object at 0x7fdaeb186640>
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We will also save the Estimator itself, which we will 
reuse when we get to multiple comparisons correction.

Since this is a Kernel‑based algorithm, the Kernel 
transformer is an optional input to the meta‑analytic 
estimator, and can be controlled in a more fine‑ grained 
manner.

We can save the statistical maps to an output directory 
as gzipped nifti files, with a prefix. Here, we will save all of 
the statistical maps with the MKDADensity prefix.

The maps attribute is a dictionary containing statistical 
map names and associated numpy arrays.

mkdad_img = mkdad_results.get_map(“z”, return_type=”image”)
print(mkdad_img)

pprint(mkdad_results.maps)

{‘p’: array([1., 1., 1., ..., 1., 1., 1.]),
‘stat’: array([0., 0., 0., ..., 0., 0., 0.]),
‘z’: array([0., 0., 0., ..., 0., 0., 0.])}

<class ‘nibabel.nifti1.Nifti1Image’>
data shape (91, 109, 91)
affine:
[[ -2. 0. 0. 90.]
[ 0. 2. 0. -126.]
[ 0. 0. 2. -72.]
[ 0. 0. 0. 1.]]
metadata:
<class ‘nibabel.nifti1.Nifti1Header’> object, endian=’<’
sizeof_hdr : 348
data_type : b’’
db_name : b’’
extents : 0
session_error : 0
regular : b’’
dim_info : 0
dim : [ 3 91 109 91 1 1 1 1]
intent_p1 : 0.0
intent_p2 : 0.0
intent_p3 : 0.0
intent_code : none
datatype : float64
bitpix : 64
slice_start : 0
pixdim : [-1. 2. 2. 2. 1. 1. 1. 1.]
vox_offset : 0.0
scl_slope : nan
scl_inter : nan
slice_end : 0
slice_code : unknown
xyzt_units : 0
cal_max : 0.0
cal_min : 0.0
slice_duration : 0.0
toffset : 0.0
glmax : 0
glmin : 0
descrip : b’’
aux_file : b’’
qform_code : unknown
sform_code : aligned
quatern_b : 0.0

mkdad_results.save_maps(output_dir=out_dir, 
prefix=”MKDADensity”)

mkdad_meta.save(os.path.join(out_dir, “MKDADensity.pkl.gz”))

# These two approaches (initializing the 
kernel ahead of time or
# providing the arguments with the kernel__ 
prefix) are equivalent.
mkda_kernel = kernel.MKDAKernel(r=2)
mkdad_meta = mkda.
MKDADensity(kernel_transformer=mkda_kernel)
mkdad_meta = mkda.MKDADensity(kernel_transformer=kernel.
MKDAKernel, kernel__r=2)

# A completely different kernel could even 
be provided, although this is not
# recommended and should only be used for 
testing algorithms.
mkdad_meta = mkda.MKDADensity(kernel_transformer=kernel.
KDAKernel)

These arrays can be transformed into image‑like 
objects using the masker attribute. We can also use the 
get_map method to get that image object.

quatern_c : 1.0
quatern_d : 0.0
qoffset_x : 90.0
qoffset_y : -126.0
qoffset_z : -72.0
srow_x : [-2. 0. 0. 90.]
srow_y : [ 0. 2. 0. -126.]
srow_z : [ 0. 0. 2. -72.]
intent_name : b’’
magic : b’n+1’

Kernel density analysis

Kernel density analysis (KDA)39,40 is a precursor algo‑
rithm that has been replaced in the field by MKDA. 
For the sake of completeness, NiMARE also includes 
a KDA estimator that implements the older KDA algo‑
rithm for comparison purposes. The interface is virtu‑
ally identical, but since there are few if any legitimate 
uses of KDA (which models studies as fixed rather than 
random effects), we do not discuss the algorithm fur‑
ther here.
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MKDA Chi‑squared Analysis

An alternative to the density‑based approaches (i.e., 
MKDA, KDA, ALE, and SCALE) is the MKDA Chi‑squared 
extension.38 Although still a Kernel‑based method in which 
foci are convolved with a binary sphere and combined 
within studies, this approach uses voxel‑wise Chi‑squared 
tests to assess both consistency (i.e., higher convergence 
of foci within the meta‑analytic sample than expected by 
chance) and specificity (i.e., higher convergence of foci 
within the meta‑analytic sample than detected in an unre‑
lated dataset) of activation. Such an analysis also requires 
access to a reference meta‑analytic sample or database 
of studies. For example, to perform a Chi‑squared anal‑
ysis of working memory studies, the researcher will also 
need a comprehensive set of studies which did not manip‑
ulate working memory—ideally one that is matched with 
the working memory study set on all relevant attributes 
except the involvement of working memory.

Activation likelihood estimation

ALE41–43 assesses convergence of peaks across studies 
by first generating a modeled activation map for each 
study, in which each of the experiment’s peaks is con‑
volved with a 3D Gaussian distribution determined by 
the experiment’s sample size, and then by combining 
these modeled activation maps across studies into an 
ALE map, which is compared with an empirical null distri‑
bution to assess voxel‑wise statistical significance.

Specific coactivation likelihood estimation

SCALE44 is an extension of the ALE algorithm devel‑
oped for meta‑analytic coactivation modeling (MACM) 
analyses. Rather than comparing convergence of foci 
within the sample to a null distribution derived under 
the assumption of spatial randomness within the brain, 
SCALE assesses whether the convergence at each voxel 
is greater than in the general literature. Each voxel in the 
brain is assigned a null distribution determined based 
on the base rate of activation for that voxel across an 
existing coordinate‑based meta‑analytic database. This 
approach allows for the generation of a statistical map 
for the sample, but no methods for multiple comparisons 
correction have yet been developed. While this method 
was developed to support analysis of joint activation or 
“coactivation” patterns, it is generic and can be applied 
to any CBMA; see Derivative Analyses.

kda_meta = mkda.KDA(null_method=”approximate”)
kda_results = kda_meta.fit(sleuth_dset1)

# Retain the z-statistic map for later use
kda_img = kda_results.get_map(“z”, return_type=”image”)

from nimare.meta.cbma import ale

ale_meta = ale.ALE()
ale_results = ale_meta.fit(sleuth_dset1)

# Retain the z-statistic map for later use
ale_img = ale_results.get_map(“z”, return_type=”image”)

# Here we use the coordinates from 
Neurosynth as our measure of coordinate
# base-rates, because we do not have access 
to the full BrainMap database.
# However, one assumption of SCALE is that 
the Dataset being analyzed comes
# from the same source as the database you 
use for calculating base-rates.
xyz = neurosynth_dset.coordinates[[“x”, “y”, “z”]].values
# Typically, you would have >=2500 
iterations, but we’re using 500 here.

100% 500/500 [03 38<00 00, 2.58it/s]
100% 228483/228483 [02 22<00 00, 3108.27it/s]

scale_meta = ale.SCALE(n_iters=500, xyz=xyz, memory_
limit=”100mb”, n_cores=1) scale_results = scale_meta.
fit(sleuth_dset1)

# Retain the z-statistic map for later use
scale_img = scale_results.get_map(“z”, return_type=”image”)

mkdac_meta = mkda.MKDAChi2()
mkdac_results = mkdac_meta.fit(sleuth_dset1, sleuth_dset2)

# Retain the specificity analysis’s 
z-statistic map for later use
mkdac_img = mkdac_results.get_map(“z_desc-specificity”, 
return_type=”image”)

Comparing algorithms

Here, we load the z‑statistic map from each of the CBMA 
estimators we have used throughout this chapter and 
plot them all side by side.

meta_results = {
 “MKDA Density”: mkdad_img,
 “MKDA Chi-Squared”: mkdac_img,
 “KDA”: kda_img,
 “ALE”: ale_img,
 “SCALE”: scale_img,
}
order = [
 [“MKDA Density”, “ALE”],
 [“MKDA Chi-Squared”, “SCALE”],
 [“KDA”, None]
]

fig, axes = plt.subplots(figsize=(12, 6), nrows=3, ncols=2)
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Fig. 5. Thresholded results from MKDA density, KDA, ALE, and SCALE meta‑analyses.

for i_row, row_names in enumerate(order):
 for j_col, name in enumerate(row_names):
  if not name:
   axes[i_row, j_col].axis(“off”)
   continue

  img = meta_results[name]
  if name == “MKDA Chi-Squared”:
   cmap = “RdBu_r”
  else:
   cmap = “Reds”

  display = plotting.plot_stat_map( img,
   annotate=False,
   axes=axes[i_row, j_col],
   cmap=cmap,
   cut_coords=[5, -15, 10],
   draw_cross=False,
   figure=fig,
  )
  axes[i_row, j_col].set_title(name)

  colorbar = display._cbar
  colorbar_ticks = colorbar.get_ticks()
  if colorbar_ticks[0] < 0:
    new_ticks = [colorbar_ticks[0], 0, colorbar_ticks[-1]]
  else:
    new_ticks = [colorbar_ticks[0], colorbar_ticks[-1]]
   colorbar.set_ticks(new_ticks, update_ticks=True)

glue(“figure_cbma_uncorr”, fig, display=False)

A number of other coordinate‑based meta‑analysis algo‑
rithms exist, which are not yet implemented in NiMARE. 
We describe these algorithms briefly in Future Directions.

