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Neuroimaging involves the acquisition of extensive 3D images and 4D time series data to 
gain insights into brain structure and function. The analysis of such data necessitates 
both spatial and temporal processing. In this context, “fslmaths” has established itself as 
a foundational software tool within our field, facilitating domain-specific image 
processing. Here, we introduce “niimath,” a clone of fslmaths. While the term “clone” 
often carries negative connotations, we illustrate the merits of replicating widely-used 
tools, touching on aspects of licensing, performance optimization, and portability. For 
instance, our work enables the popular functions of fslmaths to be disseminated in 
various forms, such as a high-performance compiled R package known as “imbibe”, a 
Windows executable, and a WebAssembly plugin compatible with JavaScript. This 
versatility is demonstrated through our NiiVue live demo web page. This application 
allows ‘edge computing’ where image processing can be done with a zero-footprint tool 
that runs on any web device without requiring private data to be shared to the cloud. 
Furthermore, our efforts have contributed back to FSL, which has integrated the 
optimizations that we’ve developed. This synergy has enhanced the overall transparency, 
utility and efficiency of tools widely relied upon in the neuroimaging community. 

INTRODUCTION 

Neuroimaging has emerged as a powerful tool for studying 
brain function and connectivity, offering insights into the 
underlying neural mechanisms of various cognitive 
processes and disorders. Preprocessing and analysis of neu-
roimaging data require sophisticated tools to extract mean-
ingful information. FSL1 is a widely used2 software package 
in the field of neuroimaging, offering a comprehensive suite 
of tools for neuroimaging data analysis. Indeed, a Google 
Scholar search lists 3030 publications for the term fsl soft-
ware package in 2022. The command line tool fslmaths 
is central to FSL, enabling advanced image manipulation 
and processing: it can be used as a standalone application 
for basic manipulation, but is also leveraged by many of 
the other FSL tools for more complex processing. Due to 
its popularity, fslmaths has evolved to support many of 
the most needed image processing functions of our field. 
Its widespread adoption is typified by the development of 
convenient wrappers that call this tool from other envi-
ronments, such as the python-based nipype.3 Beyond de-
scribing the functions and idiosyncrasies of fslmaths, we 
introduce the niimath clone, which can provide benefits 
with regards to licensing, performance and portability. In 

particular, we showcase how niimath can be embedded into 
web pages and the ‘imbibe’ R package. 

The fslmaths tool offers a rich set of capabilities, includ-
ing image masking, thresholding, and mathematical op-
erations on brain images, making it an essential tool for 
many researchers in the neuroimaging community. While 
fslmaths can be called directly from the command line, it 
also provides core functionality for many of the popular 
higher-level FSL1 pipelines including BET (Brain Extraction 
Tool), FDT (FMRIB’s Diffusion Toolbox), SIENA (analysis of 
brain change), TBSS (Tract-Based Spatial Statistics), FLIRT 
(FMRIB’s Linear Image Registration Tool), BASIL (Bayesian 
Inference for Arterial Spin Labeling MRI), VERBENA (Vas-
cular Model Based Perfusion Quantification for DSC-MRI), 
FUGUE (FMRIB’s Utility for Geometric Unwarping of EPIs), 
FEAT (FMRI Expert Analysis Tool), POSSUM (Physics-Ori-
ented Simulated Scanner for Understanding MRI), FIRST 
(model-based segmentation), and MELODIC ( Multivariate 
Exploratory Linear Optimized Decomposition into Inde-
pendent Components). Therefore, improving and under-
standing fslmaths can have a direct impact on the usage of 
these popular pipelines. Given the need for general purpose 
mathematical operations that can be applied to the domain 
specific neuroimaging formats, it is unsurprising that each 
popular software package has developed their own image 
processing tool with many shared features. For example, 
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consider the need to create a binarized mask image where 
voxels with an intensity greater than or equal to 80 are set 
to one and those below are set to zero with a NIfTI im-
age named t1.nii (with FSL, one could use the command 
“fslmaths t1 -thr 80 -bin binT1”). AFNI4 users can apply 
3dCalc (“3dCalc -a t1.nii -expr 'step((a - 80))' -prefix 
binT1.nii”). ITK-SNAP5 users have the c3d and c4d tools 
(“c3d t1.nii -threshold -inf 80 0 1 -o binT1.nii”). FreeSurfer6 

users have several command line tools (“mri_binarize –i 
t1.nii –o binT1.nii –min 80”). SPM7 users can call imcalc 
to apply Matlab equations (“imcalc (i1\>80)”). For scientists 
who use Python, nibabel8 can leverage numpy optimized 
functions (“img = np.where(img > 80, 1.0, 0.0)”). While each 
of these tools provides redundant functions to each other, 
each has been adapted to the needs and file formats of 
its ecosystem. Indeed, many scientists and pipelines will 
use a combination of these tools best suited for different 
operations. For example, fMRIPrep9 combines AFNI, FSL, 
FreeSurfer, and Python. The fact that each core package has 
developed its own image mathematics solution reflects the 
core need for these functions across the domain. 

