
J U P Y T E R B O O K

NiMARE: Neuroimaging Meta-Analysis Research
Environment

Taylor Salo, Tal Yarkoni, Thomas E. Nichols, Jean-Baptiste Poline, Murat Bilgel, Katherine L. Bottenhorn, Simon B. Eickhoff, Dorota Jarecka, James D. Kent,
Adam Kimbler, Dylan M. Nielson, Kendra M. Oudyk, Julio A. Peraza, Alexandre Pérez, Puck C. Reeders, Julio A. Yanes, Angela R. Laird

ABSTRACT

Corresponding author: Dr. Taylor Salo, Florida International University, FL, USA, email: tsalo006@fiu.edu

Date Received: February 28, 2022

Date Accepted: September 04, 2022

CONTENTS

About NiMARE
• Introduction
• NiMARE Overview

Meta‑Analytic Databases and Resources
• Download the Data
• External Meta‑Analytic Resources

Meta‑Analyses in NiMARE
• Coordinate‑Based Meta‑Analysis Image‑Based Meta‑Analysis
• Multiple Comparisons Correction

Other Meta‑Analytic Approaches
• Derivative Analyses
• Meta‑Analytic Subtraction Analysis
• Meta‑Analytic Coactivation Modeling
• Automated Annotation
• Meta‑Analytic Functional Decoding

Concluding Thoughts
• Future Directions
• Summary
• Acknowledgments
• References

Appendix
• Appendix I: BrainMap Discrete Decoding
• Appendix II: Neurosynth Discrete Decoding
• Build Information

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits authors to copy and redistribute
the material in any medium or format, remix, transform and build upon material, for any purpose, even commercially.

 : 2023, Volume 3 ‑ 1 ‑ CC By 4.0: © Taylor Salo et al.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits authors to copy and redistribute
the material in any medium or format, remix, transform and build upon material, for any purpose, even commercially.

 : 2023, Volume 3 ‑ 2 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

We present NiMARE (Neuroimaging Meta‑Analysis
Research Environment; RRID:SCR_0173981), a Python
library for neuroimaging meta‑analyses and meta‑
analysis‑related analyses. NiMARE is an open source,
collaboratively‑developed package that implements
a range of meta‑ analytic algorithms, including coor‑
dinate‑ and image‑based meta‑analyses, automated
annotation, functional decoding, and meta‑analytic
coactivation modeling. By consolidating meta‑ana‑
lytic methods under a common library and syntax,
NiMARE makes it straightforward for users to employ
the appropriate approach for a given analysis. In this
paper, we describe NiMARE’s architecture and the
methods implemented in the library. Additionally, we
provide example code and results for each of the avail‑
able tools in the library.

INTRODUCTION

We introduce NiMARE (Neuroimaging Meta‑Analysis
Research Environment), a Python package for analyz‑
ing meta‑analytic neuroimaging data. NiMARE is a new
library developed as a component in a burgeoning
open‑source meta‑analytic ecosystem for neuroimaging
data, which currently includes Neurosynth, NeuroVault,
NeuroQuery, and PyMARE.

While several libraries already exist for neuroimaging
meta‑analysis, these libraries are generally algorithm‑
specific, and are provided in a range of very different user
interfaces, languages, and licenses. This variability may
prevent meta‑analysts from using the most appropriate
algorithm for a given analysis. Further, having multiple
meta‑analysis algorithms available in one library facilitates

Fig. 1. A graphical representation of tools and methods implemented in NiMARE. This diagram outlines six of the most common use‑cases for NiMARE. (A)
Coordinate‑Based Meta‑Analysis (CBMA) is performed by creating a NiMARE Dataset with coordinate information stored in the Dataset.coordinates attribute, which is
then used in a CBMA Estimator. This produces a MetaResult object with statistical maps, which can then be used in a Corrector object for multiple comparisons correc‑
tion. Once the Corrector has been fitted, it will produce a corrected version of the MetaResult object, containing updated statistical maps. (B) Image‑Based Meta‑Analysis
(IBMA) operates similarly to CBMA, except that IBMA Estimators use statistical maps stored in the Dataset.images attribute. (C) Meta‑Analytic Coactivation Modeling
(MACM) uses a region of interest to select coordinate‑based studies within a Dataset, after which the standard CBMA workflow is performed. (D) Automated Annotation
infers labels from textual (and sometimes other) data associated with the Dataset, as stored in the Dataset.texts attribute. The annotation functions produce labels which
may be integrated into the Dataset as the Dataset.annotations attribute. (E) Functional decoding of continuous statistical maps operates similarly to discrete decoding,
in that the input Dataset must have both coordinates and annotations attributes. The Dataset, along with an unthresholded statistical map to decode, is provided to the
Decoder object, which then outputs measures of similarity or associativeness with each label. (F) Functional decoding of discrete inputs applies a selection criterion to
a Dataset with both coordinates and annotations attributes, using a Decoder object. The decoding algorithm will output measures of similarity or associativeness with
each label in the annotations.

 : 2023, Volume 3 ‑ 3 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

enable users to employ the most appropriate algorithm
for a given question without introducing a steep learn‑
ing curve. This approach is modeled on the widely‑used
scikit‑learn package,2,3 which implements a large number
of machine learning algorithms ‑ all with simple, consis‑
tent interfaces. Regardless of the algorithm employed,
data should be in the same format and the same class
methods should be called to fit and/or generate predic‑
tions from the model.

To this end, we have adopted an object‑oriented
approach to NiMARE’s core API that organizes tools
based on the type of inputs and outputs they operate
over. The key data structure is the Dataset class, which
stores a range of neuroimaging data amenable to var‑
ious forms of meta‑analysis. There are two main types
of tools that operate on a Dataset class. Transformer
classes, as their name suggests, perform some transfor‑
mation on a Dataset‑ i.e., they take a Dataset instance
as input, and return a modified version of that Dataset
instance as output (for example, with newly generated
maps stored within the object). Estimator classes apply
a meta‑analytic algorithm to a Dataset and return a set of
statistical images stored in a MetaResult container class.
The key methods supported by each of these base class‑
es, as well as the main arguments to those methods, are
consistent throughout the hierarchy (e.g., all Transformer
classes must implement a transform() method), minimiz‑
ing the learning curve and ensuring a high degree of pre‑
dictability for users.

direct comparisons of methods. With NiMARE, we con‑
solidate meta‑analytic algorithms from a range of libraries
and publications, and provide a common Python syntax
and well documented application program interfaces.
Additionally, NiMARE is a collaboratively‑developed
open source package, enabling researchers to contrib‑
ute new methods not included in the current version.

In this paper, we describe NiMARE’s aims, architec‑
ture and the functionality it supports—including tools for
database extraction, automated annotation, meta‑anal‑
ysis, meta‑analytic coactivation modeling, and functional
decoding. The text is accompanied by extensive code
samples and results (also available online in the form of
Python scripts; https://github.com/NBCLab/nimare‑paper
with additional documentation in https://github.com/neu‑
rodatascience/meta_analysis_notebook), ensuring that
users can follow along interactively.

NIMARE OVERVIEW

NiMARE is designed to be modular and object‑oriented,
with an interface that mimics popular Python libraries, includ‑
ing scikit‑learn and nilearn. This standardized interface allows
users to employ a wide range of meta‑analytic algorithms
without having to familiarize themselves with the idiosyncra‑
sies of algorithm‑specific tools. This lets users use whatever
method is most appropriate for a given research question
with minimal mental overhead from switching methods.
Additionally, NiMARE emphasizes citability, with references
in the documentation and citable boilerplate text that can be
copied directly into manuscripts, in order to ensure that the
original algorithm developers are appropriately recognized.

NiMARE works with Python versions 3.6 and higher,
and can easily be installed with pip. Its source code is
housed and version controlled in a GitHub repository at
https://github.com/neurostuff/NiMARE.

NiMARE is under continued active development, and
we anticipate that the user‑facing API (application pro‑
gramming interface) may change over time. Our emphasis
in this paper is thus primarily on reviewing the functionality
implemented in the package and illustrating the general
interface, and not on providing a detailed and static user
guide that will be found within the package documentation.

Tools in NiMARE are organized into several mod‑
ules, including nimare.meta, nimare.correct, nimare.
annotate, nimare.decode, and nimare.workflows.
In addition to these primary modules, there are sever‑
al secondary modules for data wrangling and internal
helper functions, including nimare.io, nimare.dataset,
nimare.extract, nimare.stats, nimare.utils, and nimare.
base. These modules are summarized in Application
Programming Interface, as well as in Table 1.

Application programming interface

One of the principal goals of NiMARE is to implement
a range of methods with a set of shared interfaces, to

Fig. 2. A schematic figure of Datasets, Estimators, Transformers, and MetaResults
in NiMARE.

https://github.com/NBCLab/nimare-paper
https://github.com/neurodatascience/meta_analysis_notebook
https://github.com/neurodatascience/meta_analysis_notebook
https://github.com/neurostuff/NiMARE

 : 2023, Volume 3 ‑ 4 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

utility functions, respectively. These modules are sum‑
marized in Table 1.

Dependencies

NiMARE depends on the standard SciPy stack, as well as
a small number of widely‑used packages. Dependencies
from the SciPy stack include scipy,4 numpy,5,6 pandas,7
and scikit‑learn.2,3 Additional requirements include fuzzy‑
wuzzy, nibabel,8 nilearn9, statsmodels,10 and tqdm.11

DOWNLOAD THE DATA

Package organization

At present, the package is organized into 14 distinct
modules. nimare.dataset defines the Dataset class.
nimare.meta includes Estimators for coordinate‑ and
image‑based meta‑analysis methods. nimare.results
defines the MetaResult class, which stores statistical
maps produced by meta‑analyses. nimare.correct
implements Corrector classes for family‑wise error (FWE)
and false discovery rate (FDR) multiple comparisons cor‑
rection. nimare.annotate implements a range of auto‑
mated annotation methods, including latent Dirichlet
allocation (LDA) and generalized correspondence latent
Dirichlet allocation (GCLDA). nimare.decode imple‑
ments a number of meta‑analytic functional decoding
and encoding algorithms. nimare.io provides functions
for converting alternative meta‑analytic dataset struc‑
ture, such as Sleuth text files or Neurosynth Datasets,
to NiMARE format. nimare.transforms implements a
range of spatial and data type transformations, includ‑
ing a function to generate new images in the Dataset
from existing image types. nimare.extract provides
methods for fetching Datasets and models across the
internet. nimare.generate includes functions for gen‑
erating data for internal testing and validation. nimare.
base defines a number of base classes used through‑
out the rest of the package. Finally, nimare.stats and
nimare.utils are modules for statistical and generic

Table 1. Summaries of modules in NiMARE.

Module Description

dataset This module stores the Dataset class, which contains NiMARE Datasets.

meta This module contains Estimators for image‑ and coordinate‑based meta‑analysis algorithms, as well as KernelTransformers, which are used in
conjunction with coordinate‑based methods.

results This module stores the MetaResult class, which in turn is used to manage statistical maps produced by meta‑analytic algorithms.

correct This module contains classes for multiple comparisons correction, including FWECorrector (family‑wise error rate correction) and FDRCorrector (FDR
correction).

annotate This module includes a range of tools for automated annotation of studies. Methods in this module include: topic models, such as LDA and GCLDA;
ontology‑based annotation, such as Cognitive Atlas term extract from text; and general text‑based feature extraction, such as count or tf‑idf
extraction from text.

decode This module includes a number of methods for functional characterization analysis, also known as functional decoding. Methods in this module are
divided into three groups: discrete, for decoding regions of interest or subsets of the Dataset; continuous, for decoding unthresholded statistical
maps; and encoding, for simulating statistical maps from labels.

io This module contains functions for converting common file types, such as Neurosynth‑ or Sleuth‑format files, into NiMARE‑ compatible formats, such
as Dataset objects.

transforms This module contains classes and functions for converting between common data types. Two important classes in this module are the
ImageTransformer, which uses available images and metadata to produce new images in a Dataset, and the ImagesToCoordinates, which extracts
peak coordinates from images in the Dataset, so that image‑based studies can be used for coordinate‑based meta‑analyses.

extract This module contains functions for downloading external resources, such as the Neurosynth Dataset and the Cognitive Atlas ontology.

stats This module contains miscellaneous statistical methods used throughout the rest of the library.

generate This module contains functions for generating useful data for internal testing and validation.

utils This module contains miscellaneous utility functions used throughout the rest of the library.

workflows This module contains a number of common workflows that can be run from the command line, such as an activation likelihood estimation (ALE)
meta‑analysis or a contrast‑permutation image‑based meta‑analysis. All of the workflow functions additionally generate boilerplate text that can be
included in manuscript methods sections.

base This module defines a number of base classes used throughout the rest of the library.

First, import the necessary modules and
functions
import os

from repo2data.repo2data import Repo2Data

Install the data if running locally,
or points to cached data if running on
neurolibre
DATA_REQ_FILE = os.path.abspath(“../binder/data_requirement.
json”)
repo2data = Repo2Data(DATA_REQ_FILE)
data_path = repo2data.install()
data_path = os.path.join(data_path[0], “data”)
print(f”Data are located at {data_path}”)

 : 2023, Volume 3 ‑ 5 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

integrated into the database. Finally, a manually anno‑
tated database like BrainMap will be biased by which
subdomains within the literature are annotated. While
outside contributors can add and annotate studies to
the database, the main source of annotations has been
researchers associated with the BrainMap project.

While BrainMap is a semi‑closed resource (i.e., a collab‑
oration agreement is required to access the full database),
registered users may search the database using the Sleuth
search tool, in order to collect samples for meta‑analyses.
Sleuth can export these study collections as text files with
coordinates. NiMARE provides a function to import data
from Sleuth text files into the NiMARE Dataset format.

The function convert_sleuth_to_dataset() can be used
to convert text files exported from Sleuth into NiMARE
Datasets. Here, we convert two files from a previous publica‑
tion by NiMARE contributors18 into two separate Datasets.

We will also create a directory in which to save files that
are generated within the book.

EXTERNAL META‑ANALYTIC RESOURCES

Large‑scale meta‑analytic databases have made sys‑
tematic meta‑analyses of the neuroimaging literature
possible. These databases combine results from neuro‑
imaging studies, whether represented as coordinates of
peak activations or unthresholded statistical images, with
important study metadata, such as information about
the samples acquired, stimuli used, analyses performed,
and mental constructs putatively manipulated. The two
most popular coordinate‑based meta‑analytic databases
are BrainMap and Neurosynth, while the most popular
image‑based database is NeuroVault.

The studies archived in these databases may be either
manually or automatically annotated—often with reference
to a formal ontology or controlled vocabulary. Ontologies
for cognitive neuroscience define what mental states or
processes are postulated to be manipulated or measured
in experiments, and may also include details of said exper‑
iments (e.g., the cognitive tasks employed), relationships
between concepts (e.g., verbal working memory is a kind
of working memory), and various other metadata that can
be standardized and represented in a machine‑readable
form.12–14 Some of these ontologies are very well‑defined,
such as expert‑generated taxonomies designed specifi‑
cally to describe only certain aspects of experiments and
the relationships between elements within the taxonomy,
while others are more loosely defined, in some cases sim‑
ply building a vocabulary based on which terms are com‑
monly used in cognitive neuroscience articles.