IMAGE‑BASED META‑ANALYSIS

Image‑based meta‑analysis (IBMA) methods perform a 
meta‑analysis directly on brain images (either whole‑brain 

or partial) rather than on extracted peaks. On paper, IBMA 
is superior to CBMA in virtually all respects, as the availabil‑
ity of analysis‑level parameter and variance estimates at all 
analyzed voxels allows researchers to use the full comple‑
ment of standard meta‑analysis techniques, instead of hav‑
ing to resort to Kernel‑based or other methods that require 
additional spatial assumptions. In principle, given a set of 
maps that contains no missing values (i.e., where there are 
k valid pairs of parameter and variance estimates at each 
voxel), one can simply conduct a voxel‑wise version of any 
standard meta‑analysis or meta‑regression method com‑
monly used in other biomedical or social science fields.

In practice, the utility of IBMA methods has historical‑
ly been quite limited, as unthresholded statistical maps 
have been unavailable for the vast majority of neuro‑
imaging studies. However, the introduction and rapid 
adoption of NeuroVault,33 a database for unthresholded 
statistical images, has made image‑based meta‑anal‑
ysis increasingly viable. Although coverage of the liter‑
ature remains limited, and IBMAs of maps drawn from 
the NeuroVault database are likely to omit at least some 
(and in some cases most) relevant studies due to limit‑
ed metadata, we believe the time is ripe for researchers 
to start including both CBMAs and IBMAs in published 
meta‑analyses, with the aspirational goal of eventu‑
ally transitioning exclusively to the latter. To this end, 
NiMARE supports a range of different IBMA methods, 
including a number of estimators of the gold standard 
mixed‑effects meta‑regression model, as well as several 
alternative estimators suitable for use when some of the 
traditional inputs are unavailable.

NiMARE’s IBMA Estimators are light wrappers around 
classes from PyMARE, a library for standard (i.e., non‑ 
neuroimaging) meta‑analyses developed by the same 
team as NiMARE.

In the optimal situation, meta‑analysts have access to both 
contrast (i.e., parameter estimate) maps and their associat‑
ed standard error maps for a number of studies. With these 
data, researchers can fit the traditional random‑effects 

https://pymare.readthedocs.io/
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Transforming images

Researchers may share their statistical maps in many forms, 
some of which are direct transformations of one another. 
For example, researchers may share test statistic maps 
with z‑statistics or t‑statistics, and, as long as we know 
the degrees of freedom associated with the t‑test, we 
can convert between the two easily. To that end, NiMARE 
includes a class, ImageTransformer, which will calculate 
target image types from available ones, as long as the 
available images are compatible with said transformation.

Here, we use ImageTransformer to calculate z‑statistic 
and variance maps for all studies with compatible imag‑
es. This allows us to apply more image‑based meta‑anal‑
ysis algorithms to the Dataset.

Now that we have filled in as many gaps in the 
Dataset as possible, we can start running meta‑analyses. 
We will start with a DerSimonian‑Laird meta‑analysis 
(DerSimonianLaird).

meta‑regression model using one of several methods 
that vary in the way they estimate the between‑study 
variance (τ2). Currently, supported estimators include the 
DerSimonian‑Laird method,45 the Hedges method,46 and 
maximum‑likelihood (ML) and restricted maximum‑like‑
lihood (REML) approaches. NiMARE can also perform 
fixed‑effects meta‑regression via weighted least‑squares, 
although there are few IBMA scenarios where a fixed‑ef‑
fects analysis would be indicated. It is worth noting that the 
non‑likelihood‑based estimators (i.e., DerSimonian‑Laird 
and Hedges) have a closed‑form solution and are imple‑
mented in an extremely efficient way in NiMARE (i.e., com‑
putation is performed on all voxels in parallel). However, 
these estimators also produce more biased estimates 
under typical conditions (e.g., when sample sizes are very 
small), implying a tradeoff from the user’s perspective.

Alternatively, when users only have access to contrast 
maps and associated sample sizes, they can use the sup‑
ported sample size‑based likelihood estimator, which 
assumes that within‑study variance is constant across 
studies, and uses maximum‑likelihood or restricted max‑
imum‑likelihood to estimate between‑study variance, 
as described in Sangnawakij et al..47 When users have 
access only to contrast maps, they can use the permut‑
ed OLS estimator, which uses ordinary least squares and 
employs a max‑type permutation scheme for family‑wise 
error correction 48,49 that has been validated on neuroim‑
aging data50 and relies on the nilearn library.

Finally, when users only have access to z‑score maps, 
they can use either the Fisher’s51 or the Stouffer’s52 esti‑
mators. When sample size information is available, users 
may incorporate that information into the Stouffer’s 
method, via the method described in.53

Given the paucity of image‑based meta‑analytic 
Datasets, we have included the tools to build a dataset 
from a NeuroVault collection of 21 pain studies, originally 
described in Maumet and Nichols.54

from nimare import dataset, extract, utils

dset_dir = extract.download_nidm_pain(data_dir=data_
path, overwrite=False) dset_file = os.path.join(utils.get_
resource_path(), "nidm_pain_dset.json") img_dset = dataset.
Dataset(dset_file)

# Point the Dataset toward the images we've 
downloaded
img_dset.update_path(dset_dir)

INFO:nimare.extract.utils:Dataset found in ./../data/nimare-paper/
data/nidm_21pain

INFO:nimare.utils:Shared path detected: '/Users/taylor/
Documents/nbc/nimarepaper/data/nimare-paper/data/
nidm_21pain/'

import warnings

from nimare import transforms

# The images used in this example have NaNs 
in any voxels outside the brain.
# Generally, we recommend having zeros in 
masked-out areas,
# but the data are what they are in this 
case.
# Nilearn will raise warnings when users 
resample images with NaNs.
# This will not cause any problems for this 
example, so we will simply filter
# those warnings out.
warnings.filterwarnings(action=”ignore”, 
category=RuntimeWarning, module=”nilearn”)

img_transformer = transforms.ImageTransformer(target=[“z”, 
“varcope”], overwrite=False)
img_dset = img_transformer.transform(img_dset)

INFO:nimare.utils:Shared path detected: ‘/Users/taylor/
Documents/nbc/nimarepaper/data/nimare-paper/data/
nidm_21pain/’

from nimare import meta

dsl_meta = meta.ibma.DerSimonianLaird(resample=True)
dsl_results = dsl_meta.fit(img_dset)

# Retain the z-statistic map for later use
dsl_img = dsl_results.get_map(“z”, return_type=”image”)

Now we will apply other available IBMA Estimators 
to the same Dataset and save their results to files for 
comparison.
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Comparing algorithms

Here, we load the z‑statistic map from each of the IBMA 
Estimators we have used throughout this chapter and 
plot them all side by side.

# Stouffer’s
stouffers_meta = meta.ibma.Stouffers(use_sample_size=False, 
resample=True)
stouffers_results = stouffers_meta.fit(img_dset)
stouffers_img = stouffers_results.get_map(“z”, 
return_type=”image”)
del stouffers_meta, stouffers_results

# Stouffer’s with weighting based on sample 
size
wstouffers_meta = meta.ibma.Stouffers(use_sample_size=True, 
resample=True) wstouffers_results = wstouffers_meta.fit(img_dset)
wstouffers_img = wstouffers_results.get_map(“z”, 
return_type=”image”)
del wstouffers_meta, wstouffers_results

# Fisher’s
fishers_meta = meta.ibma.Fishers(resample=True)
fishers_results = fishers_meta.fit(img_dset)
fishers_img = fishers_results.get_map(“z”, return_type=”image”)
del fishers_meta, fishers_results

# Permuted Ordinary Least Squares
ols_meta = meta.ibma.PermutedOLS(resample=True)
ols_results = ols_meta.fit(img_dset)
ols_img = ols_results.get_map(“z”, return_type=”image”)
del ols_meta, ols_results

# Weighted Least Squares
wls_meta = meta.ibma.WeightedLeastSquares(resample=True)
wls_results = wls_meta.fit(img_dset)
wls_img = wls_results.get_map(“z”, return_type=”image”)
del wls_meta, wls_results

# Hedges’
hedges_meta = meta.ibma.Hedges(resample=True)
hedges_results = hedges_meta.fit(img_dset)
hedges_img = hedges_results.get_map(“z”, return_type=”image”)
del hedges_meta, hedges_results

# Use atlas for likelihood-based estimators
from nilearn import datasets, image, input_data

atlas = datasets.
fetch_atlas_harvard_oxford(“cort-maxprob-thr25-2mm”)