Innovation10 and novelty11 are heavily weighted for sci-
entific funding and high impact publications. Therefore, 
the incentive to develop clones (that replicate functionality 
but not internal code) needs justification. 

Complex multi-function tools like fslmaths grow organ-
ically to fit the emergent needs of software development. 
The primary pressure is to robustly solve a problem, and 
concerns regarding performance and library dependencies 
are typically not a leading concern. A benefit of cloning a 
popular and mature tool is that one can understand the 
full scope of the project, identify optimizations, and remove 
dependencies. As we demonstrate later, niimath leveraged 
these aspects to create a smaller, faster and more portable 
tool that could be embedded into new niches. Indeed, a 
clone that uses a permissive and open license has the op-
portunity to showcase optimized routines that can be 
adopted by the cloned source. Below we describe how the 
development of FSL has been improved by including code 
from niimath. 

Another potential benefit for developing a clone is to im-
prove portability and to support additional platforms. The 
FSL tools are written in C++ and are portable across UNIX 
platforms, currently supporting both ARM and x86 archi-
tectures as well as both the Linux and MacOS desktop op-
erating systems. However, officially FSL only runs on the 
Windows operating system via the Windows Subsystem for 
Linux. As we describe later, the portable design of niimath 
allows it to support multiple architectures, and operating 
systems including Windows, Linux and MacOS. Further, it 
can be provided as a compiled R package (‘imbibe’) and 
compiled to Web Assembly, allowing it to be embedded into 
web pages regardless of hardware or operating system (e.g. 
extending support to tablets, phones and web-based appli-
cations). 

A further benefit for cloning popular but complex soft-
ware is to provide insight into its behavior. This can iden-
tify situations where the operation is not intuitive, not as 
described in the manual, or operates in unexpected ways for 

edge cases. This is particularly important for popular tools 
that do not adopt FOSS licenses, which can be a barrier to 
code inspection for some and thus reduce insights into the 
fundamental behavior of a tool. 

Therefore, we argue that niimath substantively con-
tributes to fslmaths and the wider neuroimaging commu-
nity by addressing remaining gaps in licensing, perfor-
mance and portability of fslmaths. In addition, a clone can 
provide insight into the behavior of popular but complex 
tools and the discoveries made during reimplementation 
can be back-ported, improving the original software. Sub-
sequent sections describe how niimath successfully delivers 
all of these benefits. 

METHODS / IMPLEMENTATION 
DESIGN CONSIDERATIONS 

The vision for niimath was to develop a clone of fslmaths 
that would be open, fast, portable, and have minimal de-
pendencies. We chose the C language for its widespread 
support and relatively good compiler optimization support. 
The first stage was to evaluate whether modern architec-
tures and compilers benefit from hand tuned code. In gen-
eral, we found few benefits for using hand-tuned vectorized 
instructions (https://github.com/neurolabusc/simd), per-
haps suggesting that well designed algorithms tend to be 
limited by memory bandwidth, modern compilers can auto-
vectorize simple routines, and that memory bandwidth 
compounded by file input/output pose a bottleneck for 
rapid routines. The final niimath code includes a few Single 
Instruction/Multiple Data functions for the x86 and ARM 
architectures (these are enabled with the SIMD compiler di-
rective, so they are automatically disabled for situations 
where they are not supported, such as for WebAssembly). 

LICENSE 

One notable reason to clone a successful product is to pro-
vide a less restrictive license. For example, the popular 
Octave language is a clone of the professional MATLAB12 