BrainMap

BrainMap 15–17 relies on expert annotators to label individ‑
ual comparisons within studies according to its internally
developed ontology, the BrainMap Taxonomy.15 While
this approach is likely to be less noisy than an automated
annotation method using article text or imaging results
to predict content, it is also subject to a number of lim‑
itations. First, there are simply not enough annotators
to keep up with the ever‑expanding literature. Second,
any development of the underlying ontology has the
potential to leave the database outdated. For example,
if a new label is added to the BrainMap Taxonomy, then
each study in the full BrainMap database needs to be
evaluated for that label before that label can be properly

Files generated by the book will be saved to /Users/taylor/
Documents/nbc/nimarepaper/ outputs

os.makedirs(“../outputs/”, exist_ok=True)
print(f”Files generated by the book will be saved to {os.path.
abspath(‘../outputs/’)}”)

from nimare import io

sleuth_dset1 = io.convert_sleuth_to_dataset(
 os.path.join(data_path, “contrast-CannabisMinusControl_

space-talairach_sleuth.txt”)
)
sleuth_dset2 = io.convert_sleuth_to_dataset(
 os.path.join(data_path, “contrast-ControlMinusCannabis_

space-talairach_sleuth.txt”)
)
print(sleuth_dset1)
print(sleuth_dset2)

Save the Datasets to files for future use
sleuth_dset1.save(os.path.join(out_dir, “sleuth_dset1.pkl.gz”))
sleuth_dset2.save(os.path.join(out_dir, “sleuth_dset2.pkl.gz”))

Dataset(41 experiments, space='ale_2mm') Dataset
(41 experiments, space='ale_2mm')

Neurosynth

Neurosynth19 uses a combination of web scraping and
text mining to automatically harvest neuroimaging stud‑
ies from the literature and to annotate them based on
term frequency within article abstracts. As a consequence
of its relatively crude automated approach, Neurosynth
has its own set of limitations. First, Neurosynth is unable
to delineate individual comparisons within studies, and
consequently uses the entire paper as its unit of measure‑
ment, unlike BrainMap. This risks conflating directly con‑
trasted comparisons (e.g., A>B and B>A), as well as com‑
parisons which have no relation to one another. Second,
coordinate extraction and annotation are noisy. Third,
annotations automatically performed by Neurosynth are
also subject to error, although the reasons behind this are
more nuanced and will be discussed later in this paper.
Given Neurosynth’s limitations, we recommend that it
be used for casual, exploratory meta‑analyses rather

http://www.brainmap.org/
http://neurosynth.org/
https://neurovault.org/

 : 2023, Volume 3 ‑ 6 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

Converting the large Neurosynth and NeuroQuery
Datasets to NiMARE Dataset objects can be a very
memory‑intensive process. For the sake of this book, we
show how to perform the conversions below, but actually
load and use pre‑converted Datasets.

than for publication‑quality analyses. Nevertheless, while
individual meta‑analyses should not be published from
Neurosynth, many derivative analyses have been per‑
formed and published (e.g.20–23). As evidence of its util‑
ity, Neurosynth has been used to define a priori regions
of interest (e.g.24–26) or perform meta‑analytic function‑
al decoding (e.g.27–29,) in many first‑order (rather than
meta‑analytic) fMRI studies.

Here, we show code that would download the
Neurosynth database from where it is stored (https://
github.com/neurosynth/neurosynth‑data) and convert it
to a NiMARE Dataset using fetch_neurosynth(), for the
first step, and convert_neurosynth_to_dataset(), for the
second.

INFO:nimare.extract.utils:Dataset found in ./../data/nimare-paper/
data/neurosynth

INFO:nimare.extract.extract:Searching for any feature files
matching the following criteria: [(‘source-abstract’, ‘vocab-terms’,
‘data-neurosynth’, ‘version-7’)]

Downloading data-neurosynth_version-7_coordinates.tsv.gz

File exists and overwrite is False. Skipping.
Downloading data-neurosynth_version-7_metadata.tsv.gz

File exists and overwrite is False. Skipping.
Downloading data-neurosynth_version-7_vocab-terms_source-
abstract_type-tfidf_features.npz

File exists and overwrite is False. Skipping.
Downloading data-neurosynth_version-7_vocab-terms_
vocabulary.txt

‘vocabulary’: ‘/Users/taylor/Documents/nbc/nimare-paper/
data/nimare- paper/data/neurosynth/data-neurosynth_version-7_
vocab-terms_vocabulary.txt’}],

‘metadata’: ‘/Users/taylor/Documents/nbc/nimare-paper/data/
nimare- paper/data/neurosynth/data-neurosynth_version-7_
metadata.tsv.gz’}]

Convert the files to a Dataset.
This may take a while (~10 minutes)
neurosynth_dset = io.convert_neurosynth_to_dataset(

coordinates_file=neurosynth_db["coordinates"],
metadata_file=neurosynth_db["metadata"],
annotations_files=neurosynth_db["features"],

)
print(neurosynth_dset)

Save the Dataset for later use.
neurosynth_dset.save(os.path.join(out_dir, "neurosynth_dataset.
pkl.gz"))

Here, we load a pre‑generated version of the
Neurosynth Dataset.

from nimare import extract

Download the desired version of Neurosynth
from GitHub.
files = extract.fetch_neurosynth(
 data_dir=data_path,
 version=”7”,
 source=”abstract”,
 vocab=”terms”,
 overwrite=False,
)
pprint(files) neurosynth_db = files[0]

Dataset(14371 experiments, space='mni152_2mm')

from nimare import dataset

neurosynth_dset = dataset.Dataset.load(os.path.join(data_path,
"neurosynth_dataset.pkl.gz"))
print(neurosynth_dset)

Many of the methods in NiMARE can be very time‑con‑
suming or memory‑intensive. Therefore, for the sake of
ensuring that the analyses in this article may be repro‑
duced by as many people as possible, we will use a
reduced version of the Neurosynth Dataset, only con‑
taining the first 500 studies, for those methods which
may not run easily on the full database.

neurosynth_dset_first_500 = neurosynth_dset.slice(neurosynth_
dset.ids[:500]) print(neurosynth_dset)

Save this Dataset for later use.
neurosynth_dset_first_500.save(os.path.join(out_dir,
"neurosynth_dataset_first500.pkl.gz"))

Dataset(14371 experiments, space=’mni152_2mm’)

File exists and overwrite is False. Skipping.
[{‘coordinates’: ‘/Users/taylor/Documents/nbc/nimare-paper/
data/nimare- paper/data/neurosynth/data-neurosynth_version-7_
coordinates.tsv.gz’,

‘features’: [{‘features’: ‘/Users/taylor/Documents/nbc/nimare-
paper/data/nimare- paper/data/neurosynth/data-neurosynth_
version-7_vocab-terms_source-abstract_type- tfidf_features.npz’,

https://github.com/neurosynth/neurosynth-data
https://github.com/neurosynth/neurosynth-data

 : 2023, Volume 3 ‑ 7 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

Here, we load a pre‑generated version of the
NeuroQuery Dataset.

In addition to a large corpus of coordinates, Neurosynth
provides term frequencies derived from article abstracts
that can be used as annotations.

One additional benefit to Neurosynth is that it has
made available the coordinates for a large number
of studies for which the study abstracts are also readi‑
ly available. This has made the Neurosynth database a
common resource upon which to build other automat‑
ed ontologies. Data‑driven ontologies which have been
developed using the Neurosynth database include the
GCLDA30 topic model and Deep Boltzmann machines.31

NeuroQuery

A related resource is NeuroQuery.32 NeuroQuery is an
online service for large‑scale predictive meta‑analysis.
Unlike Neurosynth, which performs statistical inference
and produces statistical maps, NeuroQuery is a supervised
learning model and produces a prediction of the brain
areas most likely to contain activations. These maps predict
locations where studies investigating a given area (deter‑
mined by the text prompt) are likely to produce activations,
but they cannot be used in the same manner as statistical
maps from a standard coordinate‑based meta‑analysis. In
addition to this predictive meta‑analytic tool, NeuroQuery
also provides a new database of coordinates, text annota‑
tions, and metadata via an automated extraction approach
that improves on Neurosynth’s original methods.

While NiMARE does not currently include an interface to
NeuroQuery’s predictive meta‑analytic method, there are
functions for downloading the NeuroQuery database and
converting it to NiMARE format, much like Neurosynth.
The functions for downloading the NeuroQuery database
and converting it to a Dataset are fetch_neuroquery()
and convert_neurosynth_to_dataset(), respectively. We
are able to use the same function for converting the data‑
base to a Dataset for NeuroQuery as Neurosynth because
both databases store their data in the same structure.

INFO:nimare.extract.utils:Dataset found in ./../data/nimare-paper/
data/neuroquery

INFO:nimare.extract.extract:Searching for any feature files
matching the following criteria: [('source-combined', 'vocab-
neuroquery6308', 'type-tfidf', 'data-neuroquery', 'version-1')]

Downloading data-neuroquery_version-1_coordinates.tsv.gz

File exists and overwrite is False. Skipping.
Downloading data-neuroquery_version-1_metadata.tsv.gz

File exists and overwrite is False. Skipping.
Downloading data-neuroquery_version-1_vocab-
neuroquery6308_source-combined_typetfidf_
features.npz

File exists and overwrite is False. Skipping.
Downloading data-neuroquery_version-1_vocab-
neuroquery6308_vocabulary.txt

File exists and overwrite is False. Skipping.
[{'coordinates': '/Users/taylor/Documents/nbc/nimare-paper/
data/nimarepaper/data/neuroquery/data-neuroquery_version-1_
coordinates.tsv.gz',

'features': [{'features': '/Users/taylor/Documents/nbc/nimare-
paper/data/nimarepaper/data/neuroquery/data-neuroquery_
version-1_vocab-neuroquery6308_sourcecombined_type-tfidf_
features.npz',

'vocabulary': '/Users/taylor/Documents/nbc/nimare-paper/
data/nimarepaper/data/neuroquery/data-neuroquery_version-1_
vocab-neuroquery6308_vocabulary.txt'}],

'metadata': '/Users/taylor/Documents/nbc/nimare-paper/
data/nimarepaper/data/neuroquery/data-neuroquery_version-1_
metadata.tsv.gz'}]

Convert the files to a Dataset.
This may take a while (~10 minutes)
neuroquery_dset = io.convert_neurosynth_to_dataset(
 coordinates_file=neuroquery_db["coordinates"],
 metadata_file=neuroquery_db["metadata"],
 annotations_files=neuroquery_db["features"],
)
print(neuroquery_dset)

Save the Dataset for later use.
neuroquery_dset.save(os.path.join(out_dir, "neuroquery_dataset.
pkl.gz"))

Download the desired version of
NeuroQuery from GitHub.
files = extract.fetch_neuroquery(
 data_dir=data_path,
 version="1",
 source="combined",
 vocab="neuroquery6308",
 type="tfidf",

 overwrite=False,
)
pprint(files)
neuroquery_db = files[0]

Dataset(13459 experiments, space='mni152_2mm')

neuroquery_dset = dataset.Dataset.load(os.path.join(data_path,
"neuroquery_dataset.pkl.gz"))
print(neuroquery_dset)

 : 2023, Volume 3 ‑ 8 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

a spatial Kernel to produce study‑specific modeled acti‑
vation maps, then combining those modeled activation
maps into a sample‑wise map, which is compared to a
null distribution to evaluate voxel‑wise statistical signifi‑
cance. Additionally, for each of the following approach‑
es, except for specific coactivation likelihood estimation
(SCALE), voxel‑ or cluster‑level multiple comparisons
correction may be performed using Monte Carlo simu‑
lations or FDR36 correction. Basic multiple‑comparisons
correction methods (e.g., Bonferroni correction) are also
supported.

CBMA kernels

CBMA kernels are available as KernelTransformers in
the nimare.meta.kernel module. There are three stan‑
dard kernels that are currently available: MKDAKernel,
KDAKernel, and ALEKernel. Each class may be config‑
ured with certain parameters when a new object is ini‑
tialized. For example, MKDAKernel accepts an r param‑
eter, which determines the radius of the spheres that will
be created around each peak coordinate. ALEKernel
automatically uses the sample size associated with each
experiment in the Dataset to determine the appropri‑
ate full‑width‑at‑half‑maximum of its Gaussian distri‑
bution, as described in Eickhoff et al.37; however, users
may provide a constant sample_size or fwhm parameter
when sample size information is not available within the
Dataset metadata.

Here we show how these three kernels can be applied
to the same Dataset.

NeuroVault

NeuroVault33 is a public repository of user‑uploaded,
whole‑brain, unthresholded brain maps. Users may asso‑
ciate their image collections with publications, and can
annotate individual maps with labels from the Cognitive
Atlas, which is the ontology of choice for NeuroVault.
NiMARE includes a function, convert_neurovault_to_
dataset(), with which users can search for images in
NeuroVault, download those images, and convert them
into a Dataset object.

COORDINATE‑BASED META‑ANALYSIS

Coordinate‑based meta‑analysis (CBMA) is currently the
most popular method for neuroimaging meta‑analysis,
given that the majority of fMRI papers currently report
their findings as peaks of statistically significant clusters in
standard space and do not release unthresholded statis‑
tical maps. These peaks indicate where significant results
were found in the brain, and thus do not reflect an effect
size estimate for each hypothesis test (i.e., each voxel) as
one would expect for a typical meta‑analysis. As such,
standard methods for effect size‑based meta‑analysis
cannot be applied. Over the past two decades, a number
of algorithms have been developed to determine wheth‑
er peaks converge across experiments in order to identi‑
fy locations of consistent or specific activation associated
with a given hypothesis.34,35

Kernel‑based methods evaluate convergence of
coordinates across studies by first convolving foci with

Fig. 3. A flowchart of the typical workflow for coordinate‑based meta‑analyses
in NiMARE.

Fig. 4. Modeled activation maps produced by NiMARE’s KernelTransformer
classes.

 : 2023, Volume 3 ‑ 9 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

In NiMARE, the MKDA meta‑analyses can be per‑
formed with the MKDADensity class. This class, like most
other CBMA classes in NiMARE, accepts a null_method
parameter, which determines how voxel‑wise (uncorrect‑
ed) statistical significance is calculated.

The null_method parameter allows two options:
“approximate” or “montecarlo.” The “approximate”
option builds a histogram‑based null distribution of
summary‑statistic values, which can then be used to
determine the associated p‑value for observed sum‑
mary‑statistic values (i.e., the values in the meta‑analytic
map). The “montecarlo” option builds a null distribution
of summary‑statistic values by randomly shuffling the
coordinates the Dataset many times, and computing the
summary‑statistic values for each permutation. In gen‑
eral, the “montecarlo” method is slightly more accurate
when there are enough permutations, while the “approx‑
imate” method is much faster.

Fitting the CBMA Estimator to a Dataset will produce
p‑value, z‑statistic, and summary‑statistic maps, but
these are not corrected for multiple comparisons.