# nilearn’s NiftiLabelsMasker cannot handle 
NaNs at the moment,
# and some of the NIDM-Results packs’ beta 
images have NaNs at the edge of the brain.
# So, we will create a reduced version of 
the atlas for this analysis.
nan_mask = image.math_img(“~np.any(np.isnan(img), axis=3)”,
img=img_dset.images[“beta”].tolist())
atlas = image.resample_to_img(atlas[“maps”], nan_mask)
nanmasked_atlas = image.math_img(“mask * atlas”, mask=nan_
mask, atlas=atlas)
masker = input_data.NiftiLabelsMasker(nanmasked_atlas)
del atlas, nan_mask, nanmasked_atlas

# Variance-Based Likelihood
vbl_meta = meta.ibma.VarianceBasedLikelihood(method=”reml”, 
mask=masker, resample=True)

vbl_results = vbl_meta.fit(img_dset)
vbl_img = vbl_results.get_map(“z”, return_type=”image”)
del vbl_meta, vbl_results

# Sample Size-Based Likelihood
ssbl_meta = meta.ibma.SampleSizeBasedLikelihood(method=”reml”, 
mask=masker, resample=True)
ssbl_results = ssbl_meta.fit(img_dset)
ssbl_img = ssbl_results.get_map(“z”, return_type=”image”)
del ssbl_meta, ssbl_results, masker

meta_results = {
 “DerSimonian-Laird”: dsl_img,
 “Stouffer’s”: stouffers_img,
 “Weighted Stouffer’s”: wstouffers_img,
 “Fisher’s”: fishers_img,
 “Ordinary Least Squares”: ols_img,
 “Weighted Least Squares”: wls_img,
 “Hedges’”: hedges_img,
 “Variance-Based Likelihood”: vbl_img,
 “Sample Size-Based Likelihood”: ssbl_img,
}
order = [
 [“Fisher’s”, “Stouffer’s”, “Weighted Stouffer’s”],
  [“DerSimonian-Laird”, “Hedges’”, “Weighted Least 

Squares”],
  [“Ordinary Least Squares”, “Variance-Based Likelihood”, 

“Sample Size-Based Likelihood”],
]

fig, axes = plt.subplots(figsize=(18, 6), nrows=3, ncols=3)

for i_row, row_names in enumerate(order):
 for j_col, name in enumerate(row_names):
  file_ = meta_results[name]
  display = plotting.plot_stat_map(
   file_,
   annotate=False,
   axes=axes[i_row, j_col],
   cmap=”RdBu_r”,
   cut_coords=[5, -15, 10],
   draw_cross=False,
   figure=fig,
  )
  axes[i_row, j_col].set_title(name)

  colorbar = display._cbar
  colorbar_ticks = colorbar.get_ticks()
  if colorbar_ticks[0] < 0:
   new_ticks = [colorbar_ticks[0], 0, colorbar_ticks[-1]]
  else:
   new_ticks = [colorbar_ticks[0], colorbar_ticks[-1]]
   colorbar.set_ticks(new_ticks, update_ticks=True)

glue(“figure_uncorr_ibma”, fig, display=False)
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If you ignore the prefix, which was specified in the 
call to MetaResult.save_maps, the maps all have a com‑
mon naming convention. The maps from the original 
meta‑analysis (before multiple comparisons correction) 

Statistical maps saved by NiMARE MetaResults auto‑
matically follow a naming convention based loosely on 
the Brain Imaging Data Standard (BIDS). Let’s take a look 
at the files created by the FWECorrector.

MULTIPLE COMPARISONS CORRECTION

In NiMARE, multiple comparisons correction is sepa‑
rated from each CBMA and IBMA Estimator so that any 
number of relevant correction methods can be applied 
after the Estimator has been fit to the Dataset. Some 
correction options, such as the montecarlo option for 
FWE correction, are designed to work specifically with a 
given Estimator (and are indeed implemented within the 
Estimator class, and only called by the Corrector).

Correctors are divided into two subclasses: 
FWECorrectors, which correct based on family‑wise error 
rate, and FDRCorrectors, which correct based on FDR.

All Correctors are initialized with a number of param‑
eters, including the correction method that will be 
used. After that, you can use the transform method on 
a MetaResult object produced by a CBMA or IBMA 
Estimator to apply the correction method. This will return 
an updated MetaResult object, with both the statistical 
maps from the original MetaResult, as well as new, cor‑
rected maps.

Here we will apply both FWE and FDR correction to 
results from a MKDADensity meta‑analysis, performed 
back in multilevel Kernel density analysis.

In the following example, we use 5000 iterations for 
Monte Carlo FWE correction. Normally, one would use at 
least 10,000 iterations, but we reduced this for the sake 
of speed.

Fig. 6. An array of plots of the statistical maps produced by the image‑based meta‑analysis methods. The likelihood‑based meta‑analyses are run on atlases instead 
of voxelwise.

from nimare import meta, correct

mkdad_meta = meta.cbma.mkda.MKDADensity.load(os.path.
join(data_path, “MKDADensity.pkl.gz”))

mc_corrector = correct.FWECorrector(method=”montecarlo”, 
n_iters=5000, n_cores=4)
mc_results = mc_corrector.transform(mkdad_meta.results)
mc_results.save_maps(output_dir=out_dir, 
prefix=”MKDADensity_FWE”)

fdr_corrector = correct.FDRCorrector(method=”indep”)
fdr_results = fdr_corrector.transform(mkdad_meta.results)

INFO:nimare.correct:Using correction method implemented 
in Estimator: nimare.meta.cbma.mkda.MKDADensity.
correct_fwe_montecarlo.

100% 5000/5000 [10 29<00 00, 7.18it/s]

INFO:nimare.meta.cbma.base:Using null distribution for voxel-
level FWE correction.

from glob import glob

fwe_maps = sorted(glob(os.path.join(out_dir, “MKDADensity_
FWE*.nii.gz”)))
fwe_maps = [os.path.basename(fwe_map) for fwe_map in 
fwe_maps]
print(“\n”.join(fwe_maps))

MKDADensity_FWE_logp_desc-mass_level-cluster_corr-FWE_
method-montecarlo.nii.gz
MKDADensity_FWE_logp_desc-size_level-cluster_corr-FWE_
method-montecarlo.nii.gz
MKDADensity_FWE_logp_level-voxel_corr-FWE_method-
montecarlo.nii.gz
MKDADensity_FWE_p.nii.gz
MKDADensity_FWE_stat.nii.gz
MKDADensity_FWE_z.nii.gz
MKDADensity_FWE_z_desc-mass_level-cluster_corr-FWE_method-
montecarlo.nii.gz
MKDADensity_FWE_z_desc-size_level-cluster_corr-FWE_method-
montecarlo.nii.gz
MKDADensity_FWE_z_level-voxel_corr-FWE_method-montecarlo.nii.gz
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later extended by Eickhoff et al.37. In this approach, two 
groups of experiments (A and B) are compared using 
a group assignment randomization procedure in which 
voxel‑wise null distributions are generated by randomly 
reassigning experiments between the two groups and 
calculating ALE‑difference scores for each permutation. 
Real ALE‑difference scores (i.e., the ALE values for one 
group minus the ALE values for the other) are compared 
against these null distributions to determine voxel‑wise 
significance. In the original implementation of the algo‑
rithm, this procedure is performed separately for a group 
A > B contrast and a group B > A contrast, where each 
contrast is limited to voxels that were significant in the 
first group’s original meta‑analysis.

In NiMARE, we use an adapted version of the subtrac‑
tion analysis method in ALESubtraction. The NiMARE 
implementation analyzes all voxels, rather than only 
those that show a significant effect of A alone or B alone 
as in the original implementation.

Running a subtraction analysis with the standard num‑
ber of iterations (10,000) may require more than 4 GB of 
RAM, which is NeuroLibre’s limit. We will instead use only 
1000 iterations so that the analysis will run successfully 
on NeuroLibre’s server. For publication‑quality subtrac‑
tion analyses, we recommend using the standard 10,000 
iterations.

are simply named according to the values contained in 
the map (e.g., z, stat, p).

Maps generated by the correction method, howev‑
er, use a series of key‑value pairs to indicate how they 
were generated. The corr key indicates whether FWE 
or FDR correction was applied. The method key reflects 
the correction method employed, which was defined by 
the method parameter used to create the Corrector. The 
level key simply indicates if the map was corrected at the 
voxel or cluster level. Finally, the desc key reflects any 
necessary description that goes beyond what is already 
covered by the other entities.

DERIVATIVE ANALYSES

Meta‑analytic databases and algorithms may be 
employed for derivative analyses, including subtraction 
analysis, meta‑analytic coactivation modeling (MACM), 
meta‑analytic clustering, coactivation‑based parcellation 
(CBP), meta‑analytic independent component analysis 
(meta‑ICA), semantic model development, and meta‑an‑
alytic functional decoding. In this part, we describe the 
derivative analyses implemented in NiMARE and include 
examples of use cases.