while the R language drew inspiration from the proprietary 
S.13 Free and open source software (FOSS) can aid re-
search.14 While FSL is free for noncommercial use, the 
copyright does place some restrictions on the usage, in par-
ticular for commercial exploitation. This license provides 
source-available software that is free for academic research 
but can create barriers for developers of other software 
tools as they may avoid inspecting the FSL routines, as in-
tentional or unintentional transference of code could jeop-
ardize their own licenses. This aspect can restrict the ability 
of other teams to contribute to FSL, as these may conflict 
with the way that their home institution handles intellec-
tual property. On the other end of the spectrum, the popu-
lar SPM7 uses the open but restrictive copyleft of the GNU 
General Public License (GPL). GPL code can only be embed-
ded in open software that adopts the GPL. Therefore, any 
software that wishes to include GPL code must be free and 
open. The GPL can therefore suffer from the same issues 
with code commercialization, inspection and contributions. 
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While we respect and understand the choices behind the 
FSL and SPM licenses, we suggest that the permissive and 
open BSD 2-Clause License used by niimath has clear ben-
efits when possible. This license allows developers to in-
spect, extend and embed this software into their own pack-
ages, regardless of their preferred license (as long as they 
retain the original copyright for the specific code and ac-
knowledge the original authors are not responsible for any 
damages). For example, this license is used by our popu-
lar dcm2niix15 which has allowed it to be included with 
the institutional licenses used by FSL,1 FreeSurfer,6 several 
commercial products, and numerous open source projects 
including Dcm2Bids16 which uses the GPL. Likewise, the 
dcm2niix Github repository documents many contributions 
from industry, including engineers at the major MRI scan-
ner manufacturers GE, Mediso, Philips, Siemens, and UIH. 
We see permissive open source licenses as an opportunity 
to leverage community-driven development, permitting in-
dividual researchers with unique insights into neuroimag-
ing analysis within their specific domains to collaborate, 
innovate, and contribute to the advancement of the field 
through new tools that fill different niches than the original 
software, all while respecting their own preferences and 
licensing requirements. From this perspective, permissive 
open source software are the universal donors, analogous 
to the O negative blood type. The class of permissive open 
source licenses include the Apache, MIT and BSD licenses 
(though note that the Apache License is distinguished by an 
additional patent grant clause). While all three are compat-
ible with the GPL, the BSD 2-Clause License is considered 
the most permissive and allows for integration with a wider 
range of projects. 

INSTALLATION 

We share niimath via a github repository 
(https://github.com/rordenlab/niimath) that includes the 
source code as well as compiled releases of each major ver-
sion. The repository describes how to compile niimath us-
ing the cmake, make and msbuild wrappers to invoke the 
clang/LLVM, gcc or MSVC compiler. Each code update of the 
repository invokes an automatic compilation that generates 
Linux, MacOS and Windows compatible executables, and 
the Linux executables are automatically validated using the 
canonical_test script described in the Evaluation section, 
providing continuous integration and continuous deploy-
ment (CI/CD). 

EVALUATION 

We created bash scripts designed to compare both the speed 
and validate the results of fslmaths-compatible tools. We 
provide all these scripts in a Github repository 
(https://github.com/rordenlab/niimath_tests) that allows 
others to replicate our results and also allows regression 
testing for future software tools. This repository contains 
63 input images in the In folder that demonstrate edge 
cases: all 48 combinations for losslessly re-orienting the 
left-right, anterior-posterior and inferior-superior dimen-
sions, images with both odd and even dimensions (e.g. to 

validate median solutions), images with non-finite voxel 
intensities (positive infinity, negative infinity, and not-a-
number), binary images, plausible 4D timeseries (a short 
resting state dataset), and statistical maps. These input im-
ages were converted to 163 images in the Canonical folder 
using the included script canonical_make leveraging the re-
lease version of fslmaths 6.0.7.8 compiled for the ARM64 
architecture of MacOS (13.6). These 163 derived images 
demonstrate the full range of fslmaths functions. The in-
cluded script canonical_test can be used to validate the 
performance of any fslmaths compatible executable against 
these 159 images, to validate the accuracy of performance. 
By providing pre-computed validation images, we can de-
tect differences between implementations and across dif-
ferent architectures. To enable evaluation, we added the 
novel function compare to niimath, which evaluates two im-
ages (e.g. a canonical reference image and a test sample) 
and reports if any voxel intensities differ. When images dif-
fer, a number of diagnostics are provided (location, inten-
sity and difference of most divergent voxel; proportion of 
identical voxels, correlation of the two images, mean and 
standard deviation for each image). This function termi-
nates with an error if the absolute maximum difference be-
tween fslmaths implementations exceeds a user specified 
threshold. This allows automated regression tests that tol-
erate a little variation for functions where variation is ex-
pected, while detecting gross errors. We describe the ratio-
nale for this tolerance next. 

The need for reproducible results in neuroimaging is 
critical17 and requires getting consistent results. However, 
it is worth emphasizing that a neuroimaging tool can pro-
vide slightly different results in different environments.18 

Neuroimaging computations are conducted using floating 
point representations, where the precise order of instruc-
tions, subtle assumptions of those instructions and preci-
sion of each instruction can generate small rounding dif-
ferences. As Kernighan and Plauger note19 “Floating point 
numbers are like piles of sand; every time you move one you 
lose a little sand and pick up a little dirt”. For example, the 
same version of FSL can generate numerically different re-
sults on different installations.18 This can reflect different 
hardware (ARM vs x86 CPU), different instructions (e.g. a 
fused multiply–add instruction reduces the rounding er-
ror of computing two separate instructions), different co-
processor (e.g. a x86 FPU instruction uses 80-bits inter-
nally, while a SSE instruction on the same machine uses 
64-bits), different optimizations (e.g compiler --ffast-math 
flag), and different versions of the dependent library. Like-
wise, different algorithms or precision for computing the 
same mathematical function can generate slightly different 
results. For example, fslmaths applies a Gaussian blur with 
a kernel size that is 6.0 times the sigma, while the AFNI de-
fault is 2.5 (AFNI_BLUR_FIRFAC). While these variations tend 
to be negligible in magnitude, it does make reverse en-
gineering tools challenging as validation tests must dis-
tinguish whether variations are meaningful. Likewise, end 
users must set realistic expectations regarding equivalent 
versus identical results. Therefore, while niimath and 
fslmaths generate results that are not always identical, the 
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results are intended to be always comparable. To aid this, 
niimath includes a novel function --compare that compares 
two images and identifies the magnitude and location of 
the most discordant voxel. 

