
Articles Describing Code

niimath and fslmaths: replication as a method to enhance popular
neuroimaging tools
Christopher Rorden1 , Matthew Webster2,3 , Chris Drake4, Mark Jenkinson2,3 , Jonathan D. Clayden5 ,
Ningfei Li6 , Taylor Hanayik2,3

1 Psychology, University of South Carolina, 2 Wellcome Centre for Integrative Neuroimaging, University of Oxford, 3 Nuffield Department of Clinical
Neurosciences, University of Oxford, 4 Division of Information Technology, University of South Carolina, 5 Developmental Neurosciences Research
and Teaching Department, University College London, 6 Department of Neurology, Charité Universitätsmedizin Berlin

Keywords: neuroimaging, image processing, reproducibility

https://doi.org/10.52294/001c.94384

Aperture Neuro
Vol. 4, 2024

Neuroimaging involves the acquisition of extensive 3D images and 4D time series data to
gain insights into brain structure and function. The analysis of such data necessitates
both spatial and temporal processing. In this context, “fslmaths” has established itself as
a foundational software tool within our field, facilitating domain-specific image
processing. Here, we introduce “niimath,” a clone of fslmaths. While the term “clone”
often carries negative connotations, we illustrate the merits of replicating widely-used
tools, touching on aspects of licensing, performance optimization, and portability. For
instance, our work enables the popular functions of fslmaths to be disseminated in
various forms, such as a high-performance compiled R package known as “imbibe”, a
Windows executable, and a WebAssembly plugin compatible with JavaScript. This
versatility is demonstrated through our NiiVue live demo web page. This application
allows ‘edge computing’ where image processing can be done with a zero-footprint tool
that runs on any web device without requiring private data to be shared to the cloud.
Furthermore, our efforts have contributed back to FSL, which has integrated the
optimizations that we’ve developed. This synergy has enhanced the overall transparency,
utility and efficiency of tools widely relied upon in the neuroimaging community.

INTRODUCTION

Neuroimaging has emerged as a powerful tool for studying
brain function and connectivity, offering insights into the
underlying neural mechanisms of various cognitive
processes and disorders. Preprocessing and analysis of neu-
roimaging data require sophisticated tools to extract mean-
ingful information. FSL1 is a widely used2 software package
in the field of neuroimaging, offering a comprehensive suite
of tools for neuroimaging data analysis. Indeed, a Google
Scholar search lists 3030 publications for the term fsl soft-
ware package in 2022. The command line tool fslmaths
is central to FSL, enabling advanced image manipulation
and processing: it can be used as a standalone application
for basic manipulation, but is also leveraged by many of
the other FSL tools for more complex processing. Due to
its popularity, fslmaths has evolved to support many of
the most needed image processing functions of our field.
Its widespread adoption is typified by the development of
convenient wrappers that call this tool from other envi-
ronments, such as the python-based nipype.3 Beyond de-
scribing the functions and idiosyncrasies of fslmaths, we
introduce the niimath clone, which can provide benefits
with regards to licensing, performance and portability. In

particular, we showcase how niimath can be embedded into
web pages and the ‘imbibe’ R package.

The fslmaths tool offers a rich set of capabilities, includ-
ing image masking, thresholding, and mathematical op-
erations on brain images, making it an essential tool for
many researchers in the neuroimaging community. While
fslmaths can be called directly from the command line, it
also provides core functionality for many of the popular
higher-level FSL1 pipelines including BET (Brain Extraction
Tool), FDT (FMRIB’s Diffusion Toolbox), SIENA (analysis of
brain change), TBSS (Tract-Based Spatial Statistics), FLIRT
(FMRIB’s Linear Image Registration Tool), BASIL (Bayesian
Inference for Arterial Spin Labeling MRI), VERBENA (Vas-
cular Model Based Perfusion Quantification for DSC-MRI),
FUGUE (FMRIB’s Utility for Geometric Unwarping of EPIs),
FEAT (FMRI Expert Analysis Tool), POSSUM (Physics-Ori-
ented Simulated Scanner for Understanding MRI), FIRST
(model-based segmentation), and MELODIC (Multivariate
Exploratory Linear Optimized Decomposition into Inde-
pendent Components). Therefore, improving and under-
standing fslmaths can have a direct impact on the usage of
these popular pipelines. Given the need for general purpose
mathematical operations that can be applied to the domain
specific neuroimaging formats, it is unsurprising that each
popular software package has developed their own image
processing tool with many shared features. For example,