When performing a meta‑analysis with the goal of sta‑
tistical inference, you will want to perform multiple com‑
parisons correction with NiMARE’s Corrector classes.
Please see the multiple comparisons correction chapter
for more information.

Here we perform an MKDADensity meta‑analysis
on one of the Sleuth‑based Datasets. We will use the
“approximate” null method for speed.

from nimare.meta import kernel

mkda_kernel = kernel.MKDAKernel(r=10)
mkda_ma_maps = mkda_kernel.transform(sleuth_dset1)
kda_kernel = kernel.KDAKernel(r=10)
kda_ma_maps = kda_kernel.transform(sleuth_dset1)
ale_kernel = kernel.ALEKernel(sample_size=20)
ale_ma_maps = ale_kernel.transform(sleuth_dset1)

from nimare import dataset, meta

neurosynth_dset_first500 = dataset.Dataset.load(
os.path.join(data_path, "neurosynth_dataset_first500.pkl.gz")
)

Specify where images for this Dataset
should be located
target_folder = os.path.join(out_dir, "neurosynth_dataset_maps")
os.makedirs(target_folder, exist_ok=True)
neurosynth_dset_first500.update_path(target_folder)

Initialize a kernel transformer to use
kern = meta.kernel.MKDAKernel(memory_limit="500mb")

Run the kernel transformer with return_
type set to "dataset" to return an updated
Dataset
with the MA maps stored as files within
its "images" attribute.
neurosynth_dset_first500 = kern.
transform(neurosynth_dset_first500,
return_type="dataset")
neurosynth_dset_first500.save(

os.path.join(out_dir, "neurosynth_dataset_first500_with_mkda_
ma.pkl.gz"),

)

INFO:nimare.utils:Shared path detected: '/Users/
taylor/Documents/nbc/nimarepaper/ outputs/
neurosynth_dataset_maps/'

Multilevel Kernel density analysis

Multilevel Kernel density analysis (MKDA)38 is a
Kernel‑based method that convolves each peak from
each study with a binary sphere of a set radius. These
peak‑specific binary maps are then combined into
study‑specific maps by taking the maximum value for
each voxel. Study‑specific maps are then averaged
across the meta‑analytic sample. This averaging is gen‑
erally weighted by studies’ sample sizes, although other
covariates may be included, such as weights based on
the type of inference (random or fixed effects) employed
in the study’s analysis. An arbitrary threshold is generally
employed to zero‑out voxels with very low values, and
then a Monte Carlo procedure is used to assess statisti‑
cal significance, either at the voxel or cluster level.

from nimare.meta.cbma import mkda

mkdad_meta = mkda.MKDADensity(null_method="approximate")
mkdad_results = mkdad_meta.fit(sleuth_dset1)

The MetaResult class

Fitting an Estimator to a Dataset produces a MetaResult
object. The MetaResult class is a light container holding
the different statistical maps produced by the Estimator.

print(mkdad_results)

<nimare.results.MetaResult object at 0x7fdaeb186640>

This result is also retained as an attribute in the
Estimator.

print(mkdad_meta.results)

<nimare.results.MetaResult object at 0x7fdaeb186640>

 : 2023, Volume 3 ‑ 10 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

We will also save the Estimator itself, which we will
reuse when we get to multiple comparisons correction.

Since this is a Kernel‑based algorithm, the Kernel
transformer is an optional input to the meta‑analytic
estimator, and can be controlled in a more fine‑ grained
manner.

We can save the statistical maps to an output directory
as gzipped nifti files, with a prefix. Here, we will save all of
the statistical maps with the MKDADensity prefix.

The maps attribute is a dictionary containing statistical
map names and associated numpy arrays.

mkdad_img = mkdad_results.get_map(“z”, return_type=”image”)
print(mkdad_img)

pprint(mkdad_results.maps)

{‘p’: array([1., 1., 1., ..., 1., 1., 1.]),
‘stat’: array([0., 0., 0., ..., 0., 0., 0.]),
‘z’: array([0., 0., 0., ..., 0., 0., 0.])}

<class ‘nibabel.nifti1.Nifti1Image’>
data shape (91, 109, 91)
affine:
[[-2. 0. 0. 90.]
[0. 2. 0. -126.]
[0. 0. 2. -72.]
[0. 0. 0. 1.]]
metadata:
<class ‘nibabel.nifti1.Nifti1Header’> object, endian=’<’
sizeof_hdr : 348
data_type : b’’
db_name : b’’
extents : 0
session_error : 0
regular : b’’
dim_info : 0
dim : [ 3 91 109 91 1 1 1 1]
intent_p1 : 0.0
intent_p2 : 0.0
intent_p3 : 0.0
intent_code : none
datatype : float64
bitpix : 64
slice_start : 0
pixdim : [-1. 2. 2. 2. 1. 1. 1. 1.]
vox_offset : 0.0
scl_slope : nan
scl_inter : nan
slice_end : 0
slice_code : unknown
xyzt_units : 0
cal_max : 0.0
cal_min : 0.0
slice_duration : 0.0
toffset : 0.0
glmax : 0
glmin : 0
descrip : b’’
aux_file : b’’
qform_code : unknown
sform_code : aligned
quatern_b : 0.0

mkdad_results.save_maps(output_dir=out_dir,
prefix=”MKDADensity”)

mkdad_meta.save(os.path.join(out_dir, “MKDADensity.pkl.gz”))

These two approaches (initializing the
kernel ahead of time or
providing the arguments with the kernel__
prefix) are equivalent.
mkda_kernel = kernel.MKDAKernel(r=2)
mkdad_meta = mkda.
MKDADensity(kernel_transformer=mkda_kernel)
mkdad_meta = mkda.MKDADensity(kernel_transformer=kernel.
MKDAKernel, kernel__r=2)

A completely different kernel could even
be provided, although this is not
recommended and should only be used for
testing algorithms.
mkdad_meta = mkda.MKDADensity(kernel_transformer=kernel.
KDAKernel)

These arrays can be transformed into image‑like
objects using the masker attribute. We can also use the
get_map method to get that image object.

quatern_c : 1.0
quatern_d : 0.0
qoffset_x : 90.0
qoffset_y : -126.0
qoffset_z : -72.0
srow_x : [-2. 0. 0. 90.]
srow_y : [ 0. 2. 0. -126.]
srow_z : [ 0. 0. 2. -72.]
intent_name : b’’
magic : b’n+1’

Kernel density analysis

Kernel density analysis (KDA)39,40 is a precursor algo‑
rithm that has been replaced in the field by MKDA.
For the sake of completeness, NiMARE also includes
a KDA estimator that implements the older KDA algo‑
rithm for comparison purposes. The interface is virtu‑
ally identical, but since there are few if any legitimate
uses of KDA (which models studies as fixed rather than
random effects), we do not discuss the algorithm fur‑
ther here.

 : 2023, Volume 3 ‑ 11 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

MKDA Chi‑squared Analysis

An alternative to the density‑based approaches (i.e.,
MKDA, KDA, ALE, and SCALE) is the MKDA Chi‑squared
extension.38 Although still a Kernel‑based method in which
foci are convolved with a binary sphere and combined
within studies, this approach uses voxel‑wise Chi‑squared
tests to assess both consistency (i.e., higher convergence
of foci within the meta‑analytic sample than expected by
chance) and specificity (i.e., higher convergence of foci
within the meta‑analytic sample than detected in an unre‑
lated dataset) of activation. Such an analysis also requires
access to a reference meta‑analytic sample or database
of studies. For example, to perform a Chi‑squared anal‑
ysis of working memory studies, the researcher will also
need a comprehensive set of studies which did not manip‑
ulate working memory—ideally one that is matched with
the working memory study set on all relevant attributes
except the involvement of working memory.

Activation likelihood estimation

ALE41–43 assesses convergence of peaks across studies
by first generating a modeled activation map for each
study, in which each of the experiment’s peaks is con‑
volved with a 3D Gaussian distribution determined by
the experiment’s sample size, and then by combining
these modeled activation maps across studies into an
ALE map, which is compared with an empirical null distri‑
bution to assess voxel‑wise statistical significance.

Specific coactivation likelihood estimation

SCALE44 is an extension of the ALE algorithm devel‑
oped for meta‑analytic coactivation modeling (MACM)
analyses. Rather than comparing convergence of foci
within the sample to a null distribution derived under
the assumption of spatial randomness within the brain,
SCALE assesses whether the convergence at each voxel
is greater than in the general literature. Each voxel in the
brain is assigned a null distribution determined based
on the base rate of activation for that voxel across an
existing coordinate‑based meta‑analytic database. This
approach allows for the generation of a statistical map
for the sample, but no methods for multiple comparisons
correction have yet been developed. While this method
was developed to support analysis of joint activation or
“coactivation” patterns, it is generic and can be applied
to any CBMA; see Derivative Analyses.

kda_meta = mkda.KDA(null_method=”approximate”)
kda_results = kda_meta.fit(sleuth_dset1)

Retain the z-statistic map for later use
kda_img = kda_results.get_map(“z”, return_type=”image”)

from nimare.meta.cbma import ale

ale_meta = ale.ALE()
ale_results = ale_meta.fit(sleuth_dset1)

Retain the z-statistic map for later use
ale_img = ale_results.get_map(“z”, return_type=”image”)

Here we use the coordinates from
Neurosynth as our measure of coordinate
base-rates, because we do not have access
to the full BrainMap database.
However, one assumption of SCALE is that
the Dataset being analyzed comes
from the same source as the database you
use for calculating base-rates.
xyz = neurosynth_dset.coordinates[[“x”, “y”, “z”]].values
Typically, you would have >=2500
iterations, but we’re using 500 here.

100% 500/500 [03 38<00 00, 2.58it/s]
100% 228483/228483 [02 22<00 00, 3108.27it/s]

scale_meta = ale.SCALE(n_iters=500, xyz=xyz, memory_
limit=”100mb”, n_cores=1) scale_results = scale_meta.
fit(sleuth_dset1)

Retain the z-statistic map for later use
scale_img = scale_results.get_map(“z”, return_type=”image”)

mkdac_meta = mkda.MKDAChi2()
mkdac_results = mkdac_meta.fit(sleuth_dset1, sleuth_dset2)

Retain the specificity analysis’s
z-statistic map for later use
mkdac_img = mkdac_results.get_map(“z_desc-specificity”,
return_type=”image”)

Comparing algorithms

Here, we load the z‑statistic map from each of the CBMA
estimators we have used throughout this chapter and
plot them all side by side.

meta_results = {
 “MKDA Density”: mkdad_img,
 “MKDA Chi-Squared”: mkdac_img,
 “KDA”: kda_img,
 “ALE”: ale_img,
 “SCALE”: scale_img,
}
order = [
 [“MKDA Density”, “ALE”],
 [“MKDA Chi-Squared”, “SCALE”],
 [“KDA”, None]
]

fig, axes = plt.subplots(figsize=(12, 6), nrows=3, ncols=2)

 : 2023, Volume 3 ‑ 12 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

Fig. 5. Thresholded results from MKDA density, KDA, ALE, and SCALE meta‑analyses.

for i_row, row_names in enumerate(order):
 for j_col, name in enumerate(row_names):
 if not name:
 axes[i_row, j_col].axis(“off”)
 continue

 img = meta_results[name]
 if name == “MKDA Chi-Squared”:
 cmap = “RdBu_r”
 else:
 cmap = “Reds”

 display = plotting.plot_stat_map(img,
 annotate=False,
 axes=axes[i_row, j_col],
 cmap=cmap,
 cut_coords=[5, -15, 10],
 draw_cross=False,
 figure=fig,
)
 axes[i_row, j_col].set_title(name)

 colorbar = display._cbar
 colorbar_ticks = colorbar.get_ticks()
 if colorbar_ticks[0] < 0:
 new_ticks = [colorbar_ticks[0], 0, colorbar_ticks[-1]]
 else:
 new_ticks = [colorbar_ticks[0], colorbar_ticks[-1]]
 colorbar.set_ticks(new_ticks, update_ticks=True)

glue(“figure_cbma_uncorr”, fig, display=False)

A number of other coordinate‑based meta‑analysis algo‑
rithms exist, which are not yet implemented in NiMARE.
We describe these algorithms briefly in Future Directions.

IMAGE‑BASED META‑ANALYSIS

Image‑based meta‑analysis (IBMA) methods perform a
meta‑analysis directly on brain images (either whole‑brain

or partial) rather than on extracted peaks. On paper, IBMA
is superior to CBMA in virtually all respects, as the availabil‑
ity of analysis‑level parameter and variance estimates at all
analyzed voxels allows researchers to use the full comple‑
ment of standard meta‑analysis techniques, instead of hav‑
ing to resort to Kernel‑based or other methods that require
additional spatial assumptions. In principle, given a set of
maps that contains no missing values (i.e., where there are
k valid pairs of parameter and variance estimates at each
voxel), one can simply conduct a voxel‑wise version of any
standard meta‑analysis or meta‑regression method com‑
monly used in other biomedical or social science fields.

In practice, the utility of IBMA methods has historical‑
ly been quite limited, as unthresholded statistical maps
have been unavailable for the vast majority of neuro‑
imaging studies. However, the introduction and rapid
adoption of NeuroVault,33 a database for unthresholded
statistical images, has made image‑based meta‑anal‑
ysis increasingly viable. Although coverage of the liter‑
ature remains limited, and IBMAs of maps drawn from
the NeuroVault database are likely to omit at least some
(and in some cases most) relevant studies due to limit‑
ed metadata, we believe the time is ripe for researchers
to start including both CBMAs and IBMAs in published
meta‑analyses, with the aspirational goal of eventu‑
ally transitioning exclusively to the latter. To this end,
NiMARE supports a range of different IBMA methods,
including a number of estimators of the gold standard
mixed‑effects meta‑regression model, as well as several
alternative estimators suitable for use when some of the
traditional inputs are unavailable.

NiMARE’s IBMA Estimators are light wrappers around
classes from PyMARE, a library for standard (i.e., non‑
neuroimaging) meta‑analyses developed by the same
team as NiMARE.

In the optimal situation, meta‑analysts have access to both
contrast (i.e., parameter estimate) maps and their associat‑
ed standard error maps for a number of studies. With these
data, researchers can fit the traditional random‑effects

https://pymare.readthedocs.io/

 : 2023, Volume 3 ‑ 13 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

Transforming images

Researchers may share their statistical maps in many forms,
some of which are direct transformations of one another.
For example, researchers may share test statistic maps
with z‑statistics or t‑statistics, and, as long as we know
the degrees of freedom associated with the t‑test, we
can convert between the two easily. To that end, NiMARE
includes a class, ImageTransformer, which will calculate
target image types from available ones, as long as the
available images are compatible with said transformation.

Here, we use ImageTransformer to calculate z‑statistic
and variance maps for all studies with compatible imag‑
es. This allows us to apply more image‑based meta‑anal‑
ysis algorithms to the Dataset.