By design, the previously described validation scripts 
are designed to be unusual to elicit anomalous behavior 
and small to aid CI/CD. To provide a realistic evaluation 
of the speed of different implementations, we also provide 
the script slow_benchmark.sh that tests the time to perform 
different operations on realistic datasets. These larger 
datasets are available from a separate repository 
(https://osf.io/y84gq/) and were acquired on a 3T Siemens 
Prisma MRI scanner using the Human Connectome Project 
protocols20 (specifically, a 4D resting-state time series and 
a 3D T1-weighted anatomical scan). 

RESULTS 

As expected and previously noted,21 our validation tests 
detect that the same version of fslmaths will generate 
slightly different results on different architectures and op-
erating systems. In all cases the observed differences were 
negligible. We first compared fslmaths to itself, comparing 
the canonical images created on a MacOS computer using 
fslmaths compiled for the ARM architecture to the same 
code compiled for a x86-64-based Linux computer. Four of 
the 159 tests generated some variation: fmean (maximum 
difference 1.90735e-06), fmeanu (1.90735e-06), bptf high-
pass (1.81899e-12) and bptf band-pass (4.9738e-13). We 
next compared fslmaths to niimath for the same architec-
ture (MacOS ARM64). Four of the 159 tests generated some 
variation: bptf high-pass (1.90735e-06) and bptf band-pass 
(1.04904e-05). Finally, we compared across tools and ar-
chitectures by comparing the results from the ARM64 Ma-
cOS fslmaths to the x86-64 Linux niimath. Here, the results 
were identical with exception of the same four of the 159 
tests that differed when comparing fslmaths to itself across 
architectures: fmean (1.90735e-06) fmeanu (1.90735e-06), 
bptf high-pass (1.90735e-06) and bptf band-pass 
(1.04904e-05). The results of the fmean and fmeanu func-
tions are architecture dependent, such that fslmaths and 
niimath produce identical results on the same architecture. 
Across all of these divergent tests, the vast majority (always 
over 98%) of voxels were numerically identical across meth-
ods. These tests suggest that while variation across imple-
mentations and architectures exist, the magnitude of vari-
ability is negligible. 

While niimath typically generates equivalent results to 
fslmaths, we did discover some unexpected behavior with 
fslmaths 6.0.7.2, and a few differences were notable: 

1. The command “fslmaths inputimg -add 0 outputimg 
-odt input” can convert integer images (e.g. uint8 
datatypes) to float output despite explicit request to 
retain input type. This occurs if the input image 
header has a non-unitary scale slope or non-zero in-
tercept: in these cases FSL interprets the fundamen-
tal type to be float. In contrast, niimath retains both 
the datatype and the intensity scaling parameters 
when this is explicitly requested (both fslmaths and 

niimath return float data if the output data type is 
not specified). Furthermore, different versions of 
fslmaths perform differently for the pass through 
“fslmaths in out” which is useful for copying files. 
Old versions will losslessly save in the input datatype, 
while fslmaths 6.0 and later converts the data to float. 
niimath retains the original datatype. While these 
two situations may seem like an unusual edge cases, 
these calls provide a simple way to clone an image. 
Alternatively, FSL does provide its immv and imcp 
commands for these purposes. 

2. In developing niimath we discovered a bug in the 
then current versions of fslmaths, which were unable 
to process files where the string “.nii” appears in a 
folder name. 

3. The fslmaths “-dilD” function for modal dilation did 
not consistently insert a modal value, often inserting 
the maximum value it observed in the kernel. The lat-
est version of fslmaths (6.0.*) now correctly calculates 
the mode, in issues of ties the tied value with the 
maximum intensity is used. 

4. The fslmaths “-roc” receiver operating characteristic 
implementation explicitly ignores the (5-voxel wide) 
boundary of an image. Therefore, it ignores voxels 
near the edge of an image and generates the error 
“given object has non-finite elements” if any dimen-
sion is less than 12 voxels. 

5. The upper and lower threshold -thr or -uthr functions 
expect numbers rather than images but, like other 
functions in fslmaths it, will appear to run if the input 
is an image, implicitly treating it is a zero value with-
out properly throwing an error.. 