META‑ANALYTIC SUBTRACTION ANALYSIS

Subtraction analysis refers to the voxel‑wise comparison of 
two meta‑analytic samples. In image‑based meta‑analysis,  
comparisons between groups of maps can generally be 
accomplished within the standard meta‑regression frame‑
work (i.e., by adding a covariate that codes for group 
membership). However, coordinate‑based subtraction 
analysis requires special extensions for CBMA algorithms.

Subtraction analysis to compare the results of two 
ALE meta‑analyses was originally implemented by17 and 

Fig. 7. An array of plots of the corrected statistical maps produced by the differ‑
ent multiple comparisons correction methods.

from nimare import meta

kern = meta.kernel.ALEKernel()
sub_meta = meta.cbma.ale.ALESubtraction(kernel_
transformer=kern, n_iters=1000)
sub_results = sub_meta.fit(sleuth_dset1, sleuth_dset2)

Fig. 8. Unthresholded z‑statistic map for the subtraction analysis of the two 
example Sleuth‑based Datasets.

Alternatively, MKDA Chi‑squared analysis is inherently a 
subtraction analysis method, in that it compares foci from 
two groups of studies. Generally, one of these groups is a 
sample of interest, while the other is a meta‑analytic data‑
base (minus the studies in the sample). With this setup, 
meta‑analysts can infer whether there is greater conver‑
gence of foci in a voxel as compared to the baseline across 
the field (as estimated with the meta‑analytic database), 
much like SCALE. However, if the database is replaced 
with a second sample of interest, the analysis ends up 
comparing convergence between the two groups.
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limit. Therefore, we will further reduce the dataset to its 
first 500 studies, in order to run the meta‑analysis suc‑
cessfully on NeuroLibre’s server. For publication‑quality 
analyses, we would recommend using the entire dataset.

META‑ANALYTIC COACTIVATION MODELING

Meta‑analytic coactivation modeling (MACM),55–57 also 
known as meta‑analytic connectivity modeling, uses 
meta‑analytic data to measure co‑occurrence of acti‑
vations between brain regions providing evidence of 
functional connectivity of brain regions across tasks. In 
coordinate‑based MACM, whole‑brain studies within 
the database are selected based on whether or not they 
report at least one peak in a region of interest speci‑
fied for the analysis. These studies are then subjected 
to a meta‑analysis, often comparing the selected stud‑
ies to those remaining in the database. In this way, the 
significance of each voxel in the analysis corresponds to 
whether there is greater convergence of foci at the voxel 
among studies, which also report foci in the region of 
interest than those which do not.

MACM results have historically been accorded a sim‑
ilar interpretation to task‑related functional connectivity 
(e.g.58,59), although this approach is quite removed from 
functional connectivity analyses of task fMRI data (e.g., 
beta‑series correlations, psychophysiological interac‑
tions, or even seed‑to‑voxel functional connectivity anal‑
yses on task data). Nevertheless, MACM analyses do 
show high correspondence with resting‑state functional 
connectivity.60 MACM has been used to characterize the 
task‑based functional coactivation of the cerebellum,61 
lateral prefrontal cortex,62 fusiform gyrus,63 and several 
other brain regions.

Within NiMARE, MACMs can be performed by select‑
ing studies in a Dataset based on the presence of activa‑
tion within a target mask or coordinate‑centered sphere. 
While some algorithms, such as SCALE, may have been 
designed with MACMs in mind, in practice MACMs may 
be performed with any valid Estimator.

In this section, we will perform two MACMs – one 
with a target mask and one with a coordinate‑centered 
sphere. For the former, we use get_studies_by_mask(). 
For the latter, we use get_studies_by_coordinate().

# Create Dataset only containing studies 
with peaks within the amygdala mask
amygdala_mask = os.path.join(data_path, “amygdala_roi.nii.gz”)
amygdala_ids = neurosynth_dset.
get_studies_by_mask(amygdala_mask)
dset_amygdala = neurosynth_dset.slice(amygdala_ids)

# Create Dataset only containing studies 
with peaks within the sphere ROI
sphere_ids = neurosynth_dset.get_studies_by_coordinate([[24, 
-2, -20]], r=6)
dset_sphere = neurosynth_dset.slice(sphere_ids)

print(dset_amygdala)
dset_amygdala = dset_amygdala.slice(dset_amygdala.ids[:500])
print(dset_amygdala)

Dataset(1369 experiments, space=’mni152_2mm’)
Dataset(500 experiments, space=’mni152_2mm’)

Fig. 9. Region of interest masks for (1) a target mask‑based MACM and (2) a 
coordinate‑based MACM.

Once the Dataset has been reduced to studies with 
coordinates within the mask or sphere requested, any of 
the supported CBMA Estimators can be run.

from nimare import meta

meta_amyg = meta.cbma.ale.ALE(kernel__sample_size=20)
results_amyg = meta_amyg.fit(dset_amygdala)

meta_sphere = meta.cbma.ale.ALE(kernel__sample_size=20)
results_sphere = meta_sphere.fit(dset_sphere)

The amygdala dataset includes more than 1300 stud‑
ies. Running a meta‑analysis on such a large dataset may 
require more than 4 GB of RAM, which is NeuroLibre’s 

Fig. 10. Unthresholded z‑statistic maps for (1) the target mask‑based MACM and 
(2) the coordinate‑based MACM.
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NiMARE has the function generate_counts() to extract 
n‑grams from text. This method produces either term 
counts or term frequency‑inverse document frequency 
(tf‑idf) values for each of the studies in a Dataset.

AUTOMATED ANNOTATION

As mentioned in the discussion of BrainMap (BrainMap), 
manually annotating studies in a meta‑analytic database 
can be a time‑consuming and labor‑intensive process. 
To facilitate more efficient (albeit lower‑quality) annota‑
tion, NiMARE supports a number of automated annota‑
tion approaches. These include N‑gram term extraction, 
Cognitive Atlas term extraction and hierarchical expan‑
sion, LDA, and GCLDA.

NiMARE users may download abstracts from PubMed 
as long as study identifiers in the Dataset correspond to 
PubMed IDs (as in Neurosynth and NeuroQuery). Abstracts 
are much more easily accessible than full article text, so 
most annotation methods in NiMARE rely on them.

Below, we use the function download_abstracts() to 
download abstracts for the Neurosynth Dataset. This 
will attempt to extract metadata about each study in the 
Dataset from PubMed, and then add the abstract avail‑
able on Pubmed to the Dataset’s texts attribute, under a 
new column names “abstract”.

download_abstracts() only works when there is inter‑
net access. Since this book will often be built on nodes 
without internet access, we will share the code used 
to download abstracts but will actually load and use a 
pre‑generated version of the Dataset.

# First, load a Dataset without abstracts
neurosynth_dset_first_500 = dataset.Dataset.load(
 os.path.join(data_path, “neurosynth_dataset_first500.pkl.gz”)
)
# Now, download the abstracts using your 
email address
neurosynth_dset_first_500 = extract.download_abstracts(
 neurosynth_dset_first_500,
 email=”example@email.com”,
)

# Finally, save the Dataset with abstracts 
to a pkl.gz file
neurosynth_dset_first_500.save(
  os.path.join(data_path, “neurosynth_dataset_first500_with_

abstracts.pkl.gz”),
)

neurosynth_dset_first_500 = dataset.Dataset.load(
  os.path.join(data_path, “neurosynth_dataset_first500_

with_abstracts.pkl.gz”),
)

from nimare import annotate

counts_df = annotate.text.generate_counts(
 neurosynth_dset_first_500.texts,
 text_column=”abstract”,
 tfidf=False,
 min_df=10,
 max_df=0.95,
)

This term count DataFrame will be used later, to train 
a GCLDA model.

Cognitive Atlas term extraction and hierarchical 
expansion

Cognitive Atlas term extraction leverages the structured 
nature of the Cognitive Atlas in order to extract counts 
for individual terms and their synonyms in the ontology, 
as well as to apply hierarchical expansion to these counts 
based on the relationships specified between terms. This 
method produces both basic term counts and expanded 
term counts based on the weights applied to different 
relationship types present in the ontology.

First, we must use download_cognitive_atlas() to down‑
load the current version of the Cognitive Atlas ontology. 
This includes both information about individual terms in the 
ontology and asserted relationships between those terms.

NiMARE will automatically attempt to extrapolate like‑
ly alternate forms of each term in the ontology, in order 
to make extraction easier. For an example, see Fig. 11.