Now that we have filled in as many gaps in the
Dataset as possible, we can start running meta‑analyses.
We will start with a DerSimonian‑Laird meta‑analysis
(DerSimonianLaird).

meta‑regression model using one of several methods
that vary in the way they estimate the between‑study
variance (τ2). Currently, supported estimators include the
DerSimonian‑Laird method,45 the Hedges method,46 and
maximum‑likelihood (ML) and restricted maximum‑like‑
lihood (REML) approaches. NiMARE can also perform
fixed‑effects meta‑regression via weighted least‑squares,
although there are few IBMA scenarios where a fixed‑ef‑
fects analysis would be indicated. It is worth noting that the
non‑likelihood‑based estimators (i.e., DerSimonian‑Laird
and Hedges) have a closed‑form solution and are imple‑
mented in an extremely efficient way in NiMARE (i.e., com‑
putation is performed on all voxels in parallel). However,
these estimators also produce more biased estimates
under typical conditions (e.g., when sample sizes are very
small), implying a tradeoff from the user’s perspective.

Alternatively, when users only have access to contrast
maps and associated sample sizes, they can use the sup‑
ported sample size‑based likelihood estimator, which
assumes that within‑study variance is constant across
studies, and uses maximum‑likelihood or restricted max‑
imum‑likelihood to estimate between‑study variance,
as described in Sangnawakij et al..47 When users have
access only to contrast maps, they can use the permut‑
ed OLS estimator, which uses ordinary least squares and
employs a max‑type permutation scheme for family‑wise
error correction 48,49 that has been validated on neuroim‑
aging data50 and relies on the nilearn library.

Finally, when users only have access to z‑score maps,
they can use either the Fisher’s51 or the Stouffer’s52 esti‑
mators. When sample size information is available, users
may incorporate that information into the Stouffer’s
method, via the method described in.53

Given the paucity of image‑based meta‑analytic
Datasets, we have included the tools to build a dataset
from a NeuroVault collection of 21 pain studies, originally
described in Maumet and Nichols.54

from nimare import dataset, extract, utils

dset_dir = extract.download_nidm_pain(data_dir=data_
path, overwrite=False) dset_file = os.path.join(utils.get_
resource_path(), "nidm_pain_dset.json") img_dset = dataset.
Dataset(dset_file)

Point the Dataset toward the images we've
downloaded
img_dset.update_path(dset_dir)

INFO:nimare.extract.utils:Dataset found in ./../data/nimare-paper/
data/nidm_21pain

INFO:nimare.utils:Shared path detected: '/Users/taylor/
Documents/nbc/nimarepaper/data/nimare-paper/data/
nidm_21pain/'

import warnings

from nimare import transforms

The images used in this example have NaNs
in any voxels outside the brain.
Generally, we recommend having zeros in
masked-out areas,
but the data are what they are in this
case.
Nilearn will raise warnings when users
resample images with NaNs.
This will not cause any problems for this
example, so we will simply filter
those warnings out.
warnings.filterwarnings(action=”ignore”,
category=RuntimeWarning, module=”nilearn”)

img_transformer = transforms.ImageTransformer(target=[“z”,
“varcope”], overwrite=False)
img_dset = img_transformer.transform(img_dset)

INFO:nimare.utils:Shared path detected: ‘/Users/taylor/
Documents/nbc/nimarepaper/data/nimare-paper/data/
nidm_21pain/’

from nimare import meta

dsl_meta = meta.ibma.DerSimonianLaird(resample=True)
dsl_results = dsl_meta.fit(img_dset)

Retain the z-statistic map for later use
dsl_img = dsl_results.get_map(“z”, return_type=”image”)

Now we will apply other available IBMA Estimators
to the same Dataset and save their results to files for
comparison.

 : 2023, Volume 3 ‑ 14 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

Comparing algorithms

Here, we load the z‑statistic map from each of the IBMA
Estimators we have used throughout this chapter and
plot them all side by side.

Stouffer’s
stouffers_meta = meta.ibma.Stouffers(use_sample_size=False,
resample=True)
stouffers_results = stouffers_meta.fit(img_dset)
stouffers_img = stouffers_results.get_map(“z”,
return_type=”image”)
del stouffers_meta, stouffers_results

Stouffer’s with weighting based on sample
size
wstouffers_meta = meta.ibma.Stouffers(use_sample_size=True,
resample=True) wstouffers_results = wstouffers_meta.fit(img_dset)
wstouffers_img = wstouffers_results.get_map(“z”,
return_type=”image”)
del wstouffers_meta, wstouffers_results

Fisher’s
fishers_meta = meta.ibma.Fishers(resample=True)
fishers_results = fishers_meta.fit(img_dset)
fishers_img = fishers_results.get_map(“z”, return_type=”image”)
del fishers_meta, fishers_results

Permuted Ordinary Least Squares
ols_meta = meta.ibma.PermutedOLS(resample=True)
ols_results = ols_meta.fit(img_dset)
ols_img = ols_results.get_map(“z”, return_type=”image”)
del ols_meta, ols_results

Weighted Least Squares
wls_meta = meta.ibma.WeightedLeastSquares(resample=True)
wls_results = wls_meta.fit(img_dset)
wls_img = wls_results.get_map(“z”, return_type=”image”)
del wls_meta, wls_results

Hedges’
hedges_meta = meta.ibma.Hedges(resample=True)
hedges_results = hedges_meta.fit(img_dset)
hedges_img = hedges_results.get_map(“z”, return_type=”image”)
del hedges_meta, hedges_results

Use atlas for likelihood-based estimators
from nilearn import datasets, image, input_data

atlas = datasets.
fetch_atlas_harvard_oxford(“cort-maxprob-thr25-2mm”)

nilearn’s NiftiLabelsMasker cannot handle
NaNs at the moment,
and some of the NIDM-Results packs’ beta
images have NaNs at the edge of the brain.
So, we will create a reduced version of
the atlas for this analysis.
nan_mask = image.math_img(“~np.any(np.isnan(img), axis=3)”,
img=img_dset.images[“beta”].tolist())
atlas = image.resample_to_img(atlas[“maps”], nan_mask)
nanmasked_atlas = image.math_img(“mask * atlas”, mask=nan_
mask, atlas=atlas)
masker = input_data.NiftiLabelsMasker(nanmasked_atlas)
del atlas, nan_mask, nanmasked_atlas

Variance-Based Likelihood
vbl_meta = meta.ibma.VarianceBasedLikelihood(method=”reml”,
mask=masker, resample=True)

vbl_results = vbl_meta.fit(img_dset)
vbl_img = vbl_results.get_map(“z”, return_type=”image”)
del vbl_meta, vbl_results

Sample Size-Based Likelihood
ssbl_meta = meta.ibma.SampleSizeBasedLikelihood(method=”reml”,
mask=masker, resample=True)
ssbl_results = ssbl_meta.fit(img_dset)
ssbl_img = ssbl_results.get_map(“z”, return_type=”image”)
del ssbl_meta, ssbl_results, masker

meta_results = {
 “DerSimonian-Laird”: dsl_img,
 “Stouffer’s”: stouffers_img,
 “Weighted Stouffer’s”: wstouffers_img,
 “Fisher’s”: fishers_img,
 “Ordinary Least Squares”: ols_img,
 “Weighted Least Squares”: wls_img,
 “Hedges’”: hedges_img,
 “Variance-Based Likelihood”: vbl_img,
 “Sample Size-Based Likelihood”: ssbl_img,
}
order = [
 [“Fisher’s”, “Stouffer’s”, “Weighted Stouffer’s”],
 [“DerSimonian-Laird”, “Hedges’”, “Weighted Least

Squares”],
 [“Ordinary Least Squares”, “Variance-Based Likelihood”,

“Sample Size-Based Likelihood”],
]

fig, axes = plt.subplots(figsize=(18, 6), nrows=3, ncols=3)

for i_row, row_names in enumerate(order):
 for j_col, name in enumerate(row_names):
 file_ = meta_results[name]
 display = plotting.plot_stat_map(
 file_,
 annotate=False,
 axes=axes[i_row, j_col],
 cmap=”RdBu_r”,
 cut_coords=[5, -15, 10],
 draw_cross=False,
 figure=fig,
)
 axes[i_row, j_col].set_title(name)

 colorbar = display._cbar
 colorbar_ticks = colorbar.get_ticks()
 if colorbar_ticks[0] < 0:
 new_ticks = [colorbar_ticks[0], 0, colorbar_ticks[-1]]
 else:
 new_ticks = [colorbar_ticks[0], colorbar_ticks[-1]]
 colorbar.set_ticks(new_ticks, update_ticks=True)

glue(“figure_uncorr_ibma”, fig, display=False)

 : 2023, Volume 3 ‑ 15 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

If you ignore the prefix, which was specified in the
call to MetaResult.save_maps, the maps all have a com‑
mon naming convention. The maps from the original
meta‑analysis (before multiple comparisons correction)

Statistical maps saved by NiMARE MetaResults auto‑
matically follow a naming convention based loosely on
the Brain Imaging Data Standard (BIDS). Let’s take a look
at the files created by the FWECorrector.

MULTIPLE COMPARISONS CORRECTION

In NiMARE, multiple comparisons correction is sepa‑
rated from each CBMA and IBMA Estimator so that any
number of relevant correction methods can be applied
after the Estimator has been fit to the Dataset. Some
correction options, such as the montecarlo option for
FWE correction, are designed to work specifically with a
given Estimator (and are indeed implemented within the
Estimator class, and only called by the Corrector).

Correctors are divided into two subclasses:
FWECorrectors, which correct based on family‑wise error
rate, and FDRCorrectors, which correct based on FDR.

All Correctors are initialized with a number of param‑
eters, including the correction method that will be
used. After that, you can use the transform method on
a MetaResult object produced by a CBMA or IBMA
Estimator to apply the correction method. This will return
an updated MetaResult object, with both the statistical
maps from the original MetaResult, as well as new, cor‑
rected maps.

Here we will apply both FWE and FDR correction to
results from a MKDADensity meta‑analysis, performed
back in multilevel Kernel density analysis.

In the following example, we use 5000 iterations for
Monte Carlo FWE correction. Normally, one would use at
least 10,000 iterations, but we reduced this for the sake
of speed.

Fig. 6. An array of plots of the statistical maps produced by the image‑based meta‑analysis methods. The likelihood‑based meta‑analyses are run on atlases instead
of voxelwise.

from nimare import meta, correct

mkdad_meta = meta.cbma.mkda.MKDADensity.load(os.path.
join(data_path, “MKDADensity.pkl.gz”))

mc_corrector = correct.FWECorrector(method=”montecarlo”,
n_iters=5000, n_cores=4)
mc_results = mc_corrector.transform(mkdad_meta.results)
mc_results.save_maps(output_dir=out_dir,
prefix=”MKDADensity_FWE”)

fdr_corrector = correct.FDRCorrector(method=”indep”)
fdr_results = fdr_corrector.transform(mkdad_meta.results)

INFO:nimare.correct:Using correction method implemented
in Estimator: nimare.meta.cbma.mkda.MKDADensity.
correct_fwe_montecarlo.

100% 5000/5000 [10 29<00 00, 7.18it/s]

INFO:nimare.meta.cbma.base:Using null distribution for voxel-
level FWE correction.

from glob import glob

fwe_maps = sorted(glob(os.path.join(out_dir, “MKDADensity_
FWE*.nii.gz”)))
fwe_maps = [os.path.basename(fwe_map) for fwe_map in
fwe_maps]
print(“\n”.join(fwe_maps))

MKDADensity_FWE_logp_desc-mass_level-cluster_corr-FWE_
method-montecarlo.nii.gz
MKDADensity_FWE_logp_desc-size_level-cluster_corr-FWE_
method-montecarlo.nii.gz
MKDADensity_FWE_logp_level-voxel_corr-FWE_method-
montecarlo.nii.gz
MKDADensity_FWE_p.nii.gz
MKDADensity_FWE_stat.nii.gz
MKDADensity_FWE_z.nii.gz
MKDADensity_FWE_z_desc-mass_level-cluster_corr-FWE_method-
montecarlo.nii.gz
MKDADensity_FWE_z_desc-size_level-cluster_corr-FWE_method-
montecarlo.nii.gz
MKDADensity_FWE_z_level-voxel_corr-FWE_method-montecarlo.nii.gz

 : 2023, Volume 3 ‑ 16 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

later extended by Eickhoff et al.37. In this approach, two
groups of experiments (A and B) are compared using
a group assignment randomization procedure in which
voxel‑wise null distributions are generated by randomly
reassigning experiments between the two groups and
calculating ALE‑difference scores for each permutation.
Real ALE‑difference scores (i.e., the ALE values for one
group minus the ALE values for the other) are compared
against these null distributions to determine voxel‑wise
significance. In the original implementation of the algo‑
rithm, this procedure is performed separately for a group
A > B contrast and a group B > A contrast, where each
contrast is limited to voxels that were significant in the
first group’s original meta‑analysis.

In NiMARE, we use an adapted version of the subtrac‑
tion analysis method in ALESubtraction. The NiMARE
implementation analyzes all voxels, rather than only
those that show a significant effect of A alone or B alone
as in the original implementation.

Running a subtraction analysis with the standard num‑
ber of iterations (10,000) may require more than 4 GB of
RAM, which is NeuroLibre’s limit. We will instead use only
1000 iterations so that the analysis will run successfully
on NeuroLibre’s server. For publication‑quality subtrac‑
tion analyses, we recommend using the standard 10,000
iterations.

are simply named according to the values contained in
the map (e.g., z, stat, p).

Maps generated by the correction method, howev‑
er, use a series of key‑value pairs to indicate how they
were generated. The corr key indicates whether FWE
or FDR correction was applied. The method key reflects
the correction method employed, which was defined by
the method parameter used to create the Corrector. The
level key simply indicates if the map was corrected at the
voxel or cluster level. Finally, the desc key reflects any
necessary description that goes beyond what is already
covered by the other entities.

DERIVATIVE ANALYSES

Meta‑analytic databases and algorithms may be
employed for derivative analyses, including subtraction
analysis, meta‑analytic coactivation modeling (MACM),
meta‑analytic clustering, coactivation‑based parcellation
(CBP), meta‑analytic independent component analysis
(meta‑ICA), semantic model development, and meta‑an‑
alytic functional decoding. In this part, we describe the
derivative analyses implemented in NiMARE and include
examples of use cases.

META‑ANALYTIC SUBTRACTION ANALYSIS

Subtraction analysis refers to the voxel‑wise comparison of
two meta‑analytic samples. In image‑based meta‑analysis,
comparisons between groups of maps can generally be
accomplished within the standard meta‑regression frame‑
work (i.e., by adding a covariate that codes for group
membership). However, coordinate‑based subtraction
analysis requires special extensions for CBMA algorithms.

Subtraction analysis to compare the results of two
ALE meta‑analyses was originally implemented by17 and

Fig. 7. An array of plots of the corrected statistical maps produced by the differ‑
ent multiple comparisons correction methods.

from nimare import meta

kern = meta.kernel.ALEKernel()
sub_meta = meta.cbma.ale.ALESubtraction(kernel_
transformer=kern, n_iters=1000)
sub_results = sub_meta.fit(sleuth_dset1, sleuth_dset2)

Fig. 8. Unthresholded z‑statistic map for the subtraction analysis of the two
example Sleuth‑based Datasets.