6. Perhaps understandably, asking for the remainder 
when dividing by zero (“fslmaths in1 -rem 0 out”) 
will crash without an explanation. However, “fslmaths 
in1 -rem in2 out” will also crash without explanation 
if any voxel in the image in2 is zero. In contrast, ni-
imath provides a divide-by-zero warning message de-
scribing the reason that the operation failed. 

7. The fslmaths function -rem uses the C language con-
vention of the % operator, and returns the integer 
modulus remainder even though it generates floating 
point images as default. This may be unexpected for 
users of other languages, e.g. in Python “2.7 % 2” is 
0.7, just like MATLAB’s “mod(2.7, 2)”. niimath clones 
the fslmaths behavior, but also includes a new func-
tion -mod to return the modulus fractional remain-
der. 

8. FSL does not use NIfTI voxel coordinate conventions 
internally but aims to have all input and output co-
ordinates in user interfaces use NifTI conventions. 
However, the fslmaths -tfceS option does not cor-
rectly use the NIfTI convention in this specific case 
(fixed in fslmaths 6.0.7.7+). 

9. Neither downsampling with the -subsamp2 nor -sub-
samp2offc functions in fslmaths accounts for anti-
aliasing. Be aware that -subsamp2offc can exhibit odd 
edge effects. The problem is simple to describe. Intu-
itively, for slices in the middle of a volume, the output 

niimath and fslmaths: replication as a method to enhance popular neuroimaging tools

Aperture Neuro 4

https://osf.io/y84gq/


Table 1. Common fslmaths commands to spatially smooth (-s), spatially filter (-kernel), demean (-Tmean) and              
temporally filter (-bptf) a 3D (t1) or 4D (rest) image from the Human Connectome Project with a laptop using an                     
Intel i5-8259u (28w) CPU. The `Time` column reports the time for fslmaths to complete (in seconds). The                  Speed Up Speed Up 
column reports the acceleration relative to fslmaths (e.g. 2.0 means that niimath completed in half the time it                   
took fslmaths).   

Command Time (sec) Speed Up 

fslmaths rest -s 2.548 out 270 5.0 

fslmaths t1 -kernel boxv 7 -dilM out 216 245.0 

fslmaths rest -Tmean -mul -1 -add rest out 101 2.5 

fslmaths rest -bptf 77 8.68 out 998 2.0 

Further, niimath provides a few mathematical functions 
not found in fslmaths, filling gaps of the current FSL pack-
age (e.g. unsharp mask edge enhancement, sobel edge gra-
dient enhancement, and the previously described resize 
functions). It also uses (with permission) code from AFNI’s 
3d Teig software4 for diffusion tensor decomposition, lever-
aging these public-domain functions from AFNI (older por-
tions use the GPL). 

With regards to performance, the Human Connectome 
Project dataset demonstrates that niimath dramatically ac-
celerates a range of operations (Table 1). This establishes 
that niimath is substantially faster than fslmaths for many 
routines while generating equivalent results. 

Modern neuroimaging pipelines tend to have multiple 
tools, each which loads image data, calculates a transfor-

mation and subsequently saves a new image. As computers 
have become faster at computation, the speed of loading 
and saving data becomes significant. These effects can be-
come amplified on server and cloud instances, where file 
reading and writing can be relatively slow. Tools like FSL 
often compress NIfTI images using the GZip format, which 
reduces disk size, though the decompression and in partic-
ular compression can be slow. We developed niimath to be 
able to use four different methods of GZip compression: an 
inbuilt miniz library (https://github.com/richgel999/miniz), 
the zlib installed on the computer (system), the parallel 
pigz which can leverage multiple threads, or the CloudFlare 
zlib (https://github.com/cloudflare/zlib). We noted that the 
CloudFlare library is twice as fast as the system zlib 
(https://github.com/neurolabusc/zlib-bench-python). 

DISCUSSION 

Our evaluation demonstrates that fslmaths and niimath 
generate equivalent results. The adage “imitation is the 
highest form of flattery” is widely recognized. In the course 
of time, our discipline has identified a handful of essential 
tools that serve as the bedrock of our research. From first 
principles, these core tools have become popular because 
they fill critical needs. Typically, over time these features 
have further evolved to address the core needs of the com-
munity. We contend that there is merit in revisiting, en-
hancing, and gaining a deeper comprehension of these fun-
damental tools. Our field invests significant financial and 
energy resources in data processing, and enhancing the 
core tools can yield valuable dividends for the entire com-
munity. Beyond improving performance, these enhanced 
tools can fit emerging niches, such as cloud edge computing 
and the R scripting language. 