Fig. 11. An example of alternate forms characterized by the Cognitive Atlas and 
extrapolated by NiMARE. Certain alternate forms (i.e., synonyms) are specified 
within the Cognitive Atlas, while others are inferred automatically by NiMARE 
according to certain rules (e.g., removing parentheses).

cogatlas = extract.download_cognitive_atlas(data_dir=data_
path, overwrite=False)
id_df = pd.read_csv(cogatlas[“ids”])
rel_df = pd.read_csv(cogatlas[“relationships”])

cogat_counts_df, rep_text_df = annotate.cogat.extract_cogat(
neurosynth_dset_first_500.texts, id_df, text_column=”abstract”
)

N‑gram term extraction

N‑gram term extraction refers to the vectorization of 
text into contiguous sets of words that can be counted 
as individual tokens. The upper limit on the number of 
words in these tokens is set by the user.
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# Define a weighting scheme.
# In this scheme, observed terms will also 
count toward any hypernyms (isKindOf),
# holonyms (isPartOf), and parent 
categories (inCategory) as well.
weights = {“isKindOf”: 1, “isPartOf”: 1, “inCategory”: 1}
expanded_df = annotate.cogat.expand_counts(cogat_counts_df, 
rel_df, weights)

# Sort by total count and reduce for better 
visualization
series = expanded_df.sum(axis=0)
series = series.sort_values(ascending=False)
series = series[series > 0]
columns = series.index.tolist()

INFO:nimare.extract.utils:Dataset found in ./../data/nimare-paper/
data/cognitive_atlas

Fig. 12. The effect of hierarchical expansion on Cognitive Atlas term counts from abstracts in Neurosynth’s first 500 papers. There are too many terms and studies to 
show individual labels.

# Raw counts
fig, axes = plt.subplots(figsize=(16, 16), nrows=2, sharex=True)
pos = axes[0].imshow(
 cogat_counts_df[columns].values,
 aspect=”auto”,
 vmin=0,

 vmax=10,
)
fig.colorbar(pos, ax=axes[0])
axes[0].set_title(“Counts Before Expansion”, fontsize=20)
axes[0].yaxis.set_visible(False)
axes[0].xaxis.set_visible(False)
axes[0].set_ylabel(“Study”, fontsize=16)
axes[0].set_xlabel(“Cognitive Atlas Term”, fontsize=16)

# Expanded counts
pos = axes[1].imshow(
 expanded_df[columns].values,
 aspect=”auto”,
 vmin=0,
 vmax=10,
)
fig.colorbar(pos, ax=axes[1])
axes[1].set_title(“Counts After Expansion”, fontsize=20)
axes[1].yaxis.set_visible(False)
axes[1].xaxis.set_visible(False)
axes[1].set_ylabel(“Study”, fontsize=16)
axes[1].set_xlabel(“Cognitive Atlas Term”, fontsize=16)

fig.tight_layout()
glue(“figure_cogat_expansion”, fig, display=False)
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The most important products of training the LDAModel 
object is its distributions_ attribute. LDAModel.distribu‑
tions_ is a dictionary containing arrays and DataFrames 
created from training the model. We are particularly 
interested in the p_topic_g_word_df distribution, which 
is a pandas DataFrame in which each row corresponds to 
a topic and each column corresponds to a term (n‑gram) 
extracted from the Dataset’s texts. The cells contain 
weights indicating the probability distribution across 
terms for each topic.

Additionally, the LDAModel updates the Dataset’s 
annotations attribute, by adding columns correspond‑
ing to each of the topics in the model. Each study in the 
Dataset thus receives a weight for each topic, which can 
be used to select studies for topic‑based meta‑analyses 
or functional decoding.

Let’s take a look at the results of the model training. 
First, we will reorganize the DataFrame a bit to show the 
top 10 terms for each of the first 10 topics.

Latent Dirichlet allocation

LDA64 was originally combined with meta‑analytic neuroim‑
aging data in.23 LDA is a generative topic model which, for 
a text corpus, builds probability distributions across doc‑
uments and words. In LDA, each document is considered 
a mixture of topics. This works under the assumption that 
each document was constructed by first randomly select‑
ing a topic based on the document’s probability distribu‑
tion across topics, and then randomly selecting a word 
from that topic based on the topic’s probability distribution 
across words. While this is not a useful generative model 
for producing documents, LDA is able to discern cohe‑
sive topics of related words. Poldrack et al.23 were able to 
apply LDA to full texts from neuroimaging articles in order 
to develop cognitive neuroscience‑related topics and to 
run topic‑wise meta‑ analyses. This method produces two 
sets of probability distributions: (1) the probability of a word 
given topic and (2) the probability of a topic given article.

NiMARE’s LDAModel is a light wrapper around 
scikit‑learn’s LDA implementation.

Here, we train an LDA model (LDAModel) on the first 
500 studies of the Neurosynth Dataset, with 50 topics in 
the model.

from nimare import annotate

lda_model = annotate.lda.LDAModel(n_topics=50, max_
iter=1000, text_column=”abstract”)

# Fit the model
lda_model.fit(neurosynth_dset_first_500)

Fig. 13. The top 10 terms for each of the first 10 topics in the trained LDA model.

lda_df = lda_model.distributions_[“p_topic_g_word_df”].T
column_names = {c: f”Topic {c}” for c in lda_df.columns}
lda_df = lda_df.rename(columns=column_names)
temp_df = lda_df.copy()
lda_df = pd.DataFrame(columns=lda_df.columns, index=np.
arange(10)) lda_df.index.name = “Term”
for col in lda_df.columns:
  top_ten_terms = temp_df.sort_values(by=col, 

ascending=False).index.tolist()[:10]
 lda_df.loc[:, col] = top_ten_terms
lda_df = lda_df[lda_df.columns[:10]]
glue(“table_lda”, lda_df)
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The GCLDAModel retains the relevant probability dis‑
tributions in the form of numpy arrays, rather than pan‑
das DataFrames. However, for the topic‑term weights 
(p_word_g_topic_), the data are more interpretable as a 
DataFrame, so we will create one. We will also reorganize 
the raw DataFrame to show the top 10 terms for each of 
the first 10 topics.

Generalized correspondence latent Dirichlet 
allocation

GCLDA is a recently‑developed algorithm that trains 
topics on both article abstracts and coordinates.30 
GCLDA assumes that topics within the fMRI litera‑
ture can also be localized to brain regions, in this 
case modeled as three‑dimensional Gaussian dis‑
tributions. These spatial distributions can also be 
restricted to pairs of Gaussians that are symmetric 
across brain hemispheres. This method produces 
two sets of probability distributions: the probabili‑
ty of a word given topic (GCLDAModel.p_word_g_
topic_), and the probability of a voxel given topic 
(GCLDAModel.p_voxel_g_topic_).

Here we train a GCLDA model (GCLDAModel) on the 
first 500 studies of the Neurosynth Dataset. The model 
will include 50 topics, in which the spatial distribution for 
each topic will be defined as having two Gaussian distri‑
butions that are symmetrically localized across the longi‑
tudinal fissure.

GCLDAModel generally takes a very long time to 
train.

Below, we show how one would train a GCLDA model. 
However, we will load a pretrained model instead of 
actually training the model.

gclda_model = annotate.gclda.GCLDAModel(
 counts_df,
 neurosynth_dset_first_500.coordinates,
 n_regions=2,
 n_topics=50,
 symmetric=True,
 mask=neurosynth_dset_first_500.masker.mask_img,
)
gclda_model.fit(n_iters=2500, loglikely_freq=500)

gclda_model = annotate.gclda.GCLDAModel.load(os.path.
join(data_path, “gclda_model.pkl.gz”))

Fig. 14. The top 10 terms for each of the first 10 topics in the trained GCLDA model.

gclda_arr = gclda_model.p_word_g_topic_
gclda_vocab = gclda_model.vocabulary
topic_names = [f”Topic {str(i).zfill(3)}” for i in range(gclda_arr.
shape[1])] gclda_df = pd.DataFrame(index=gclda_vocab, 
columns=topic_names, data=gclda_arr)
temp_df = gclda_df.copy()
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META‑ANALYTIC FUNCTIONAL DECODING

Functional decoding performed with meta‑analytic data, 
refers to methods which attempt to predict mental states 
from neuroimaging data using a large‑scale meta‑ana‑
lytic database.65 Such analyses may also be referred to 
as “informal reverse inference”,66 “functional charac‑
terization analysis”,67–69 “open‑ended decoding”,30 or 
simply “functional decoding”.70–72 While the terminolo‑
gy is far from standardized, we will refer to this meth‑
od as meta‑analytic functional decoding in order to 

We also want to see how the topic‑voxel weights ren‑
der on the brain, so we will simply unmask the p_vox‑
el_g_topic_ array with the Dataset’s masker.

gclda_df = pd.DataFrame(columns=gclda_df.columns, index=np.
arange(10))
gclda_df.index.name = “Term”
for col in temp_df.columns:
  top_ten_terms = temp_df.sort_values(by=col, 

ascending=False).index.tolist()[:10]
 gclda_df.loc[:, col] = top_ten_terms

gclda_df = gclda_df[gclda_df.columns[:10]]
glue(“table_gclda”, gclda_df)

Fig. 15. Topic weight maps for the first 10 topics in the GCLDA model.