Alternatively, MKDA Chi‑squared analysis is inherently a
subtraction analysis method, in that it compares foci from
two groups of studies. Generally, one of these groups is a
sample of interest, while the other is a meta‑analytic data‑
base (minus the studies in the sample). With this setup,
meta‑analysts can infer whether there is greater conver‑
gence of foci in a voxel as compared to the baseline across
the field (as estimated with the meta‑analytic database),
much like SCALE. However, if the database is replaced
with a second sample of interest, the analysis ends up
comparing convergence between the two groups.

 : 2023, Volume 3 ‑ 17 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

limit. Therefore, we will further reduce the dataset to its
first 500 studies, in order to run the meta‑analysis suc‑
cessfully on NeuroLibre’s server. For publication‑quality
analyses, we would recommend using the entire dataset.

META‑ANALYTIC COACTIVATION MODELING

Meta‑analytic coactivation modeling (MACM),55–57 also
known as meta‑analytic connectivity modeling, uses
meta‑analytic data to measure co‑occurrence of acti‑
vations between brain regions providing evidence of
functional connectivity of brain regions across tasks. In
coordinate‑based MACM, whole‑brain studies within
the database are selected based on whether or not they
report at least one peak in a region of interest speci‑
fied for the analysis. These studies are then subjected
to a meta‑analysis, often comparing the selected stud‑
ies to those remaining in the database. In this way, the
significance of each voxel in the analysis corresponds to
whether there is greater convergence of foci at the voxel
among studies, which also report foci in the region of
interest than those which do not.

MACM results have historically been accorded a sim‑
ilar interpretation to task‑related functional connectivity
(e.g.58,59), although this approach is quite removed from
functional connectivity analyses of task fMRI data (e.g.,
beta‑series correlations, psychophysiological interac‑
tions, or even seed‑to‑voxel functional connectivity anal‑
yses on task data). Nevertheless, MACM analyses do
show high correspondence with resting‑state functional
connectivity.60 MACM has been used to characterize the
task‑based functional coactivation of the cerebellum,61
lateral prefrontal cortex,62 fusiform gyrus,63 and several
other brain regions.

Within NiMARE, MACMs can be performed by select‑
ing studies in a Dataset based on the presence of activa‑
tion within a target mask or coordinate‑centered sphere.
While some algorithms, such as SCALE, may have been
designed with MACMs in mind, in practice MACMs may
be performed with any valid Estimator.

In this section, we will perform two MACMs – one
with a target mask and one with a coordinate‑centered
sphere. For the former, we use get_studies_by_mask().
For the latter, we use get_studies_by_coordinate().

Create Dataset only containing studies
with peaks within the amygdala mask
amygdala_mask = os.path.join(data_path, “amygdala_roi.nii.gz”)
amygdala_ids = neurosynth_dset.
get_studies_by_mask(amygdala_mask)
dset_amygdala = neurosynth_dset.slice(amygdala_ids)

Create Dataset only containing studies
with peaks within the sphere ROI
sphere_ids = neurosynth_dset.get_studies_by_coordinate([[24,
-2, -20]], r=6)
dset_sphere = neurosynth_dset.slice(sphere_ids)

print(dset_amygdala)
dset_amygdala = dset_amygdala.slice(dset_amygdala.ids[:500])
print(dset_amygdala)

Dataset(1369 experiments, space=’mni152_2mm’)
Dataset(500 experiments, space=’mni152_2mm’)

Fig. 9. Region of interest masks for (1) a target mask‑based MACM and (2) a
coordinate‑based MACM.

Once the Dataset has been reduced to studies with
coordinates within the mask or sphere requested, any of
the supported CBMA Estimators can be run.

from nimare import meta

meta_amyg = meta.cbma.ale.ALE(kernel__sample_size=20)
results_amyg = meta_amyg.fit(dset_amygdala)

meta_sphere = meta.cbma.ale.ALE(kernel__sample_size=20)
results_sphere = meta_sphere.fit(dset_sphere)

The amygdala dataset includes more than 1300 stud‑
ies. Running a meta‑analysis on such a large dataset may
require more than 4 GB of RAM, which is NeuroLibre’s

Fig. 10. Unthresholded z‑statistic maps for (1) the target mask‑based MACM and
(2) the coordinate‑based MACM.

 : 2023, Volume 3 ‑ 18 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

NiMARE has the function generate_counts() to extract
n‑grams from text. This method produces either term
counts or term frequency‑inverse document frequency
(tf‑idf) values for each of the studies in a Dataset.

AUTOMATED ANNOTATION

As mentioned in the discussion of BrainMap (BrainMap),
manually annotating studies in a meta‑analytic database
can be a time‑consuming and labor‑intensive process.
To facilitate more efficient (albeit lower‑quality) annota‑
tion, NiMARE supports a number of automated annota‑
tion approaches. These include N‑gram term extraction,
Cognitive Atlas term extraction and hierarchical expan‑
sion, LDA, and GCLDA.

NiMARE users may download abstracts from PubMed
as long as study identifiers in the Dataset correspond to
PubMed IDs (as in Neurosynth and NeuroQuery). Abstracts
are much more easily accessible than full article text, so
most annotation methods in NiMARE rely on them.

Below, we use the function download_abstracts() to
download abstracts for the Neurosynth Dataset. This
will attempt to extract metadata about each study in the
Dataset from PubMed, and then add the abstract avail‑
able on Pubmed to the Dataset’s texts attribute, under a
new column names “abstract”.

download_abstracts() only works when there is inter‑
net access. Since this book will often be built on nodes
without internet access, we will share the code used
to download abstracts but will actually load and use a
pre‑generated version of the Dataset.

First, load a Dataset without abstracts
neurosynth_dset_first_500 = dataset.Dataset.load(
 os.path.join(data_path, “neurosynth_dataset_first500.pkl.gz”)
)
Now, download the abstracts using your
email address
neurosynth_dset_first_500 = extract.download_abstracts(
 neurosynth_dset_first_500,
 email=”example@email.com”,
)

Finally, save the Dataset with abstracts
to a pkl.gz file
neurosynth_dset_first_500.save(
 os.path.join(data_path, “neurosynth_dataset_first500_with_

abstracts.pkl.gz”),
)

neurosynth_dset_first_500 = dataset.Dataset.load(
 os.path.join(data_path, “neurosynth_dataset_first500_

with_abstracts.pkl.gz”),
)

from nimare import annotate

counts_df = annotate.text.generate_counts(
 neurosynth_dset_first_500.texts,
 text_column=”abstract”,
 tfidf=False,
 min_df=10,
 max_df=0.95,
)

This term count DataFrame will be used later, to train
a GCLDA model.

Cognitive Atlas term extraction and hierarchical
expansion

Cognitive Atlas term extraction leverages the structured
nature of the Cognitive Atlas in order to extract counts
for individual terms and their synonyms in the ontology,
as well as to apply hierarchical expansion to these counts
based on the relationships specified between terms. This
method produces both basic term counts and expanded
term counts based on the weights applied to different
relationship types present in the ontology.

First, we must use download_cognitive_atlas() to down‑
load the current version of the Cognitive Atlas ontology.
This includes both information about individual terms in the
ontology and asserted relationships between those terms.

NiMARE will automatically attempt to extrapolate like‑
ly alternate forms of each term in the ontology, in order
to make extraction easier. For an example, see Fig. 11.

Fig. 11. An example of alternate forms characterized by the Cognitive Atlas and
extrapolated by NiMARE. Certain alternate forms (i.e., synonyms) are specified
within the Cognitive Atlas, while others are inferred automatically by NiMARE
according to certain rules (e.g., removing parentheses).

cogatlas = extract.download_cognitive_atlas(data_dir=data_
path, overwrite=False)
id_df = pd.read_csv(cogatlas[“ids”])
rel_df = pd.read_csv(cogatlas[“relationships”])

cogat_counts_df, rep_text_df = annotate.cogat.extract_cogat(
neurosynth_dset_first_500.texts, id_df, text_column=”abstract”
)

N‑gram term extraction

N‑gram term extraction refers to the vectorization of
text into contiguous sets of words that can be counted
as individual tokens. The upper limit on the number of
words in these tokens is set by the user.

 : 2023, Volume 3 ‑ 19 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

Define a weighting scheme.
In this scheme, observed terms will also
count toward any hypernyms (isKindOf),
holonyms (isPartOf), and parent
categories (inCategory) as well.
weights = {“isKindOf”: 1, “isPartOf”: 1, “inCategory”: 1}
expanded_df = annotate.cogat.expand_counts(cogat_counts_df,
rel_df, weights)

Sort by total count and reduce for better
visualization
series = expanded_df.sum(axis=0)
series = series.sort_values(ascending=False)
series = series[series > 0]
columns = series.index.tolist()

INFO:nimare.extract.utils:Dataset found in ./../data/nimare-paper/
data/cognitive_atlas

Fig. 12. The effect of hierarchical expansion on Cognitive Atlas term counts from abstracts in Neurosynth’s first 500 papers. There are too many terms and studies to
show individual labels.

Raw counts
fig, axes = plt.subplots(figsize=(16, 16), nrows=2, sharex=True)
pos = axes[0].imshow(
 cogat_counts_df[columns].values,
 aspect=”auto”,
 vmin=0,

 vmax=10,
)
fig.colorbar(pos, ax=axes[0])
axes[0].set_title(“Counts Before Expansion”, fontsize=20)
axes[0].yaxis.set_visible(False)
axes[0].xaxis.set_visible(False)
axes[0].set_ylabel(“Study”, fontsize=16)
axes[0].set_xlabel(“Cognitive Atlas Term”, fontsize=16)

Expanded counts
pos = axes[1].imshow(
 expanded_df[columns].values,
 aspect=”auto”,
 vmin=0,
 vmax=10,
)
fig.colorbar(pos, ax=axes[1])
axes[1].set_title(“Counts After Expansion”, fontsize=20)
axes[1].yaxis.set_visible(False)
axes[1].xaxis.set_visible(False)
axes[1].set_ylabel(“Study”, fontsize=16)
axes[1].set_xlabel(“Cognitive Atlas Term”, fontsize=16)

fig.tight_layout()
glue(“figure_cogat_expansion”, fig, display=False)

 : 2023, Volume 3 ‑ 20 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

The most important products of training the LDAModel
object is its distributions_ attribute. LDAModel.distribu‑
tions_ is a dictionary containing arrays and DataFrames
created from training the model. We are particularly
interested in the p_topic_g_word_df distribution, which
is a pandas DataFrame in which each row corresponds to
a topic and each column corresponds to a term (n‑gram)
extracted from the Dataset’s texts. The cells contain
weights indicating the probability distribution across
terms for each topic.

Additionally, the LDAModel updates the Dataset’s
annotations attribute, by adding columns correspond‑
ing to each of the topics in the model. Each study in the
Dataset thus receives a weight for each topic, which can
be used to select studies for topic‑based meta‑analyses
or functional decoding.

Let’s take a look at the results of the model training.
First, we will reorganize the DataFrame a bit to show the
top 10 terms for each of the first 10 topics.

Latent Dirichlet allocation

LDA64 was originally combined with meta‑analytic neuroim‑
aging data in.23 LDA is a generative topic model which, for
a text corpus, builds probability distributions across doc‑
uments and words. In LDA, each document is considered
a mixture of topics. This works under the assumption that
each document was constructed by first randomly select‑
ing a topic based on the document’s probability distribu‑
tion across topics, and then randomly selecting a word
from that topic based on the topic’s probability distribution
across words. While this is not a useful generative model
for producing documents, LDA is able to discern cohe‑
sive topics of related words. Poldrack et al.23 were able to
apply LDA to full texts from neuroimaging articles in order
to develop cognitive neuroscience‑related topics and to
run topic‑wise meta‑ analyses. This method produces two
sets of probability distributions: (1) the probability of a word
given topic and (2) the probability of a topic given article.

NiMARE’s LDAModel is a light wrapper around
scikit‑learn’s LDA implementation.

Here, we train an LDA model (LDAModel) on the first
500 studies of the Neurosynth Dataset, with 50 topics in
the model.

from nimare import annotate

lda_model = annotate.lda.LDAModel(n_topics=50, max_
iter=1000, text_column=”abstract”)

Fit the model
lda_model.fit(neurosynth_dset_first_500)

Fig. 13. The top 10 terms for each of the first 10 topics in the trained LDA model.

lda_df = lda_model.distributions_[“p_topic_g_word_df”].T
column_names = {c: f”Topic {c}” for c in lda_df.columns}
lda_df = lda_df.rename(columns=column_names)
temp_df = lda_df.copy()
lda_df = pd.DataFrame(columns=lda_df.columns, index=np.
arange(10)) lda_df.index.name = “Term”
for col in lda_df.columns:
 top_ten_terms = temp_df.sort_values(by=col,

ascending=False).index.tolist()[:10]
 lda_df.loc[:, col] = top_ten_terms
lda_df = lda_df[lda_df.columns[:10]]
glue(“table_lda”, lda_df)

 : 2023, Volume 3 ‑ 21 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

The GCLDAModel retains the relevant probability dis‑
tributions in the form of numpy arrays, rather than pan‑
das DataFrames. However, for the topic‑term weights
(p_word_g_topic_), the data are more interpretable as a
DataFrame, so we will create one. We will also reorganize
the raw DataFrame to show the top 10 terms for each of
the first 10 topics.

Generalized correspondence latent Dirichlet
allocation

GCLDA is a recently‑developed algorithm that trains
topics on both article abstracts and coordinates.30
GCLDA assumes that topics within the fMRI litera‑
ture can also be localized to brain regions, in this
case modeled as three‑dimensional Gaussian dis‑
tributions. These spatial distributions can also be
restricted to pairs of Gaussians that are symmetric
across brain hemispheres. This method produces
two sets of probability distributions: the probabili‑
ty of a word given topic (GCLDAModel.p_word_g_
topic_), and the probability of a voxel given topic
(GCLDAModel.p_voxel_g_topic_).

Here we train a GCLDA model (GCLDAModel) on the
first 500 studies of the Neurosynth Dataset. The model
will include 50 topics, in which the spatial distribution for
each topic will be defined as having two Gaussian distri‑
butions that are symmetrically localized across the longi‑
tudinal fissure.

GCLDAModel generally takes a very long time to
train.