Rorden C, Webster M, Drake C, et al. niimath and fslmaths: replication as a method to
enhance popular neuroimaging tools. Aperture Neuro. 2024;4. doi:10.52294/001c.94384

https://orcid.org/0000-0002-7554-6142
https://www.mricro.com/
https://www.ndcn.ox.ac.uk/team/matthew-webster
https://orcid.org/0000-0001-6043-0166
https://researchers.adelaide.edu.au/profile/mark.jenkinson
https://orcid.org/0000-0002-6608-0619
https://www.homepages.ucl.ac.uk/~sejjjd2/
https://orcid.org/0000-0003-3315-3591
http://www.netstim.org/about-us/about-us/
https://orcid.org/0000-0003-0751-9844
https://www.ndcn.ox.ac.uk/team/taylor-hanayik
https://doi.org/10.52294/001c.94384
https://doi.org/10.52294/001c.94384

consider the need to create a binarized mask image where
voxels with an intensity greater than or equal to 80 are set
to one and those below are set to zero with a NIfTI im-
age named t1.nii (with FSL, one could use the command
“fslmaths t1 -thr 80 -bin binT1”). AFNI4 users can apply
3dCalc (“3dCalc -a t1.nii -expr 'step((a - 80))' -prefix
binT1.nii”). ITK-SNAP5 users have the c3d and c4d tools
(“c3d t1.nii -threshold -inf 80 0 1 -o binT1.nii”). FreeSurfer6

users have several command line tools (“mri_binarize –i
t1.nii –o binT1.nii –min 80”). SPM7 users can call imcalc
to apply Matlab equations (“imcalc (i1\>80)”). For scientists
who use Python, nibabel8 can leverage numpy optimized
functions (“img = np.where(img > 80, 1.0, 0.0)”). While each
of these tools provides redundant functions to each other,
each has been adapted to the needs and file formats of
its ecosystem. Indeed, many scientists and pipelines will
use a combination of these tools best suited for different
operations. For example, fMRIPrep9 combines AFNI, FSL,
FreeSurfer, and Python. The fact that each core package has
developed its own image mathematics solution reflects the
core need for these functions across the domain.

Innovation10 and novelty11 are heavily weighted for sci-
entific funding and high impact publications. Therefore,
the incentive to develop clones (that replicate functionality
but not internal code) needs justification.

Complex multi-function tools like fslmaths grow organ-
ically to fit the emergent needs of software development.
The primary pressure is to robustly solve a problem, and
concerns regarding performance and library dependencies
are typically not a leading concern. A benefit of cloning a
popular and mature tool is that one can understand the
full scope of the project, identify optimizations, and remove
dependencies. As we demonstrate later, niimath leveraged
these aspects to create a smaller, faster and more portable
tool that could be embedded into new niches. Indeed, a
clone that uses a permissive and open license has the op-
portunity to showcase optimized routines that can be
adopted by the cloned source. Below we describe how the
development of FSL has been improved by including code
from niimath.

Another potential benefit for developing a clone is to im-
prove portability and to support additional platforms. The
FSL tools are written in C++ and are portable across UNIX
platforms, currently supporting both ARM and x86 archi-
tectures as well as both the Linux and MacOS desktop op-
erating systems. However, officially FSL only runs on the
Windows operating system via the Windows Subsystem for
Linux. As we describe later, the portable design of niimath
allows it to support multiple architectures, and operating
systems including Windows, Linux and MacOS. Further, it
can be provided as a compiled R package (‘imbibe’) and
compiled to Web Assembly, allowing it to be embedded into
web pages regardless of hardware or operating system (e.g.
extending support to tablets, phones and web-based appli-
cations).

A further benefit for cloning popular but complex soft-
ware is to provide insight into its behavior. This can iden-
tify situations where the operation is not intuitive, not as
described in the manual, or operates in unexpected ways for

edge cases. This is particularly important for popular tools
that do not adopt FOSS licenses, which can be a barrier to
code inspection for some and thus reduce insights into the
fundamental behavior of a tool.

Therefore, we argue that niimath substantively con-
tributes to fslmaths and the wider neuroimaging commu-
nity by addressing remaining gaps in licensing, perfor-
mance and portability of fslmaths. In addition, a clone can
provide insight into the behavior of popular but complex
tools and the discoveries made during reimplementation
can be back-ported, improving the original software. Sub-
sequent sections describe how niimath successfully delivers
all of these benefits.

METHODS / IMPLEMENTATION
DESIGN CONSIDERATIONS

The vision for niimath was to develop a clone of fslmaths
that would be open, fast, portable, and have minimal de-
pendencies. We chose the C language for its widespread
support and relatively good compiler optimization support.
The first stage was to evaluate whether modern architec-
tures and compilers benefit from hand tuned code. In gen-
eral, we found few benefits for using hand-tuned vectorized
instructions (https://github.com/neurolabusc/simd), per-
haps suggesting that well designed algorithms tend to be
limited by memory bandwidth, modern compilers can auto-
vectorize simple routines, and that memory bandwidth
compounded by file input/output pose a bottleneck for
rapid routines. The final niimath code includes a few Single
Instruction/Multiple Data functions for the x86 and ARM
architectures (these are enabled with the SIMD compiler di-
rective, so they are automatically disabled for situations
where they are not supported, such as for WebAssembly).