IMPROVING FSL 

We recognize that most FSL users will continue to prefer 
the proven fslmaths over niimath when using the estab-
lished FSL pipelines. As described above, the latest release 
of fslmaths has already adopted changes based on our dis-
coveries of unexpected behavior. Furthermore, our work 
identified several key optimizations that have been intro-
duced in recent versions of FSL, contributing to its im-
provement. First, FSL is now distributed with the Cloud-

slice is weighted 50% with the center slice, and 25% 
for the slice below and the slice above. However, for 
bottom slices (as well as first rows, first columns, last 
rows, last columns, last slices) the filter weights 75% 
on the central slice and just 25% on the slice above it. 
Signal from this 2nd slice is heavily diluted. One po-
tentially better mixture would be 66% edge slice and 
33% 2nd slice. This latter solution is implemented 
in niimath. In addition, niimath introduces the novel 
function -resize that resamples data with anti-alias-
ing using the nearest neighbor, trilinear, spline, Lanc-
zos or Mitchell filters as described by Schumacher.22 

10. The fslmaths function -ztop for converting z-statis-
tics to uncorrected p-values does not use the conven-
tion of clamping extreme values. Therefore it will re-
port a p-value of precisely 1.0 for z values above 8 and 
precisely 0.0 for values less than -8. Likewise, -ptoz 
does not clamp values so (infinite) p-values of 0 and 
1 will be converted to zero. niimath clones this be-
havior, but also provides clamped variations of these 
functions (-ztopc -ptozc). 

11. We also note differences in the rank and ranknorm 
functions where ties are given different values be-
tween niimath and fslmaths (e.g. when two voxels all 
have the same intensity and this is the brightest in-
tensity in the image, the order that 1, 2 is assigned 
depends on sorting algorithm). This reflects an am-
biguous situation and both tools do not attempt to 
provide mean ranks (e.g. assigned the tied brightest 
voxels both the value 1.5). 
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Flare zlib (to facilitate this we replaced a GPL function 
with a permissive equivalent to allow inclusion into FSL). 
This doubles the speed of most image reading and writing 
operations. Furthermore, we noted that the FSL tool dis-
tancemap and equivalent AFNI functions were exception-
ally slow at computing the Euclidean Distance Transform 
(EDT). These tools were calculating this function in 3D, 
whereas the problem is separable and can be computed as 
three 1D functions.23 For some typical images, this acceler-
ated the processing time from 36.46 hours to just 1.5 sec-
onds (https://github.com/neurolabusc/distancemap). This 
method has now been incorporated into FSL’s distancemap, 
benefiting users of the popular Bianca24 and TBSS25 tools. 
Finally, many of the niimath/fslmaths differences reported 
above have been addressed by the FSL team, including 
-tfceS input coordinates, the -roc border, value checking for 
-thr* options, and improved help text for users. In all of 
these cases, the development of niimath has directly bene-
fited the original tool. 

BEYOND THE COMMAND LINE 

The niimath clone uses minimal dependencies, which al-
lows it to be easily packaged in novel ways. One of our de-
rivatives is imbibe, an image calculator that is provided as 
a package for R. This provides R users with a set of pop-
ular image processing routines, providing the performance 
of low-level optimized C code with the convenience of R 
scripting, and a pipe-based style of operation chaining fa-
miliar to R users through popular packages such as “dplyr” 
(https://dplyr.tidyverse.org/) for tabular data. A second 
novel application leverages the Emscripten LLVM-to-We-
bAssembly (WASM) compiler (https://github.com/em-
scripten-core/emscripten) allowing niimath functions to be 
directly called by JavaScript applications. JavaScript is an 
interpreted language with all numerics computed with dou-
ble precision, resulting in slow performance.26 Therefore, 
niimath can provide the most popular image processing 
routines in our field, using a popular syntax, with high per-
formance for easy access to cloud applications. This allows 
a zero-footprint web page to calculate complex image pro-
cessing functions on the user’s computer. Since this com-
putation happens locally, the user does not have to share 
their data across the web (this edge computing is important 
for privacy, in particular as neuroimaging data contains 
recognizable features). Relative to cloud computing, image 
data does not have to be uploaded to and downloaded from 
the cloud, avoiding the penalty for slow internet connec-
tions. Since the entire software is embedded in a web page, 
the user does not have to install any software and the 
routines work on any browser-compatible device (tablet, 
phone, computer) regardless of operating system. We en-
vision these routines will enhance the capabilities of local 
machine learning based inference.27 For example, image 
processing routines can normalize data and do traditional 
image processing while machine learning can aid in the tis-
sue segmentation, region of interest identification, lesion 
detection and detecting white matter hyperintensities. A 
live demo web page of niimath is available to demonstrate 
these features (Figure 1). 