fig, axes = plt.subplots(nrows=5, ncols=2, figsize=(12, 10))

topic_img_4d =
neurosynth_dset_first_500.masker.
inverse_transform(gclda_model.p_voxel_g_topic_.T)
# Plot first ten topics
topic_counter = 0
for i_row in range(5):
 for j_col in range(2):
   topic_img = image.index_img(topic_img_4d, 

index=topic_counter)
  display = plotting.plot_stat_map(
   topic_img,
   annotate=False,

   cmap=”Reds”,
   draw_cross=False,
   figure=fig,
   axes=axes[i_row, j_col],
  )
   axes[i_row, j_col].set_title(f”Topic {str(topic_counter).zfill(3)}”)
  topic_counter += 1

  colorbar = display._cbar
  colorbar_ticks = colorbar.get_ticks()
  if colorbar_ticks[0] < 0:
    new_ticks = [colorbar_ticks[0], 0, colorbar_ticks[-1]]
  else:
    new_ticks = [colorbar_ticks[0], colorbar_ticks[-1]]
   colorbar.set_ticks(new_ticks, update_ticks=True)
glue(“figure_gclda_topics”, fig, display=False)
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This approach can also be applied to an image‑based 
database like NeuroVault, either by correlating input 
data with meta‑analyzed statistical maps, or by deriving 
distributions of correlation coefficients by grouping sta‑
tistical maps in the database according to label. Using 
these distributions, it is possible to statistically compare 
labels in order to assess label significance. NiMARE 
includes methods for both correlation‑based decoding 
and correlation distribution‑based decoding, although 
the correlation‑based decoding is better established 
and should be preferred over the correlation distribu‑
tion‑based decoding. As such, we will only show the 
CorrelationDecoder here.

CorrelationDecoder currently runs very slowly. We 
strongly recommend running it on a subset of labels 
within the Dataset. It is also quite memory‑intensive.

In this example, we have only run the decoder using 
features appearing in >10% and <90% of the first 500 
studies in the Dataset. Additionally, we have pregenerat‑
ed the results and will simply show the code that would 
generate those results, as the decoder requires too much 
memory for NeuroLibre’s servers.

distinguish it from alternative methods like multivariate 
decoding and model‑based decoding.66 Meta‑analytic 
functional decoding is often used in conjunction with 
MACM, meta‑analytic clustering, meta‑ analytic parcel‑
lation, and meta‑ICA, in order to characterize resulting 
brain regions, clusters, or components. Meta‑analytic 
functional decoding models have also been extended 
for the purpose of meta‑analytic functional encoding, 
wherein text is used to generate statistical images.30,73,74

Four common approaches are correlation‑based 
decoding, dot‑product decoding, weight‑sum decod‑
ing, and Chi‑square decoding. We will first discuss 
continuous decoding methods (i.e., correlation and 
dot‑product), followed by discrete decoding methods 
(weight‑sum and Chi‑square).

Decoding continuous inputs

When decoding unthresholded statistical maps (such 
as Fig. 16), the most common approaches are to simply 
correlate the input map with maps from the database, 
or to compute the dot product between the two maps. 
In Neurosynth, meta‑analyses are performed for each 
label (i.e., term or topic) in the database and then the 
input image is correlated with the resulting unthreshold‑
ed statistical map from each meta‑analysis. Performing 
statistical inference on the resulting correlations is not 
straightforward, however, as voxels display strong spatial 
correlations, and the true degrees of freedom are con‑
sequently unknown (and likely far smaller than the nom‑
inal number of voxels). In order to interpret the results 
of this decoding approach, users typically select some 
arbitrary number of top correlation coefficients ahead of 
time, and use the associated labels to describe the input 
map. However, such results should be interpreted with 
great caution.

Fig. 16. The unthresholded statistical map that will be used for continuous decoding.

from nimare import decode, meta

corr_decoder = decode.continuous.CorrelationDecoder(
 frequency_threshold=0.001,
  meta_estimator=meta.MKDADensity(kernel_

transformer=kern, memory_limit=None),
 target_image=”z”,
 features=target_features,
 memory_limit=”500mb”,
)
corr_decoder.fit(neurosynth_dset_first500)
corr_df = corr_decoder.transform(continuous_map)
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Because the ROIAssociationDecoder generates mod‑
eled activation maps for all of the experiments in the 
Dataset, we will only fit this decoder to the first 500 
studies.

A more theoretically driven approach to ROI decoding 
is to use Chi‑square‑based methods. The two methods 
that use Chi‑squared tests are the BrainMap decoding 
method and an adaptation of Neurosynth’s meta‑analy‑
sis method.

In both Chi‑square‑based methods, studies are first 
selected from a coordinate‑based database according 
to some criterion. For example, if decoding a region of 
interest, users might select studies reporting at least 

Decoding discrete inputs

Decoding regions of interest (ROIs) requires a different 
approach than decoding unthresholded statistical maps. 
One simple approach, used by GCLDA and implement‑
ed in the function gclda_decode_roi(), simply sums the 
P(topic|voxel) distribution across all voxels in the ROI in 
order to produce a value associated with each topic for 
the ROI. These weight sum values are arbitrarily scaled 
and cannot be compared across ROIs. We will not show 
this method because of its simplicity and the fact that it 
can only currently be applied to a GCLDA model.

Before we dig into the other decoding methods are 
available, let’s take a look at the ROI we want to decode.

One method which relies on correlations, much like 
the continuous correlation decoder, is the ROI associa‑
tion decoding method (ROIAssociationDecoder), orig‑
inally implemented in the Neurosynth Python library. In 
this method, each study with coordinates in the data‑
set is convolved with a Kernel transformer to produce a 
modeled activation map. The resulting modeled activa‑
tion maps are then masked with a region of interest (i.e., 
the target of the decoding), and the values are aver‑
aged within the ROI. These averaged modeled activa‑
tion values are then correlated with the term weights for 
all labels in the dataset. This decoding method produc‑
es a single correlation coefficient for each of the data‑
set’s labels.

import pandas as pd

corr_df = pd.read_table(
 os.path.join(data_path, “correlation_decoder_results.tsv”),
 index_col=”feature”,
)

Fig. 17. The top 10 terms, sorted by absolute correlation coefficient, from the 
correlation decoding method.

Fig. 18. The amygdala region of interest mask that will be used for discrete 
decoding.

Fig. 19. The top 10 terms, sorted by absolute correlation coefficient, from the 
ROI association decoding method.

from nimare import decode

assoc_decoder = decode.discrete.ROIAssociationDecoder(
 amygdala_roi, kernel_transformer=kern, u=0.05,
 correction=”fdr_bh”,
)
assoc_decoder.fit(neurosynth_dset_first500)
assoc_df = assoc_decoder.transform()

INFO:nimare.base:Retaining 2941/(3228 features.
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This decoding method produces four outputs for each 
label. First, the distribution of studies in the sample with 
the label are compared with the distributions of other 
labels within the sample. This consistency analysis pro‑
duces both a measure of statistical significance (i.e., a P 
value) and a measure of effect size (i.e., the likelihood of 
being selected given the presence of the label). Next, 
the studies in the sample are compared with the studies 
in the rest of the database. This specificity analysis pro‑
duces a P value and an effect size measure of the posteri‑
or probability of having the label given selection into the 
sample. A detailed algorithm description is presented in 
Appendix I: BrainMap Discrete Decoding.

Neurosynth method

The implementation of the MKDA Chi‑squared 
meta‑analysis method used by Neurosynth is quite sim‑
ilar to BrainMap’s method for decoding, if applied to 
annotations instead of modeled activation values. This 
method, implemented in NeurosynthDecoder, com‑
pares the distributions of studies with each label within 
the sample against those in a larger database, but, unlike 
the BrainMap method, does not take foci into account. 
For this reason, the Neurosynth method would likely 
be more appropriate for selection criteria not based on 
ROIs (e.g., for characterizing meta‑analytic groupings 

one coordinate within 5 mm of the ROI. Metadata 
(such as ontological labels) for this subset of studies are 
then compared with those of the remaining, unselect‑
ed portion of the database in a confusion matrix. For 
each label in the ontology, studies are divided into four 
groups: selected and label‑positive (SS+L+), selected 
and label‑negative (SS+L −), unselected and label‑posi‑
tive (SS‑L+), and unselected and label‑negative (SS‑L−). 
Each method then compares these groups in order to 
evaluate both consistency and specificity of the relation‑
ship between the selection criteria and each label, which 
are evaluated in terms of both statistical significance and 
effect size.