LICENSE

One notable reason to clone a successful product is to pro-
vide a less restrictive license. For example, the popular
Octave language is a clone of the professional MATLAB12

while the R language drew inspiration from the proprietary
S.13 Free and open source software (FOSS) can aid re-
search.14 While FSL is free for noncommercial use, the
copyright does place some restrictions on the usage, in par-
ticular for commercial exploitation. This license provides
source-available software that is free for academic research
but can create barriers for developers of other software
tools as they may avoid inspecting the FSL routines, as in-
tentional or unintentional transference of code could jeop-
ardize their own licenses. This aspect can restrict the ability
of other teams to contribute to FSL, as these may conflict
with the way that their home institution handles intellec-
tual property. On the other end of the spectrum, the popu-
lar SPM7 uses the open but restrictive copyleft of the GNU
General Public License (GPL). GPL code can only be embed-
ded in open software that adopts the GPL. Therefore, any
software that wishes to include GPL code must be free and
open. The GPL can therefore suffer from the same issues
with code commercialization, inspection and contributions.

niimath and fslmaths: replication as a method to enhance popular neuroimaging tools

Aperture Neuro 2

https://github.com/neurolabusc/simd

While we respect and understand the choices behind the
FSL and SPM licenses, we suggest that the permissive and
open BSD 2-Clause License used by niimath has clear ben-
efits when possible. This license allows developers to in-
spect, extend and embed this software into their own pack-
ages, regardless of their preferred license (as long as they
retain the original copyright for the specific code and ac-
knowledge the original authors are not responsible for any
damages). For example, this license is used by our popu-
lar dcm2niix15 which has allowed it to be included with
the institutional licenses used by FSL,1 FreeSurfer,6 several
commercial products, and numerous open source projects
including Dcm2Bids16 which uses the GPL. Likewise, the
dcm2niix Github repository documents many contributions
from industry, including engineers at the major MRI scan-
ner manufacturers GE, Mediso, Philips, Siemens, and UIH.
We see permissive open source licenses as an opportunity
to leverage community-driven development, permitting in-
dividual researchers with unique insights into neuroimag-
ing analysis within their specific domains to collaborate,
innovate, and contribute to the advancement of the field
through new tools that fill different niches than the original
software, all while respecting their own preferences and
licensing requirements. From this perspective, permissive
open source software are the universal donors, analogous
to the O negative blood type. The class of permissive open
source licenses include the Apache, MIT and BSD licenses
(though note that the Apache License is distinguished by an
additional patent grant clause). While all three are compat-
ible with the GPL, the BSD 2-Clause License is considered
the most permissive and allows for integration with a wider
range of projects.

INSTALLATION

We share niimath via a github repository
(https://github.com/rordenlab/niimath) that includes the
source code as well as compiled releases of each major ver-
sion. The repository describes how to compile niimath us-
ing the cmake, make and msbuild wrappers to invoke the
clang/LLVM, gcc or MSVC compiler. Each code update of the
repository invokes an automatic compilation that generates
Linux, MacOS and Windows compatible executables, and
the Linux executables are automatically validated using the
canonical_test script described in the Evaluation section,
providing continuous integration and continuous deploy-
ment (CI/CD).

EVALUATION

We created bash scripts designed to compare both the speed
and validate the results of fslmaths-compatible tools. We
provide all these scripts in a Github repository
(https://github.com/rordenlab/niimath_tests) that allows
others to replicate our results and also allows regression
testing for future software tools. This repository contains
63 input images in the In folder that demonstrate edge
cases: all 48 combinations for losslessly re-orienting the
left-right, anterior-posterior and inferior-superior dimen-
sions, images with both odd and even dimensions (e.g. to

validate median solutions), images with non-finite voxel
intensities (positive infinity, negative infinity, and not-a-
number), binary images, plausible 4D timeseries (a short
resting state dataset), and statistical maps. These input im-
ages were converted to 163 images in the Canonical folder
using the included script canonical_make leveraging the re-
lease version of fslmaths 6.0.7.8 compiled for the ARM64
architecture of MacOS (13.6). These 163 derived images
demonstrate the full range of fslmaths functions. The in-
cluded script canonical_test can be used to validate the
performance of any fslmaths compatible executable against
these 159 images, to validate the accuracy of performance.
By providing pre-computed validation images, we can de-
tect differences between implementations and across dif-
ferent architectures. To enable evaluation, we added the
novel function compare to niimath, which evaluates two im-
ages (e.g. a canonical reference image and a test sample)
and reports if any voxel intensities differ. When images dif-
fer, a number of diagnostics are provided (location, inten-
sity and difference of most divergent voxel; proportion of
identical voxels, correlation of the two images, mean and
standard deviation for each image). This function termi-
nates with an error if the absolute maximum difference be-
tween fslmaths implementations exceeds a user specified
threshold. This allows automated regression tests that tol-
erate a little variation for functions where variation is ex-
pected, while detecting gross errors. We describe the ratio-
nale for this tolerance next.