Below, we show how one would train a GCLDA model.
However, we will load a pretrained model instead of
actually training the model.

gclda_model = annotate.gclda.GCLDAModel(
 counts_df,
 neurosynth_dset_first_500.coordinates,
 n_regions=2,
 n_topics=50,
 symmetric=True,
 mask=neurosynth_dset_first_500.masker.mask_img,
)
gclda_model.fit(n_iters=2500, loglikely_freq=500)

gclda_model = annotate.gclda.GCLDAModel.load(os.path.
join(data_path, “gclda_model.pkl.gz”))

Fig. 14. The top 10 terms for each of the first 10 topics in the trained GCLDA model.

gclda_arr = gclda_model.p_word_g_topic_
gclda_vocab = gclda_model.vocabulary
topic_names = [f”Topic {str(i).zfill(3)}” for i in range(gclda_arr.
shape[1])] gclda_df = pd.DataFrame(index=gclda_vocab,
columns=topic_names, data=gclda_arr)
temp_df = gclda_df.copy()

 : 2023, Volume 3 ‑ 22 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

META‑ANALYTIC FUNCTIONAL DECODING

Functional decoding performed with meta‑analytic data,
refers to methods which attempt to predict mental states
from neuroimaging data using a large‑scale meta‑ana‑
lytic database.65 Such analyses may also be referred to
as “informal reverse inference”,66 “functional charac‑
terization analysis”,67–69 “open‑ended decoding”,30 or
simply “functional decoding”.70–72 While the terminolo‑
gy is far from standardized, we will refer to this meth‑
od as meta‑analytic functional decoding in order to

We also want to see how the topic‑voxel weights ren‑
der on the brain, so we will simply unmask the p_vox‑
el_g_topic_ array with the Dataset’s masker.

gclda_df = pd.DataFrame(columns=gclda_df.columns, index=np.
arange(10))
gclda_df.index.name = “Term”
for col in temp_df.columns:
 top_ten_terms = temp_df.sort_values(by=col,

ascending=False).index.tolist()[:10]
 gclda_df.loc[:, col] = top_ten_terms

gclda_df = gclda_df[gclda_df.columns[:10]]
glue(“table_gclda”, gclda_df)

Fig. 15. Topic weight maps for the first 10 topics in the GCLDA model.

fig, axes = plt.subplots(nrows=5, ncols=2, figsize=(12, 10))

topic_img_4d =
neurosynth_dset_first_500.masker.
inverse_transform(gclda_model.p_voxel_g_topic_.T)
Plot first ten topics
topic_counter = 0
for i_row in range(5):
 for j_col in range(2):
 topic_img = image.index_img(topic_img_4d,

index=topic_counter)
 display = plotting.plot_stat_map(
 topic_img,
 annotate=False,

 cmap=”Reds”,
 draw_cross=False,
 figure=fig,
 axes=axes[i_row, j_col],
)
 axes[i_row, j_col].set_title(f”Topic {str(topic_counter).zfill(3)}”)
 topic_counter += 1

 colorbar = display._cbar
 colorbar_ticks = colorbar.get_ticks()
 if colorbar_ticks[0] < 0:
 new_ticks = [colorbar_ticks[0], 0, colorbar_ticks[-1]]
 else:
 new_ticks = [colorbar_ticks[0], colorbar_ticks[-1]]
 colorbar.set_ticks(new_ticks, update_ticks=True)
glue(“figure_gclda_topics”, fig, display=False)

 : 2023, Volume 3 ‑ 23 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

This approach can also be applied to an image‑based
database like NeuroVault, either by correlating input
data with meta‑analyzed statistical maps, or by deriving
distributions of correlation coefficients by grouping sta‑
tistical maps in the database according to label. Using
these distributions, it is possible to statistically compare
labels in order to assess label significance. NiMARE
includes methods for both correlation‑based decoding
and correlation distribution‑based decoding, although
the correlation‑based decoding is better established
and should be preferred over the correlation distribu‑
tion‑based decoding. As such, we will only show the
CorrelationDecoder here.

CorrelationDecoder currently runs very slowly. We
strongly recommend running it on a subset of labels
within the Dataset. It is also quite memory‑intensive.

In this example, we have only run the decoder using
features appearing in >10% and <90% of the first 500
studies in the Dataset. Additionally, we have pregenerat‑
ed the results and will simply show the code that would
generate those results, as the decoder requires too much
memory for NeuroLibre’s servers.

distinguish it from alternative methods like multivariate
decoding and model‑based decoding.66 Meta‑analytic
functional decoding is often used in conjunction with
MACM, meta‑analytic clustering, meta‑ analytic parcel‑
lation, and meta‑ICA, in order to characterize resulting
brain regions, clusters, or components. Meta‑analytic
functional decoding models have also been extended
for the purpose of meta‑analytic functional encoding,
wherein text is used to generate statistical images.30,73,74

Four common approaches are correlation‑based
decoding, dot‑product decoding, weight‑sum decod‑
ing, and Chi‑square decoding. We will first discuss
continuous decoding methods (i.e., correlation and
dot‑product), followed by discrete decoding methods
(weight‑sum and Chi‑square).

Decoding continuous inputs

When decoding unthresholded statistical maps (such
as Fig. 16), the most common approaches are to simply
correlate the input map with maps from the database,
or to compute the dot product between the two maps.
In Neurosynth, meta‑analyses are performed for each
label (i.e., term or topic) in the database and then the
input image is correlated with the resulting unthreshold‑
ed statistical map from each meta‑analysis. Performing
statistical inference on the resulting correlations is not
straightforward, however, as voxels display strong spatial
correlations, and the true degrees of freedom are con‑
sequently unknown (and likely far smaller than the nom‑
inal number of voxels). In order to interpret the results
of this decoding approach, users typically select some
arbitrary number of top correlation coefficients ahead of
time, and use the associated labels to describe the input
map. However, such results should be interpreted with
great caution.

Fig. 16. The unthresholded statistical map that will be used for continuous decoding.

from nimare import decode, meta

corr_decoder = decode.continuous.CorrelationDecoder(
 frequency_threshold=0.001,
 meta_estimator=meta.MKDADensity(kernel_

transformer=kern, memory_limit=None),
 target_image=”z”,
 features=target_features,
 memory_limit=”500mb”,
)
corr_decoder.fit(neurosynth_dset_first500)
corr_df = corr_decoder.transform(continuous_map)

 : 2023, Volume 3 ‑ 24 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

Because the ROIAssociationDecoder generates mod‑
eled activation maps for all of the experiments in the
Dataset, we will only fit this decoder to the first 500
studies.

A more theoretically driven approach to ROI decoding
is to use Chi‑square‑based methods. The two methods
that use Chi‑squared tests are the BrainMap decoding
method and an adaptation of Neurosynth’s meta‑analy‑
sis method.

In both Chi‑square‑based methods, studies are first
selected from a coordinate‑based database according
to some criterion. For example, if decoding a region of
interest, users might select studies reporting at least

Decoding discrete inputs

Decoding regions of interest (ROIs) requires a different
approach than decoding unthresholded statistical maps.
One simple approach, used by GCLDA and implement‑
ed in the function gclda_decode_roi(), simply sums the
P(topic|voxel) distribution across all voxels in the ROI in
order to produce a value associated with each topic for
the ROI. These weight sum values are arbitrarily scaled
and cannot be compared across ROIs. We will not show
this method because of its simplicity and the fact that it
can only currently be applied to a GCLDA model.

Before we dig into the other decoding methods are
available, let’s take a look at the ROI we want to decode.

One method which relies on correlations, much like
the continuous correlation decoder, is the ROI associa‑
tion decoding method (ROIAssociationDecoder), orig‑
inally implemented in the Neurosynth Python library. In
this method, each study with coordinates in the data‑
set is convolved with a Kernel transformer to produce a
modeled activation map. The resulting modeled activa‑
tion maps are then masked with a region of interest (i.e.,
the target of the decoding), and the values are aver‑
aged within the ROI. These averaged modeled activa‑
tion values are then correlated with the term weights for
all labels in the dataset. This decoding method produc‑
es a single correlation coefficient for each of the data‑
set’s labels.

import pandas as pd

corr_df = pd.read_table(
 os.path.join(data_path, “correlation_decoder_results.tsv”),
 index_col=”feature”,
)

Fig. 17. The top 10 terms, sorted by absolute correlation coefficient, from the
correlation decoding method.

Fig. 18. The amygdala region of interest mask that will be used for discrete
decoding.

Fig. 19. The top 10 terms, sorted by absolute correlation coefficient, from the
ROI association decoding method.

from nimare import decode

assoc_decoder = decode.discrete.ROIAssociationDecoder(
 amygdala_roi, kernel_transformer=kern, u=0.05,
 correction=”fdr_bh”,
)
assoc_decoder.fit(neurosynth_dset_first500)
assoc_df = assoc_decoder.transform()

INFO:nimare.base:Retaining 2941/(3228 features.

 : 2023, Volume 3 ‑ 25 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

This decoding method produces four outputs for each
label. First, the distribution of studies in the sample with
the label are compared with the distributions of other
labels within the sample. This consistency analysis pro‑
duces both a measure of statistical significance (i.e., a P
value) and a measure of effect size (i.e., the likelihood of
being selected given the presence of the label). Next,
the studies in the sample are compared with the studies
in the rest of the database. This specificity analysis pro‑
duces a P value and an effect size measure of the posteri‑
or probability of having the label given selection into the
sample. A detailed algorithm description is presented in
Appendix I: BrainMap Discrete Decoding.

Neurosynth method

The implementation of the MKDA Chi‑squared
meta‑analysis method used by Neurosynth is quite sim‑
ilar to BrainMap’s method for decoding, if applied to
annotations instead of modeled activation values. This
method, implemented in NeurosynthDecoder, com‑
pares the distributions of studies with each label within
the sample against those in a larger database, but, unlike
the BrainMap method, does not take foci into account.
For this reason, the Neurosynth method would likely
be more appropriate for selection criteria not based on
ROIs (e.g., for characterizing meta‑analytic groupings

one coordinate within 5 mm of the ROI. Metadata
(such as ontological labels) for this subset of studies are
then compared with those of the remaining, unselect‑
ed portion of the database in a confusion matrix. For
each label in the ontology, studies are divided into four
groups: selected and label‑positive (SS+L+), selected
and label‑negative (SS+L −), unselected and label‑posi‑
tive (SS‑L+), and unselected and label‑negative (SS‑L−).
Each method then compares these groups in order to
evaluate both consistency and specificity of the relation‑
ship between the selection criteria and each label, which
are evaluated in terms of both statistical significance and
effect size.

BrainMap method

The BrainMap discrete decoding method, implement‑
ed in BrainMapDecoder, compares the distributions of
studies with each label within the sample against those
in a larger database while accounting for the number
of foci from each study. Broadly speaking, this method
assumes that the selection criterion is associated with
one peak per study, which means that it is likely only
appropriate for selection criteria based around foci, such
as ROIs. One common analysis, meta‑analytic clustering,
involves dividing studies within a database into meta‑an‑
alytic groupings based on the spatial similarity of their
modeled activation maps (i.e., study‑wise pseudostatis‑
tical maps produced by convolving coordinates with a
Kernel). The resulting sets of studies are often function‑
ally decoded in order to build a functional profile asso‑
ciated with each meta‑analytic grouping. While these
groupings are defined as subsets of the database, they
are not selected based on the location of an individu‑
al peak, and so weighting based on the number of foci
would be inappropriate.

brainmap_decoder = decode.discrete.BrainMapDecoder(
 frequency_threshold=0.001,
 u=0.05,
 correction=”fdr_bh”,
)
brainmap_decoder.fit(neurosynth_dset)
brainmap_df = brainmap_decoder.transform(amygdala_ids)

Fig. 20. The top 10 terms, sorted by reverse‑inference posterior probability, from the BrainMap Chi‑squared decoding method.

 : 2023, Volume 3 ‑ 26 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

In both methods, the database acts as an estimate of
the underlying distribution of labels in the real world, such
that the probability of having a peak in an ROI given the
presence of the label might be interpreted as the prob‑
ability of a brain activating a specific brain region given
that the individual is experiencing a given mental state.
This is a very poor interpretation, given that any database
of neuroimaging results will be skewed more toward
the interests of the field than the distribution of mental
states or processes experienced by humans, which is why
decoding must be interpreted with extreme caution. It is
important not to place too much emphasis on the results
of functional decoding analyses, although they are very
useful in that they can provide a quantitative estimate
behind the kinds of interpretations generally included
in discussion sections that are normally only backed by
informal literature searches or prior knowledge.

The meta‑analytic functional decoding methods
in NiMARE provide a very rudimentary approach for
open‑ended decoding (i.e., decoding across a very large
range of mental states) that can be used with resources
like NeuroVault. However, standard classification methods
have also been applied to datasets from NeuroVault (e.g.75),
although these methods do not fall under NiMARE’s scope.

FUTURE DIRECTIONS

NiMARE’s mission statement encompasses a range of
tools that have not yet been implemented in the pack‑
age. In the future, we plan to incorporate a number of

from a meta‑analytic clustering analysis). However, the
Neurosynth method requires user‑provided information
that BrainMap does not. Namely, in order to estimate
probabilities for the consistency and specificity analyses
with Bayes’ Theorem, the Neurosynth method requires a
prior probability of a given label. Typically, a value of 0.5
is used (i.e., the estimated probability that an individual is
undergoing a given mental process described by a label,
barring any evidence from neuroimaging data, is pre‑
dicted to be 50%). This is, admittedly, a poor prediction,
which means that probabilities estimated based on this
prior are not likely to be accurate, though they may still
serve as useful estimates of effect size for the analysis.

Like the BrainMap method, this method produces four
outputs for each label. For the consistency analysis, this
method produces both a P value and a conditional prob‑
ability of selection given the presence of the label and
the prior probability of having the label. For the specific‑
ity analysis, the Neurosynth method produces both a P
value and a posterior probability of presence of the label
given selection and the prior probability of having the
label. A detailed algorithm description is presented in
Appendix II: Neurosynth Discrete Decoding.

Fig. 21. The top 10 terms, sorted by reverse‑inference posterior probability, from the Neurosynth Chi‑squared decoding method.

neurosynth_decoder = decode.discrete.NeurosynthDecoder(
 frequency_threshold=0.001,
 u=0.05,
 correction=”fdr_bh”,
)
neurosynth_decoder.fit(neurosynth_dset)
neurosynth_df = neurosynth_decoder.transform(amygdala_ids)

 : 2023, Volume 3 ‑ 27 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

as the products of stochastic models sampling some
underlying distribution. Some of these methods include
the Bayesian hierarchical independent cluster process
model (BHICP),78 the Bayesian spatially adaptive bina‑
ry regression model (SBR),79 the hierarchical Poisson/
Gamma random field model (HPGRF/BHPGM),80 the spa‑
tial Bayesian latent factor regression model (SBLFRM),81
and the random effects log Gaussian Cox process model
(RFX‑LGCP).82

Although these methods are much more computation‑
ally intensive than Kernel‑based algorithms, they provide
information that Kernel‑based methods cannot, such as
spatial confidence intervals, effect size estimate confi‑
dence intervals, and the facilitation of reverse inference.
A more thorough description of the relative strengths
of model‑based algorithms is presented in,34 but these
benefits, at the cost of computational efficiency, have led
the authors to recommend Kernel‑based methods for
exploratory analysis and model‑based methods for con‑
firmatory analysis.

NiMARE does not currently implement any mod‑
el‑based CBMA algorithms, although there are plans to
include at least one in the future.

Additional automated annotation methods

Several papers have used article text to automatically
annotate meta‑analytic databases with a range of meth‑
ods. Alhazmi et al.83 used a combination of correspon‑
dence analysis and clustering to identify subdomains in
the cognitive neuroscience literature from Neurosynth
text. Monti et al.31 generated word and document
embeddings in vector space from Neurosynth abstracts
using deep Boltzmann machines, which allowed them to
cluster words based on semantic similarity or to describe
Neurosynth articles in terms of these word clusters.
Nunes74 used article abstracts from Neurosynth to rep‑
resent documents as dense vectors as well. These docu‑
ment vectors were then used in conjunction with corre‑
sponding coordinates to cluster words into categories,
essentially annotating Neurosynth articles according
to a new “ontology” based on both abstract text and
coordinates.