BrainMap method

The BrainMap discrete decoding method, implement‑
ed in BrainMapDecoder, compares the distributions of 
studies with each label within the sample against those 
in a larger database while accounting for the number 
of foci from each study. Broadly speaking, this method 
assumes that the selection criterion is associated with 
one peak per study, which means that it is likely only 
appropriate for selection criteria based around foci, such 
as ROIs. One common analysis, meta‑analytic clustering, 
involves dividing studies within a database into meta‑an‑
alytic groupings based on the spatial similarity of their 
modeled activation maps (i.e., study‑wise pseudostatis‑
tical maps produced by convolving coordinates with a 
Kernel). The resulting sets of studies are often function‑
ally decoded in order to build a functional profile asso‑
ciated with each meta‑analytic grouping. While these 
groupings are defined as subsets of the database, they 
are not selected based on the location of an individu‑
al peak, and so weighting based on the number of foci 
would be inappropriate.

brainmap_decoder = decode.discrete.BrainMapDecoder(
 frequency_threshold=0.001,
 u=0.05,
 correction=”fdr_bh”,
)
brainmap_decoder.fit(neurosynth_dset)
brainmap_df = brainmap_decoder.transform(amygdala_ids)

Fig. 20. The top 10 terms, sorted by reverse‑inference posterior probability, from the BrainMap Chi‑squared decoding method.
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In both methods, the database acts as an estimate of 
the underlying distribution of labels in the real world, such 
that the probability of having a peak in an ROI given the 
presence of the label might be interpreted as the prob‑
ability of a brain activating a specific brain region given 
that the individual is experiencing a given mental state. 
This is a very poor interpretation, given that any database 
of neuroimaging results will be skewed more toward 
the interests of the field than the distribution of mental 
states or processes experienced by humans, which is why 
decoding must be interpreted with extreme caution. It is 
important not to place too much emphasis on the results 
of functional decoding analyses, although they are very 
useful in that they can provide a quantitative estimate 
behind the kinds of interpretations generally included 
in discussion sections that are normally only backed by 
informal literature searches or prior knowledge.

The meta‑analytic functional decoding methods 
in NiMARE provide a very rudimentary approach for 
open‑ended decoding (i.e., decoding across a very large 
range of mental states) that can be used with resources 
like NeuroVault. However, standard classification methods 
have also been applied to datasets from NeuroVault (e.g.75), 
although these methods do not fall under NiMARE’s scope.

FUTURE DIRECTIONS

NiMARE’s mission statement encompasses a range of 
tools that have not yet been implemented in the pack‑
age. In the future, we plan to incorporate a number of 

from a meta‑analytic clustering analysis). However, the 
Neurosynth method requires user‑provided information 
that BrainMap does not. Namely, in order to estimate 
probabilities for the consistency and specificity analyses 
with Bayes’ Theorem, the Neurosynth method requires a 
prior probability of a given label. Typically, a value of 0.5 
is used (i.e., the estimated probability that an individual is 
undergoing a given mental process described by a label, 
barring any evidence from neuroimaging data, is pre‑
dicted to be 50%). This is, admittedly, a poor prediction, 
which means that probabilities estimated based on this 
prior are not likely to be accurate, though they may still 
serve as useful estimates of effect size for the analysis.

Like the BrainMap method, this method produces four 
outputs for each label. For the consistency analysis, this 
method produces both a P value and a conditional prob‑
ability of selection given the presence of the label and 
the prior probability of having the label. For the specific‑
ity analysis, the Neurosynth method produces both a P 
value and a posterior probability of presence of the label 
given selection and the prior probability of having the 
label. A detailed algorithm description is presented in 
Appendix II: Neurosynth Discrete Decoding.

Fig. 21. The top 10 terms, sorted by reverse‑inference posterior probability, from the Neurosynth Chi‑squared decoding method.

neurosynth_decoder = decode.discrete.NeurosynthDecoder(
 frequency_threshold=0.001,
 u=0.05,
 correction=”fdr_bh”,
)
neurosynth_decoder.fit(neurosynth_dset)
neurosynth_df = neurosynth_decoder.transform(amygdala_ids)
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as the products of stochastic models sampling some 
underlying distribution. Some of these methods include 
the Bayesian hierarchical independent cluster process 
model (BHICP),78 the Bayesian spatially adaptive bina‑
ry regression model (SBR),79 the hierarchical Poisson/
Gamma random field model (HPGRF/BHPGM),80 the spa‑
tial Bayesian latent factor regression model (SBLFRM),81 
and the random effects log Gaussian Cox process model 
(RFX‑LGCP).82

Although these methods are much more computation‑
ally intensive than Kernel‑based algorithms, they provide 
information that Kernel‑based methods cannot, such as 
spatial confidence intervals, effect size estimate confi‑
dence intervals, and the facilitation of reverse inference. 
A more thorough description of the relative strengths 
of model‑based algorithms is presented in,34 but these 
benefits, at the cost of computational efficiency, have led 
the authors to recommend Kernel‑based methods for 
exploratory analysis and model‑based methods for con‑
firmatory analysis.

NiMARE does not currently implement any mod‑
el‑based CBMA algorithms, although there are plans to 
include at least one in the future.

Additional automated annotation methods

Several papers have used article text to automatically 
annotate meta‑analytic databases with a range of meth‑
ods. Alhazmi et al.83 used a combination of correspon‑
dence analysis and clustering to identify subdomains in 
the cognitive neuroscience literature from Neurosynth 
text. Monti et al.31 generated word and document 
embeddings in vector space from Neurosynth abstracts 
using deep Boltzmann machines, which allowed them to 
cluster words based on semantic similarity or to describe 
Neurosynth articles in terms of these word clusters. 
Nunes74 used article abstracts from Neurosynth to rep‑
resent documents as dense vectors as well. These docu‑
ment vectors were then used in conjunction with corre‑
sponding coordinates to cluster words into categories, 
essentially annotating Neurosynth articles according 
to a new “ontology” based on both abstract text and 
coordinates.

Meta‑analytic databases may also be used in conjunc‑
tion with existing ontologies in order to redefine men‑
tal states or to refine the ontology. For example, Yeo  
et al.84 used the Author‑Topic model to identify connec‑
tions between paradigm classes (i.e., tasks) and behav‑
ioral domains (i.e., mental states) from the BrainMap 
Taxonomy using the BrainMap database. Other exam‑
ples include using meta‑analytic clustering, combined 
with functional decoding, to identify groups of terms/
labels that co‑occur in neuroimaging data, in order to 
determine if the divisions currently employed in existing 
ontologies accurately reflect how mental states are sepa‑
rated in the mind (e.g.85–87).

additional methods. Here, we briefly describe several of 
these tools.

Integration with external databases

A resource that may ultimately be integrated with 
Neurosynth is Brainspell. Brainspell is a port of the 
Neurosynth database in which users may manually anno‑
tate the automatically extracted study information. The 
goal of Brainspell is to crowdsource annotation through 
both expert and nonexpert annotators, which would 
address the primary weaknesses of BrainMap (i.e., slow 
growth) and Neurosynth (i.e., noise in data extraction and 
annotation). Annotations in Brainspell may use labels from 
the Cognitive Paradigm Ontology (CogPO),14 an ontol‑
ogy adapted from the BrainMap Taxonomy, or from the 
Cognitive Atlas,76 a collaboratively generated ontolo‑
gy built by contributions from experts across the field of 
cognitive science. Users may also correct the coordinates 
extracted by Neurosynth, which may suffer from extraction 
errors, and may add important metadata like the number 
of subjects associated with each comparison in each study.

Brainspell has suffered from low growth, which is 
why its annotations have not been integrated back into 
Neurosynth, but a new frontend tool for Brainspell, 
geared toward meta‑analysts, has been developed 
called metaCurious. MetaCurious facilitates neuroimag‑
ing meta‑analyses by allowing users to iteratively per‑
form literature searches and to annotate rejected articles 
with reasons for exclusion. In addition to these features, 
metaCurious users can annotate studies with the same 
labels and metadata as Brainspell, but with the features 
geared toward meta‑analysts site usage is expected to 
exceed that of Brainspell proper.

While NiMARE does not natively include tools for inter‑
acting with Brainspell or metaCurious, there are plans to 
support NiMARE‑format exports in both services.

Seed‑based D‑Mapping

Seed‑based d‑mapping (SDM),77 previously known as 
signed differential mapping, is a relatively recently devel‑
oped approach designed to incorporate both peak‑spe‑
cific effect size estimates and unthresholded images, when 
available. In SDM, foci are convolved with an anisotropic 
Kernel which, unlike the Gaussian and spherical kernels 
employed in ALE and MKDA, respectively, accounts for tis‑
sue type to provide more empirically realistic spatial mod‑
els of the clusters from the original studies. The SDM algo‑
rithm is not yet supported in NiMARE, given the difficulty 
in implementing an algorithm without access to code.

Model‑based CBMA

Model‑based algorithms, a recent alternative to 
Kernel‑based approaches, model foci from studies 

https://github.com/OpenNeuroLab/brainspell-neo
http://www.cogpo.org/
https://www.cognitiveatlas.org/
https://metacurious.org/
https://www.sdmproject.com/
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Code and data availability

All code used for this article is available at https://github.
com/NBCLab/nimare‑paper.