RESOURCES AND SUPPORT 

The core niimath software is available on Github 
(https://github.com/rordenlab/niimath). The R wrapper im-
bibe has its own page (https://github.com/jonclayden/im-
bibe). Likewise, the WebAssembly implementation is 
hosted on Github (https://github.com/niivue/niivue-ni-
imath) and has a live demo (https://niivue.github.io/niivue-
niimath/) that provides a zero-footprint web page for ex-
ploring the capabilities using NiiVue28 for visualization. All 
of these projects exploit the Github mechanisms for report-
ing issues, forking the code and making novel contribu-
tions. 
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Figure 1. Once compiled to WebAssembly, niimath provides the familiar fslmaths functions for JavaScript             
projects. Our live demo web page (      https://niivue.github.io/niivue-niimath/) allows users to apply fslmaths image        
processing without installing any software. In this example, the “spm152” T1-weighted anatomical scan is               
loaded (the buttons on the bottom allow the user to choose from numerous modalities, but the user can also drag                     
and drop their own images) thresholded to zero white matter voxels with an intensity greater than 180 and                   
subsequently apply a Gaussian smooth with a 3.2mm sigma is applied (using the fslmaths notation                -uthr 180 -s -uthr 180 -s 
3.23.2).  
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mons.org/licenses/by/4.0/legalcode for more information. 

niimath and fslmaths: replication as a method to enhance popular neuroimaging tools

Aperture Neuro 7

https://apertureneuro.org/article/94384-niimath-and-fslmaths-replication-as-a-method-to-enhance-popular-neuroimaging-tools/attachment/197871.png
https://niivue.github.io/niivue-niimath/


REFERENCES 

1. Smith SM, Jenkinson M, Woolrich MW, et al. 
Advances in functional and structural MR image 
analysis and implementation as FSL. NeuroImage. 
2004;23(Suppl 1):S208-S219. doi:10.1016/
j.neuroimage.2004.07.051 

2. Poldrack RA, Gorgolewski KJ, Varoquaux G. 
Computational and Informatic Advances for 
Reproducible Data Analysis in Neuroimaging. Annu 
Rev Biomed Data Sci. 2019;2(1):119-138. doi:10.1146/
annurev-biodatasci-072018-021237 

3. Esteban O, Markiewicz CJ, Burns C, et al. nipy/
nipype: 1.8.3. Published online July 14, 2022. 
doi:10.5281/ZENODO.6834519 

4. Cox RW. AFNI: software for analysis and 
visualization of functional magnetic resonance 
neuroimages. Comput Biomed Res. 
1996;29(3):162-173. doi:10.1006/cbmr.1996.0014 

5. Yushkevich PA, Piven J, Hazlett HC, et al. User-
guided 3D active contour segmentation of anatomical 
structures: significantly improved efficiency and 
reliability. Neuroimage. 2006;31(3):1116-1128. 
doi:10.1016/j.neuroimage.2006.01.015 

6. Fischl B. FreeSurfer. Neuroimage. 
2012;62(2):774-781. doi:10.1016/
j.neuroimage.2012.01.021 

7. Friston KJ, Ashburner JT, Nichols TE, Penny WD. 
Statistical Parametric Mapping the Analysis of 
Funtional Brain Images. Elsevier/Academic Press; 
2007. 

8. Brett M, Markiewicz CJ, Hanke M, et al. nipy/
nibabel: 5.1.0. Published online April 3, 2023. 
doi:10.5281/ZENODO.7795644 

9. Esteban O, et al. fMRIPrep: a robust preprocessing 
pipeline for functional MRI. Nat Methods. 
2019;16:111-116. 

10. Karp PD. Reviewing knowledgebase and database 
grant proposals in the life sciences: the role of 
innovation. Database. 2022;2022. doi:10.1093/
database/baac106 

11. Ali J. Manuscript rejection: causes and remedies. J 
Young Pharm. 2010;2:3-6. 

12. Eaton JW, Bateman D, Hauberg S, Wehbring R. 
GNU Octave version 5.2.0 manual: a high-level 
interactive language for numerical computations. 
Published 2020. https://www.gnu.org/software/
octave/doc/v5.2.0/ 

13. Morandat F, Hill B, Osvald L, Vitek J. Evaluating 
the design of the R language. In: ECOOP 2012 – 
Object-Oriented Programming. Springer Berlin 
Heidelberg; 2012:104-131. doi:10.1007/
978-3-642-31057-7_6 

14. Fortunato L, Galassi M. The case for free and 
open source software in research and scholarship. 
Philos Trans A Math Phys Eng Sci. 2021;379:20200079. 

15. Li X, Morgan PS, Ashburner J, Smith J, Rorden C. 
The first step for neuroimaging data analysis: DICOM 
to NIfTI conversion. J Neurosci Methods. 
2016;264:47-56. 