Meta‑analytic databases may also be used in conjunc‑
tion with existing ontologies in order to redefine men‑
tal states or to refine the ontology. For example, Yeo
et al.84 used the Author‑Topic model to identify connec‑
tions between paradigm classes (i.e., tasks) and behav‑
ioral domains (i.e., mental states) from the BrainMap
Taxonomy using the BrainMap database. Other exam‑
ples include using meta‑analytic clustering, combined
with functional decoding, to identify groups of terms/
labels that co‑occur in neuroimaging data, in order to
determine if the divisions currently employed in existing
ontologies accurately reflect how mental states are sepa‑
rated in the mind (e.g.85–87).

additional methods. Here, we briefly describe several of
these tools.

Integration with external databases

A resource that may ultimately be integrated with
Neurosynth is Brainspell. Brainspell is a port of the
Neurosynth database in which users may manually anno‑
tate the automatically extracted study information. The
goal of Brainspell is to crowdsource annotation through
both expert and nonexpert annotators, which would
address the primary weaknesses of BrainMap (i.e., slow
growth) and Neurosynth (i.e., noise in data extraction and
annotation). Annotations in Brainspell may use labels from
the Cognitive Paradigm Ontology (CogPO),14 an ontol‑
ogy adapted from the BrainMap Taxonomy, or from the
Cognitive Atlas,76 a collaboratively generated ontolo‑
gy built by contributions from experts across the field of
cognitive science. Users may also correct the coordinates
extracted by Neurosynth, which may suffer from extraction
errors, and may add important metadata like the number
of subjects associated with each comparison in each study.

Brainspell has suffered from low growth, which is
why its annotations have not been integrated back into
Neurosynth, but a new frontend tool for Brainspell,
geared toward meta‑analysts, has been developed
called metaCurious. MetaCurious facilitates neuroimag‑
ing meta‑analyses by allowing users to iteratively per‑
form literature searches and to annotate rejected articles
with reasons for exclusion. In addition to these features,
metaCurious users can annotate studies with the same
labels and metadata as Brainspell, but with the features
geared toward meta‑analysts site usage is expected to
exceed that of Brainspell proper.

While NiMARE does not natively include tools for inter‑
acting with Brainspell or metaCurious, there are plans to
support NiMARE‑format exports in both services.

Seed‑based D‑Mapping

Seed‑based d‑mapping (SDM),77 previously known as
signed differential mapping, is a relatively recently devel‑
oped approach designed to incorporate both peak‑spe‑
cific effect size estimates and unthresholded images, when
available. In SDM, foci are convolved with an anisotropic
Kernel which, unlike the Gaussian and spherical kernels
employed in ALE and MKDA, respectively, accounts for tis‑
sue type to provide more empirically realistic spatial mod‑
els of the clusters from the original studies. The SDM algo‑
rithm is not yet supported in NiMARE, given the difficulty
in implementing an algorithm without access to code.

Model‑based CBMA

Model‑based algorithms, a recent alternative to
Kernel‑based approaches, model foci from studies

https://github.com/OpenNeuroLab/brainspell-neo
http://www.cogpo.org/
https://www.cognitiveatlas.org/
https://metacurious.org/
https://www.sdmproject.com/

 : 2023, Volume 3 ‑ 28 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

Excellence Fund, awarded to McGill University for the
Healthy Brains for Healthy Lives initiative and the Brain
Canada Foundation with support from Health Canada.

Code and data availability

All code used for this article is available at https://github.
com/NBCLab/nimare‑paper.

All data used for this article is available at https://
drive.google.com/uc?id=1e5KqMjYbQZYBxc6z760
VhdruOoywqkbw.

REFERENCES

1. Salo T, Yarkoni T, Nichols TE, et al. Neurostuff/nimare: 0.0.12rc1. February
2022. https://doi.org/10.5281/zenodo.6091632.

2. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit‑learn: machine learning
in Python. J Mach Learn Res. 2011;12:2825–30.

3. Buitinck L, Louppe G, Blondel M, et al. API design for machine learning
software: experiences from the scikit‑learn project. In ECML PKDD work‑
shop: languages for data mining and machine learning. 2013. p. 108–22.

4. Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: fundamental algo‑
rithms for scientific computing in Python. Nat Methods. 2020;17(3):261–72.

5. van der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for
efficient numerical computation. 2011.

6. Harris CR, Millman KJ, van der Walt SJ, et al. Array programming with
NumPy. Nature. 2020;585(7825):357–62.

7. McKinney W. Data structures for statistical computing in python. 2010.
8. Brett M, Markiewicz CJ, Hanke M, et al. Nipy/nibabel: 3.1.1. June 2020.

https://doi.org/10.5281/zenodo.3924343.
9. Abraham A, Pedregosa F, Eickenberg M, et al. Machine learning for neuro‑

imaging with scikit‑learn. Front Neuroinform. 2014;8:14.
10. Seabold S, Perktold J. Statsmodels: econometric and statistical modeling

with python. 2010.
11. da Costa‑Luis C, Larroque SK, Altendorf K, et al. tqdm: A fast, extensible

progress bar for Python and CLI. September 2020. https://doi.org/10.5281/
zenodo.4026750.

12. Poldrack RA, Yarkoni T. From brain maps to cognitive ontologies: informat‑
ics and the search for mental structure. Annu Rev Psychol. 2016;67:587–612.

13. Poldrack A. Mapping mental function to brain structure: how can cognitive
neuroimaging succeed? Perspect Psychol Sci. 2010;5(6):753–61.

14. Turner JA, Laird AR. The cognitive paradigm ontology: design and applica‑
tion. Neuroinformatics. 2012;10(1):57–66.

15. Fox PT, Laird AR, Fox SP, et al. BrainMap taxonomy of experimental design:
description and evaluation. Hum Brain Mapp. 2005;25(1):185–98.

16. Fox PT, Lancaster JL. Opinion: mapping context and content: the BrainMap
model. Nat Rev Neurosci. 2002;3(4):319–21.

17. Laird AR, Lancaster JL, Fox PT. BrainMap: the social evolution of a human
brain mapping database. Neuroinformatics. 2005;3(1):65–78.

18. Yanes JA, Riedel MC, Ray KL, et al. Neuroimaging meta‑analysis of canna‑
bis use studies reveals convergent functional alterations in brain regions
supporting cognitive control and reward processing. J Psychopharmacol.
2018;32(3):283–95. https://doi.org/10.1177/0269881117744995.

19. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large‑scale
automated synthesis of human functional neuroimaging data. Nat
Methods. 2011;8(8):665–70.

20. Chang LJ, Yarkoni T, Khaw MW, Sanfey AG. Decoding the role of the insula
in human cognition: functional parcellation and large‑scale reverse infer‑
ence. Cereb Cortex. 2013;23(3):739–49.

21. de la Vega A, Chang LJ, Banich MT, Wager TD, Yarkoni T. Large‑scale
meta‑analysis of human medial frontal cortex reveals tripartite functional
organization. J Neurosci. 2016;36(24):6553–62.

22. de la Vega A, Yarkoni T, Wager TD, Banich MT. Large‑scale meta‑analysis
suggests low regional modularity in lateral frontal cortex. Cereb Cortex.
2018;28(10):3414–28.

23. Poldrack RA, Mumford JA, Schonberg T, Kalar D, Barman B, Yarkoni T.
Discovering relations between mind, brain, and mental disorders using
topic mapping. PLoS Comput Biol. 2012;8(10):e1002707.

Surface‑based meta‑analysis

Currently, NiMARE only supports volumetric meta‑analy‑
sis. However, we eventually plan to support surface‑based
meta‑analyses, which may require new coordinate‑based
meta‑analysis algorithms, as the current methods do not
generalize to surfaces.

SUMMARY

The advent of open, large‑scale databases of neuroimag‑
ing results, whether full, unthresholded statistical maps,
or simple coordinates, has allowed for the development
of a wide variety of methods for performing fMRI meta‑
analyses and related analyses. These methods are often
(but not always) released as tools for the community to
use, written in a range of languages and with highly vari‑
able interfaces. As a consequence, it is difficult for meta‑
analysts to keep abreast of the current literature and to
employ whatever method is most appropriate to address
a given question. NiMARE provides a centralized reposi‑
tory for these tools, which will make it easier for research‑
ers to keep track of new methods and also provides said
tools with extensive documentation and a standardized
programmatic interface, which will allow researchers to
use whatever tool is most appropriate for their research,
without unnecessarily steep learning curves.

Given that NiMARE is open source and collaboratively
developed on GitHub, methodologists may contribute
their own meta‑analytic algorithms directly, or interested
third parties may implement these algorithms using papers
or external tools as a basis for understanding the methods.

Acknowledgments

We would like to thank Yifan Yu and Jérôme Dockès, who
provided feedback on the article.

We would also like to thank the NeuroLibre team,
including Loic Tetrel, Agah Karakuzu, Elizabeth DuPre,
Samir Das, Nikola Stikov, and Pierre Bellec, for their help
and support in reviewing and publishing the preprint
form of this article.

We would also like to thank Fa Meilong for peer
reviewing this article for Aperture.

Funding

Primary funding for this project was provided by
NSF 1631325 and NIH R01‑DA041353. Contributions
from co‑authors were provided with support from
NIH R01MH096906 (Neurosynth), NIH P41‑EB019936
(ReproNim), NIH R01‑MH083320 (CANDIShare), NIH RF1‑
MH120021 (NIDM), as well as the Canada First Research

https://github.com/NBCLab/nimare-paper
https://github.com/NBCLab/nimare-paper
https://drive.google.com/uc?id=1e5KqMjYbQZYBxc6z760VhdruOoywqkbw
https://drive.google.com/uc?id=1e5KqMjYbQZYBxc6z760VhdruOoywqkbw
https://drive.google.com/uc?id=1e5KqMjYbQZYBxc6z760VhdruOoywqkbw
https://doi.org/10.5281/zenodo.6091632
https://doi.org/10.5281/zenodo.3924343
https://doi.org/10.5281/zenodo.4026750
https://doi.org/10.5281/zenodo.4026750
https://doi.org/10.1177/0269881117744995

 : 2023, Volume 3 ‑ 29 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

55. Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT. Investigating
the functional heterogeneity of the default mode network using coordi‑
nate‑based meta‑analytic modeling. J Neurosci. 2009;29(46):14496–505.

56. Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT. Metaanalytic con‑
nectivity modeling: delineating the functional connectivity of the human
amygdala. Hum Brain Mapp. 2010;31(2):173–84.

57. Eickhoff SB, Jbabdi S, Caspers S, et al. Anatomical and functional con‑
nectivity of cytoarchitectonic areas within the human parietal operculum. J
Neurosci. 2010;30(18):6409–21.

58. Hok P, Opavský R, Hluštík P, Tüdös Z. 29. Meta‑analytic and resting‑state
functional connectivity of the claustrum. 2015.

59. Kellermann TS, Caspers S, Fox PT, et al Task‑ and resting‑state functional
connectivity of brain regions related to affection and susceptible to con‑
current cognitive demand. Neuroimage. 2013;72:69–82.

60. Reid AT, Hoffstaedter F, Gong G, et al. A seed‑based cross‑modal compari‑
son of brain connectivity measures. Brain Struct Funct. 2017;222(3):1131–51.

61. Riedel MC, Ray KL, Dick AS, et al. Meta‑analytic connectivity and behavior‑
al parcellation of the human cerebellum. Neuroimage. 2015;117:327–42.

62. Reid AT, Bzdok D, Langner R, et al. Multimodal connectivity mapping of
the human left anterior and posterior lateral prefrontal cortex. Brain Struct
Funct. 2016;221(5):2589–605.

63. Caspers J, Zilles K, Amunts K, Laird AR, Fox PT, Eickhoff SB. Functional
characterization and differential coactivation patterns of two cytoarchitec‑
tonic visual areas on the human posterior fusiform gyrus. Hum Brain Mapp.
2014;35(6):2754–67.

64. Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. J Mach Learn Res.
2003;3:993–1022.

65. Smith SM, Fox PT, Miller KL, et al. Correspondence of the brain’s functional
architecture during activation and rest. 2009.

66. Poldrack RA. Inferring mental states from neuroimaging data: from reverse
inference to large‑scale decoding. Neuron. 2011;72(5):692–7.

67. Bzdok D, Laird AR, Zilles K, Fox PT, Eickhoff SB. An investigation of the
structural, connectional, and functional subspecialization in the human
amygdala. Hum Brain Mapp. 2013;34(12):3247–66.

68. Cieslik EC, Zilles K, Caspers S, et al. Is there “one” DLPFC in cognitive
action control? Evidence for heterogeneity from Co‑Activation‑Based par‑
cellation. 2013.

69. Rottschy C, Caspers S, Roski C, et al. Differentiated parietal connectivity of
frontal regions for “what” and “where” memory. 2013.

70. Amft M, Bzdok D, Laird AR, Fox PT, Schilbach L, Eickhoff SB. Definition
and characterization of an extended social‑affective default network. Brain
Struct Funct. 2015;220(2):1031–49.

71. Bzdok D, Langner R, Schilbach L, et al. Characterization of the temporo‑pa‑
rietal junction by combining data‑driven parcellation, complementary con‑
nectivity analyses, and functional decoding. Neuroimage. 2013;81:381–92.

72. Nickl‑Jockschat T, Rottschy C, Thommes J, et al. Neural networks related
to dysfunctional face processing in autism spectrum disorder. Brain Struct.
Funct. 2015;220(4):2355–71.

73. Dockès J, Wassermann D, Poldrack R, Suchanek F, Thirion B, Varoquaux G.
Text to brain: predicting the spatial distribution of neuroimaging observa‑
tions from text reports. 2018.

74. Nunes A. Word2brain. bioRxiv, 2018. https://www.biorxiv.org/content/
early/2018/04/11/299024.

75. Varoquaux G, Schwartz Y, Poldrack RA, et al. Atlases of cognition with
large‑scale human brain mapping. PLoS Comput Biol. 2018;14(11):e1006565.

76. Poldrack RA, Kittur A, Kalar D, et al. The Cognitive Atlas: toward a knowl‑
edge foundation for cognitive neuroscience. 2011.

77. Radua J, Mataix‑Cols D, Phillips ML,. A new meta‑analytic method for neu‑
roimaging studies that combines reported peak coordinates and statistical
parametric maps. Eur Psychiatry. 2012;27(8):605–11.

78. Kang J, Johnson TD, Nichols TE, Wager TD. Meta analysis of functional
neuroimaging data via Bayesian spatial point processes. J Am Stat Assoc.
2011;106(493):124–34.

79. Yue YR, Lindquist MA, Loh JM. Meta‑analysis of functional neuroimaging
data using Bayesian nonparametric binary regression. 2012.

80. Kang J, Nichols TE, Wager TD, Johnson TD. A Bayesian hierarchical spatial
point process model for multi‑ type neuroimaging meta‑analysis. Ann Appl
Stat. 2014;8(3):1800–24.