All data used for this article is available at https://
drive.google.com/uc?id=1e5KqMjYbQZYBxc6z760 
VhdruOoywqkbw.
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Surface‑based meta‑analysis

Currently, NiMARE only supports volumetric meta‑analy‑
sis. However, we eventually plan to support surface‑based 
meta‑analyses, which may require new coordinate‑based 
meta‑analysis algorithms, as the current methods do not 
generalize to surfaces.

SUMMARY

The advent of open, large‑scale databases of neuroimag‑
ing results, whether full, unthresholded statistical maps, 
or simple coordinates, has allowed for the development 
of a wide variety of methods for performing fMRI meta‑ 
analyses and related analyses. These methods are often 
(but not always) released as tools for the community to 
use, written in a range of languages and with highly vari‑
able interfaces. As a consequence, it is difficult for meta‑ 
analysts to keep abreast of the current literature and to 
employ whatever method is most appropriate to address 
a given question. NiMARE provides a centralized reposi‑
tory for these tools, which will make it easier for research‑
ers to keep track of new methods and also provides said 
tools with extensive documentation and a standardized 
programmatic interface, which will allow researchers to 
use whatever tool is most appropriate for their research, 
without unnecessarily steep learning curves.

Given that NiMARE is open source and collaboratively 
developed on GitHub, methodologists may contribute 
their own meta‑analytic algorithms directly, or interested 
third parties may implement these algorithms using papers 
or external tools as a basis for understanding the methods.
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Appendix I: BrainMap discrete decoding

The BrainMap discrete decoding method compares the distributions of studies with each label within the sample 
against those in a larger database while accounting for the number of foci from each study. Broadly speaking, this 
method assumes that the selection criterion is associated with one peak per study, which means that it is likely only 
appropriate for selection criteria based around foci, such as ROIs. One common analysis, meta‑analytic clustering, 
involves dividing studies within a database into meta‑analytic groupings based on the spatial similarity of their mod‑
eled activation maps (i.e., study‑wise pseudo‑statistical maps produced by convolving coordinates with a Kernel). 
The resulting sets of studies are often functionally decoded in order to build a functional profile associated with each 
meta‑analytic grouping. While these groupings are defined as subsets of the database, they are not selected based on 
the location of an individual peak, and so weighting based on the number of foci would be inappropriate.

This decoding method produces four outputs for each label. First, the distribution of studies in the sample with the 
label are compared with the distributions of other labels within the sample. This consistency analysis produces both 
a measure of statistical significance (i.e., a P value) and a measure of effect size (i.e., the likelihood of being selected 
given the presence of the label). Next, the studies in the sample are compared to the studies in the rest of the data‑
base. This specificity analysis produces a P value and an effect size measure of the posterior probability of having the 
label given selection into the sample. A detailed algorithm description is presented below.

The BrainMap method for discrete functional decoding performs both forward and reverse inference using an 
annotated coordinate‑based database and a target sample of studies within that database. Unlike the Neurosynth 
approach, the BrainMap approach incorporates information about the number of foci associated with each study in 
the database.

1. Select studies in the database according to some criterion (e.g., having at least one peak in an ROI).
2. For each label, studies in the database can now be divided into four groups.

	{ Label‑positive and selected : Ss+l+
	{ Label‑negative and selected : Ss+l−
	{ Label‑positive and unselected : Ss−l+
	{ Label‑negative and unselected : Ss−l−

3. Additionally, the number of foci associated with each of these groups is extracted.
	{ Number of foci from studies with label, Fl+
	{ Number of foci from studies without label, Fl−
	{ Total number of foci in the database, Fdb = Fl+ + Fl−

4. Compute the number of times any label is used in the database, Ldb (e.g., if every experiment in the database uses 
two labels, then this number is 2Sdb, where Sdb is the total number of experiments in the database).

5. Compute the probability of being selected, P(s+).
	{ P(s+) = Ss+/Fdb, where Ss+ = Ss+l+ + Ss+l−

6. For each label, compute the probability of having the label, P(l+).
	{ P(l+) = Sl+/Ldb, where Sl+ = Ss+l+ + Ss−l+

7. For each label, compute the probability of being selected given presence of the label, P(s+|l+).
	{ Can be re‑interpreted as the probability of activating the ROI given a mental state.
	{ P(s+|l+) = Ss+l+/Fl+

8. Convert P(s+|l+) into the forward inference likelihood, L.
	{ L = P(s+|l+)/P(s+)

9. Compute the probability of the label given selection, P(l+|s+).
	{ Can be reinterpreted as probability of a mental state given activation of the ROI.

	{ =+ +
+ + +

+P l s
P s l P l

P s
( | )

( | ) ( )
( )

	{ This is the reverse inference posterior probability.
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10. Perform a binomial test to determine if the rate at which studies are selected from the set of studies with the label 
is significantly different from the base probability of studies being selected across the whole database.
	{ The number of successes is K = Ss+l+, the number of trials is n = Fl+, and the hypothesized probability of success 

is p = P(s+)
	{ If Ss+l+ < 5, override the P value from this test with 1, essentially ignoring this label in the analysis.
	{ Convert P value to unsigned z value.

11. Perform a two‑way Chi‑square test to determine if presence of the label and selection are independent.
	{ If Ss+l+ < 5, override the P value from this test with 1, essentially ignoring this label in the analysis.
	{ Convert P value to unsigned z value.

Appendix II: Neurosynth discrete decoding

The implementation of the MKDA Chi‑squared meta‑analysis method used by Neurosynth is quite similar to BrainMap’s 
method for decoding, if applied to annotations instead of modeled activation values. This method compares the dis‑
tributions of studies with each label within the sample against those in a larger database, but, unlike the BrainMap 
method, does not take foci into account. For this reason, the Neurosynth method would likely be more appropriate 
for selection criteria not based on ROIs (e.g., for characterizing meta‑analytic groupings from a meta‑analytic cluster‑
ing analysis). However, the Neurosynth method requires user‑provided information that BrainMap does not. Namely, 
in order to estimate probabilities for the consistency and specificity analyses with Bayes’ Theorem, the Neurosynth 
method requires a prior probability of a given label. Typically, a value of 0.5 is used (i.e., the estimated probability that 
an individual is undergoing a given mental process described by a label, barring any evidence from neuroimaging 
data, is predicted to be 50%). This is, admittedly, a poor prediction, which means that probabilities estimated based 
on this prior are not likely to be accurate, although they may still serve as useful estimates of effect size for the analysis.

Like the BrainMap method, this method produces four outputs for each label. For the consistency analysis, this 
method produces both a P value and a conditional probability of selection given the presence of the label and the 
prior probability of having the label. For the specificity analysis, the Neurosynth method produces both a P value and 
a posterior probability of presence of the label given selection and the prior probability of having the label. A detailed 
algorithm description is presented below.

The Neurosynth method for discrete functional decoding performs both forward and reverse inference using an 
annotated coordinate‑based database and a target sample of studies within that database. Unlike the BrainMap 
approach, the Neurosynth approach uses an a priori value as the prior probability of any given experiment including 
a given label.

1. Select studies in the database according to some criterion (e.g., having at least one peak in an ROI).
2. For each label, studies in the database can now be divided into four groups:

	{ Label‑positive and selected : Ss+l+
	{ Label‑negative and selected : Ss+l−
	{ Label‑positive and unselected : Ss−l+
	{ Label‑negative and unselected : Ss−l−

3. Set a prior probability p of a given mental state occurring in the real world.
	{ Neurosynth uses 0.5 as the default.

4. Compute P(s+):
	{ Probability of being selected, P(s+) = Ss+/(Ss+ + Ss−), where Ss+ = Ss+l+ + Ss+l− and Ss− = Ss−l+ + Ss−l−

5. For each label, compute P(l+):
	{ P(l+) = Sl+/(Sl+ + Sl−), where Sl+ = Ss+l+ + Ss−l+ and Sl− = Ss+l− + Ss−l−

6. Compute P(s+|l+):
	{ P(s+|l+) = Ss+l+/Sl+

7. Compute P(s+|l−):
	{ P(s+|l−) = Ss+l−/Sl−
	{ Only used to determine sign of reverse inference z value.

8. Compute P(s+|l+, p), where is the prior probability of a label:
	{ This is the forward inference posterior probability. Probability of selection given label and given prior probability 

of label, p.
	{ P(s+|l+, p) = p P(s+|l+) + (1−p) P(s+|l−)
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9. Compute P(l+|s+, p):
	{ This is the reverse inference posterior probability. Probability of label given selection and given the prior prob‑

ability of label.
	{ P(l+|s+, p) = p P(s+|l+)/P(s+|l+, p)

10. Perform a one‑way Chi‑squared test to determine if the rate at which studies are selected for a given label is sig‑
nificantly different from the average rate at which studies are selected across labels.
	{ Convert P value to signed z value using whether the number of studies selected for the label is greater than or 

less than the mean number of studies selected across labels to determine the sign.
11. Perform a two‑way Chi‑square test to determine if presence of the label and selection are independent.

	{ Convert P value to signed z value using P(s+|l−) to determine sign.
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