16. Bore A, Bedetti C, Guay S, et al. UNFmontreal/
Dcm2Bids: 3.0.2. Published online August 31, 2023. 
doi:10.5281/ZENODO.8306314 

17. Kennedy DN. The Information Sharing Statement 
Grows Some Teeth. Neuroinformatics. 
2017;15(2):113-114. doi:10.1007/s12021-017-9331-3 

18. Renton AI, Dao TT, Abbott DF, et al. Neurodesk: 
An accessible, flexible, and portable data analysis 
environment for reproducible neuroimaging. bioRxiv. 
2023;2022.12.23.521691. doi:10.1101/
2022.12.23.521691 

19. Kernighan BW, Plauger PJ. The Elements of 
Programming Style. McGraw-Hill; 1974. doi:10.1145/
800183.810448 

20. Van Essen DC, Ugurbil K, Auerbach E, et al. The 
Human Connectome Project: a data acquisition 
perspective. Neuroimage. 2012;62(4):2222-2231. 
doi:10.1016/j.neuroimage.2012.02.018 

21. Renton AI, Dao TT, Johnstone T, et al. Neurodesk: 
an accessible, flexible and portable data analysis 
environment for reproducible neuroimaging. Nat 
Methods. Published online January 8, 2024. 
doi:10.1038/s41592-023-02145-x 

22. Schumacher D. 1.2 - GENERAL FILTERED IMAGE 
RESCALING. In: Kirk D, ed. Graphics Gems III (IBM 
Version). Morgan Kaufmann; 1992:8-16. doi:10.1016/
b978-0-08-050755-2.50012-9 

niimath and fslmaths: replication as a method to enhance popular neuroimaging tools

Aperture Neuro 8

https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1146/annurev-biodatasci-072018-021237
https://doi.org/10.1146/annurev-biodatasci-072018-021237
https://doi.org/10.5281/ZENODO.6834519
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.5281/ZENODO.7795644
https://doi.org/10.1093/database/baac106
https://doi.org/10.1093/database/baac106
https://www.gnu.org/software/octave/doc/v5.2.0/
https://www.gnu.org/software/octave/doc/v5.2.0/
https://doi.org/10.1007/978-3-642-31057-7_6
https://doi.org/10.1007/978-3-642-31057-7_6
https://doi.org/10.5281/ZENODO.8306314
https://doi.org/10.1007/s12021-017-9331-3
https://doi.org/10.1101/2022.12.23.521691
https://doi.org/10.1101/2022.12.23.521691
https://doi.org/10.1145/800183.810448
https://doi.org/10.1145/800183.810448
https://doi.org/10.1016/j.neuroimage.2012.02.018
https://doi.org/10.1038/s41592-023-02145-x
https://doi.org/10.1016/b978-0-08-050755-2.50012-9
https://doi.org/10.1016/b978-0-08-050755-2.50012-9


23. Felzenszwalb PF, Huttenlocher DP. Distance 
Transforms of Sampled Functions. Theory of 
Computing. 2012;8(1):415-428. doi:10.4086/
toc.2012.v008a019 

24. Griffanti L, Zamboni G, Khan A, et al. BIANCA 
(Brain Intensity AbNormality Classification 
Algorithm): A new tool for automated segmentation 
of white matter hyperintensities. Neuroimage. 
2016;141:191-205. doi:10.1016/
j.neuroimage.2016.07.018 

25. Smith SM, Jenkinson M, Johansen-Berg H, et al. 
Tract-based spatial statistics: voxelwise analysis of 
multi-subject diffusion data. Neuroimage. 
2006;31(4):1487-1505. doi:10.1016/
j.neuroimage.2006.02.024 

26. OpenGL Insights. A K Peters/CRC Press; 2012. 

27. Masoud M, Hu F, Plis S. Brainchop: In-browser 
MRI volumetric segmentation and rendering. J Open 
Source Softw. 2023;8(83):5098. doi:10.21105/
joss.05098 

28. Hanayik T, Drake C, Rorden C, Hardcastle N, 
Androulakis A. niivue/niivue: 0.21.1. Published 
online March 2, 2022. doi:10.5281/ZENODO.6322862 

niimath and fslmaths: replication as a method to enhance popular neuroimaging tools

Aperture Neuro 9

https://doi.org/10.4086/toc.2012.v008a019
https://doi.org/10.4086/toc.2012.v008a019
https://doi.org/10.1016/j.neuroimage.2016.07.018
https://doi.org/10.1016/j.neuroimage.2016.07.018
https://doi.org/10.1016/j.neuroimage.2006.02.024
https://doi.org/10.1016/j.neuroimage.2006.02.024
https://doi.org/10.21105/joss.05098
https://doi.org/10.21105/joss.05098
https://doi.org/10.5281/ZENODO.6322862

	niimath and fslmaths: replication as a method to enhance popular neuroimaging tools
	Introduction
	Methods / Implementation
	Design Considerations
	License
	Installation
	Evaluation

	Results
	Discussion
	Improving FSL
	Beyond the command line

	Resources and Support
	Acknowledgements
	Conflict of Interest

	References