81. Montagna S, Wager T, Barrett LF, Johnson TD, Nichols TE. Spatial bayesian
latent factor regression modeling of coordinate‑based meta‑analysis data.
Biometrics. 2018;74(1):342–53.

82. Samartsidis P, Eickhoff CR, Eickhoff SB, et al.. Bayesian log‑gaussian
cox process regression: with applications to meta‑analysis of neu‑
roimaging working memory studies. J R Stat Soc Ser C Appl Stat.
2019;68(1):217–34.

24. Josipovic Z. Neural correlates of nondual awareness in meditation. Ann N
Y Acad Sci. 2014;1307:9–18.

25. Zeidman P, Mullally SL, Schwarzkopf DS, Maguire EA. Exploring the par‑
ahippocampal cortex response to high and low spatial frequency spaces.
Neuroreport. 2012;23(8):503–7.

26. Wager TD, Atlas LY, Lindquist MA, Roy M, Woo C‑W, Kross E. An
fMRI‑based neurologic signature of physical pain. N. Engl. J. Med.
2013;368(15):1388–97.

27. Chen Y, Fowler CH, Papa VB, et al. Adolescents’ behavioral and neural
responses to e‑cigarette advertising. Addict Biol. 2018;23(2):761–71.

28. Pantelis PC, Byrge L, Tyszka JM, Adolphs R, Kennedy DP. A specific hypoac‑
tivation of right temporo‑parietal junction/posterior superior temporal sul‑
cus in response to socially awkward situations in autism. Soc Cogn Affect
Neurosci. 2015;10(10):1348–56.

29. Tambini A, Rimmele U, Phelps EA, Davachi L. Emotional brain states
carry over and enhance future memory formation. Nat. Neurosci.
2017;20(2):271–8.

30. Rubin TN, Koyejo O, Gorgolewski KJ, Jones MN, Poldrack RA, Yarkoni T.
Decoding brain activity using a large‑scale probabilistic functional‑anatom‑
ical atlas of human cognition. PLoS Comput. Biol. 2017;13(10):e1005649.

31. Monti R, Lorenz R, Leech R, Anagnostopoulos C, Montana G. Text‑mining
the neurosynth corpus using deep boltzmann machines. 2016.

32. Dockès J, Poldrack RA, Primet R, et al. NeuroQuery, comprehensive
meta‑analysis of human brain mapping. Elife. March 2020.

33. Gorgolewski KJ, Varoquaux G, Rivera G, et al. NeuroVault.org: a web‑based
repository for collecting and sharing unthresholded statistical maps of the
human brain. Front Neuroinform. 2015;9:8.

34. Samartsidis P, Montagna S, Johnson TD, Nichols TE. The coordinate‑based
meta‑analysis of neuroimaging data. 2017.

35. Müller VI, Cieslik EC, Laird AR, et al. Ten simple rules for neuroimaging
meta‑analysis. Neurosci Biobehav Rev. 2018;84:151–61.

36. Laird AR, Fox PM, Price CJ, et al. ALE meta‑analysis: controlling the false
discovery rate and performing statistical contrasts. Hum Brain Mapp.
2005;25(1):155–64.

37. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT. Activation likelihood esti‑
mation meta‑analysis revisited. NeuroImage. 2012;59(3):2349–61https://
doi.org/10.1016/j.neuroimage.2011.09.017.

38. Wager TD, Lindquist M, Kaplan L. Meta‑analysis of functional neuroim‑
aging data: current and future directions. Soc. Cogn. Affect. Neurosci.
2007;2(2):150–58.

39. Wager TD, Phan KL, Liberzon I, Taylor SF. Valence, gender, and lateraliza‑
tion of functional brain anatomy in emotion: a meta‑analysis of findings
from neuroimaging. Neuroimage. 2003;19(3):513–31.

40. Wager TD, Jonides J, Reading S. Neuroimaging studies of shifting atten‑
tion: a meta‑analysis. Neuroimage. 2004;22(4):1679–93.

41. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT. Activation likelihood esti‑
mation meta‑analysis revisited. Neuroimage. 2012;59(3):2349–61.

42. Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P. Minimizing
within‑experiment and within‑group effects in activation likelihood estima‑
tion meta‑analyses. Hum Brain Mapp. 2012;33(1):1–13.

43. Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA. Meta‑analysis of the func‑
tional neuroanatomy of single‑word reading: method and validation.
Neuroimage. 2002;16(3 Pt 1):765–80.

44. Langner R, Rottschy C, Laird AR, Fox PT, Eickhoff SB. Meta‑analytic connec‑
tivity modeling revisited: controlling for activation base rates. Neuroimage.
2014;99:559–70.

45. DerSimonian R, Laird N. Meta‑analysis in clinical trials. 1986.
46. Hedges LV, Hedges LV, Olkin I. Statistical methods for meta‑analysis.

Academic Press; 1985.
47. Sangnawakij P, Böhning D, Niwitpong S‑A, Adams S, Stanton M, Holling H.

Meta‑analysis without study‑ specific variance information: heterogeneity
case. Stat Methods Med Res. 2019;28(1):196–210.

48. Freedman D, Lane D. A nonstochastic interpretation of reported signifi‑
cance levels. 1983.

49. Anderson MJ, Robinson J. Permutation tests for linear models. 2001.
50. Winkler AM, RidgwayGR, Webster MA, Smith SM, Nichols TE. Permutation

inference for the general linear model. Neuroimage. 2014;92:381–97.
51. Fisher RA. Statistical methods for research workers. Vol.102. Oliver and

Boyd; 1925.
52. Riley JW, Stouffer SA, Suchman EA, Devinney LC, Star SA, Williams RM.

The American soldier: adjustment during army life. 1949.
53. Zaykin DV. Optimally weighted z‑test is a powerful method for combining

probabilities in meta‑analysis. J Evol Biol. 2011;24(8):1836–41.
54. Maumet C, Nichols TE. Minimal data needed for valid & accurate

image‑based fMRI meta‑analysis. Preprint, 2016.

https://www.biorxiv.org/content/early/2018/04/11/299024
https://www.biorxiv.org/content/early/2018/04/11/299024

 : 2023, Volume 3 ‑ 30 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

86. Riedel MC, Yanes JA, RayKL, et al. Dissociable meta‑ analytic brain net‑
works contribute to coordinated emotional processing. Hum Brain Mapp.
2018;39(6):2514–31.

87. Bottenhorn KL, Flannery JS, Boeving ER, et al. Cooperating yet distinct
brain networks engaged during naturalistic paradigms: a meta‑analysis of
functional MRI results. Netw Neurosci. 2019;3(1):27–48.

83. Alhazmi FH, Beaton D, Abdi H. Semantically defined subdomains of func‑
tional neuroimaging literature and their corresponding brain regions. Hum
Brain Mapp. 2018;39(7):2764–76.

84. Yeo BTT, Krienen FM, Eickhoff SB, et al. Functional specialization and flexi‑
bility in human association cortex. Cereb Cortex. 2016;26(1):465

85. Laird AR, Riedel MC, Sutherland MT, et al. Neural architecture underlying
classification of face perception paradigms. Neuroimage. 2015;119:70–80.

Appendix I: BrainMap discrete decoding

The BrainMap discrete decoding method compares the distributions of studies with each label within the sample
against those in a larger database while accounting for the number of foci from each study. Broadly speaking, this
method assumes that the selection criterion is associated with one peak per study, which means that it is likely only
appropriate for selection criteria based around foci, such as ROIs. One common analysis, meta‑analytic clustering,
involves dividing studies within a database into meta‑analytic groupings based on the spatial similarity of their mod‑
eled activation maps (i.e., study‑wise pseudo‑statistical maps produced by convolving coordinates with a Kernel).
The resulting sets of studies are often functionally decoded in order to build a functional profile associated with each
meta‑analytic grouping. While these groupings are defined as subsets of the database, they are not selected based on
the location of an individual peak, and so weighting based on the number of foci would be inappropriate.

This decoding method produces four outputs for each label. First, the distribution of studies in the sample with the
label are compared with the distributions of other labels within the sample. This consistency analysis produces both
a measure of statistical significance (i.e., a P value) and a measure of effect size (i.e., the likelihood of being selected
given the presence of the label). Next, the studies in the sample are compared to the studies in the rest of the data‑
base. This specificity analysis produces a P value and an effect size measure of the posterior probability of having the
label given selection into the sample. A detailed algorithm description is presented below.

The BrainMap method for discrete functional decoding performs both forward and reverse inference using an
annotated coordinate‑based database and a target sample of studies within that database. Unlike the Neurosynth
approach, the BrainMap approach incorporates information about the number of foci associated with each study in
the database.

1. Select studies in the database according to some criterion (e.g., having at least one peak in an ROI).
2. For each label, studies in the database can now be divided into four groups.

	{ Label‑positive and selected : Ss+l+
	{ Label‑negative and selected : Ss+l−
	{ Label‑positive and unselected : Ss−l+
	{ Label‑negative and unselected : Ss−l−

3. Additionally, the number of foci associated with each of these groups is extracted.
	{ Number of foci from studies with label, Fl+
	{ Number of foci from studies without label, Fl−
	{ Total number of foci in the database, Fdb = Fl+ + Fl−

4. Compute the number of times any label is used in the database, Ldb (e.g., if every experiment in the database uses
two labels, then this number is 2Sdb, where Sdb is the total number of experiments in the database).

5. Compute the probability of being selected, P(s+).
	{ P(s+) = Ss+/Fdb, where Ss+ = Ss+l+ + Ss+l−

6. For each label, compute the probability of having the label, P(l+).
	{ P(l+) = Sl+/Ldb, where Sl+ = Ss+l+ + Ss−l+

7. For each label, compute the probability of being selected given presence of the label, P(s+|l+).
	{ Can be re‑interpreted as the probability of activating the ROI given a mental state.
	{ P(s+|l+) = Ss+l+/Fl+

8. Convert P(s+|l+) into the forward inference likelihood, L.
	{ L = P(s+|l+)/P(s+)

9. Compute the probability of the label given selection, P(l+|s+).
	{ Can be reinterpreted as probability of a mental state given activation of the ROI.

	{ =+ +
+ + +

+P l s
P s l P l

P s
(|)

(|) ()
()

	{ This is the reverse inference posterior probability.

 : 2023, Volume 3 ‑ 31 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

10. Perform a binomial test to determine if the rate at which studies are selected from the set of studies with the label
is significantly different from the base probability of studies being selected across the whole database.
	{ The number of successes is K = Ss+l+, the number of trials is n = Fl+, and the hypothesized probability of success

is p = P(s+)
	{ If Ss+l+ < 5, override the P value from this test with 1, essentially ignoring this label in the analysis.
	{ Convert P value to unsigned z value.

11. Perform a two‑way Chi‑square test to determine if presence of the label and selection are independent.
	{ If Ss+l+ < 5, override the P value from this test with 1, essentially ignoring this label in the analysis.
	{ Convert P value to unsigned z value.

Appendix II: Neurosynth discrete decoding

The implementation of the MKDA Chi‑squared meta‑analysis method used by Neurosynth is quite similar to BrainMap’s
method for decoding, if applied to annotations instead of modeled activation values. This method compares the dis‑
tributions of studies with each label within the sample against those in a larger database, but, unlike the BrainMap
method, does not take foci into account. For this reason, the Neurosynth method would likely be more appropriate
for selection criteria not based on ROIs (e.g., for characterizing meta‑analytic groupings from a meta‑analytic cluster‑
ing analysis). However, the Neurosynth method requires user‑provided information that BrainMap does not. Namely,
in order to estimate probabilities for the consistency and specificity analyses with Bayes’ Theorem, the Neurosynth
method requires a prior probability of a given label. Typically, a value of 0.5 is used (i.e., the estimated probability that
an individual is undergoing a given mental process described by a label, barring any evidence from neuroimaging
data, is predicted to be 50%). This is, admittedly, a poor prediction, which means that probabilities estimated based
on this prior are not likely to be accurate, although they may still serve as useful estimates of effect size for the analysis.

Like the BrainMap method, this method produces four outputs for each label. For the consistency analysis, this
method produces both a P value and a conditional probability of selection given the presence of the label and the
prior probability of having the label. For the specificity analysis, the Neurosynth method produces both a P value and
a posterior probability of presence of the label given selection and the prior probability of having the label. A detailed
algorithm description is presented below.

The Neurosynth method for discrete functional decoding performs both forward and reverse inference using an
annotated coordinate‑based database and a target sample of studies within that database. Unlike the BrainMap
approach, the Neurosynth approach uses an a priori value as the prior probability of any given experiment including
a given label.

1. Select studies in the database according to some criterion (e.g., having at least one peak in an ROI).
2. For each label, studies in the database can now be divided into four groups:

	{ Label‑positive and selected : Ss+l+
	{ Label‑negative and selected : Ss+l−
	{ Label‑positive and unselected : Ss−l+
	{ Label‑negative and unselected : Ss−l−

3. Set a prior probability p of a given mental state occurring in the real world.
	{ Neurosynth uses 0.5 as the default.

4. Compute P(s+):
	{ Probability of being selected, P(s+) = Ss+/(Ss+ + Ss−), where Ss+ = Ss+l+ + Ss+l− and Ss− = Ss−l+ + Ss−l−

5. For each label, compute P(l+):
	{ P(l+) = Sl+/(Sl+ + Sl−), where Sl+ = Ss+l+ + Ss−l+ and Sl− = Ss+l− + Ss−l−

6. Compute P(s+|l+):
	{ P(s+|l+) = Ss+l+/Sl+

7. Compute P(s+|l−):
	{ P(s+|l−) = Ss+l−/Sl−
	{ Only used to determine sign of reverse inference z value.

8. Compute P(s+|l+, p), where is the prior probability of a label:
	{ This is the forward inference posterior probability. Probability of selection given label and given prior probability

of label, p.
	{ P(s+|l+, p) = p P(s+|l+) + (1−p) P(s+|l−)

 : 2023, Volume 3 ‑ 32 ‑ CC By 4.0: © Taylor Salo et al.

J U P Y T E R B O O K

9. Compute P(l+|s+, p):
	{ This is the reverse inference posterior probability. Probability of label given selection and given the prior prob‑

ability of label.
	{ P(l+|s+, p) = p P(s+|l+)/P(s+|l+, p)

10. Perform a one‑way Chi‑squared test to determine if the rate at which studies are selected for a given label is sig‑
nificantly different from the average rate at which studies are selected across labels.
	{ Convert P value to signed z value using whether the number of studies selected for the label is greater than or

less than the mean number of studies selected across labels to determine the sign.
11. Perform a two‑way Chi‑square test to determine if presence of the label and selection are independent.

	{ Convert P value to signed z value using P(s+|l−) to determine sign.

By Taylor Salo, Tal Yarkoni, Thomas E. Nichols, Jean‑Baptiste Poline, Murat Bilgel, Katherine L. Bottenhorn, Simon
B. Eickhoff, Dorota Jarecka, James D. Kent, Adam Kimbler, Dylan M. Nielson, Kendra M. Oudyk, Julio A. Peraza,
Alexandre Pérez, Puck C. Reeders, Julio A. Yanes, and Angela R. Laird

© Copyright 2021.