The need for reproducible results in neuroimaging is
critical17 and requires getting consistent results. However,
it is worth emphasizing that a neuroimaging tool can pro-
vide slightly different results in different environments.18

Neuroimaging computations are conducted using floating
point representations, where the precise order of instruc-
tions, subtle assumptions of those instructions and preci-
sion of each instruction can generate small rounding dif-
ferences. As Kernighan and Plauger note19 “Floating point
numbers are like piles of sand; every time you move one you
lose a little sand and pick up a little dirt”. For example, the
same version of FSL can generate numerically different re-
sults on different installations.18 This can reflect different
hardware (ARM vs x86 CPU), different instructions (e.g. a
fused multiply–add instruction reduces the rounding er-
ror of computing two separate instructions), different co-
processor (e.g. a x86 FPU instruction uses 80-bits inter-
nally, while a SSE instruction on the same machine uses
64-bits), different optimizations (e.g compiler --ffast-math
flag), and different versions of the dependent library. Like-
wise, different algorithms or precision for computing the
same mathematical function can generate slightly different
results. For example, fslmaths applies a Gaussian blur with
a kernel size that is 6.0 times the sigma, while the AFNI de-
fault is 2.5 (AFNI_BLUR_FIRFAC). While these variations tend
to be negligible in magnitude, it does make reverse en-
gineering tools challenging as validation tests must dis-
tinguish whether variations are meaningful. Likewise, end
users must set realistic expectations regarding equivalent
versus identical results. Therefore, while niimath and
fslmaths generate results that are not always identical, the

niimath and fslmaths: replication as a method to enhance popular neuroimaging tools

Aperture Neuro 3

https://github.com/rordenlab/niimath
https://github.com/rordenlab/niimath_tests

results are intended to be always comparable. To aid this,
niimath includes a novel function --compare that compares
two images and identifies the magnitude and location of
the most discordant voxel.

By design, the previously described validation scripts
are designed to be unusual to elicit anomalous behavior
and small to aid CI/CD. To provide a realistic evaluation
of the speed of different implementations, we also provide
the script slow_benchmark.sh that tests the time to perform
different operations on realistic datasets. These larger
datasets are available from a separate repository
(https://osf.io/y84gq/) and were acquired on a 3T Siemens
Prisma MRI scanner using the Human Connectome Project
protocols20 (specifically, a 4D resting-state time series and
a 3D T1-weighted anatomical scan).

RESULTS

As expected and previously noted,21 our validation tests
detect that the same version of fslmaths will generate
slightly different results on different architectures and op-
erating systems. In all cases the observed differences were
negligible. We first compared fslmaths to itself, comparing
the canonical images created on a MacOS computer using
fslmaths compiled for the ARM architecture to the same
code compiled for a x86-64-based Linux computer. Four of
the 159 tests generated some variation: fmean (maximum
difference 1.90735e-06), fmeanu (1.90735e-06), bptf high-
pass (1.81899e-12) and bptf band-pass (4.9738e-13). We
next compared fslmaths to niimath for the same architec-
ture (MacOS ARM64). Four of the 159 tests generated some
variation: bptf high-pass (1.90735e-06) and bptf band-pass
(1.04904e-05). Finally, we compared across tools and ar-
chitectures by comparing the results from the ARM64 Ma-
cOS fslmaths to the x86-64 Linux niimath. Here, the results
were identical with exception of the same four of the 159
tests that differed when comparing fslmaths to itself across
architectures: fmean (1.90735e-06) fmeanu (1.90735e-06),
bptf high-pass (1.90735e-06) and bptf band-pass
(1.04904e-05). The results of the fmean and fmeanu func-
tions are architecture dependent, such that fslmaths and
niimath produce identical results on the same architecture.
Across all of these divergent tests, the vast majority (always
over 98%) of voxels were numerically identical across meth-
ods. These tests suggest that while variation across imple-
mentations and architectures exist, the magnitude of vari-
ability is negligible.

While niimath typically generates equivalent results to
fslmaths, we did discover some unexpected behavior with
fslmaths 6.0.7.2, and a few differences were notable:

1. The command “fslmaths inputimg -add 0 outputimg
-odt input” can convert integer images (e.g. uint8
datatypes) to float output despite explicit request to
retain input type. This occurs if the input image
header has a non-unitary scale slope or non-zero in-
tercept: in these cases FSL interprets the fundamen-
tal type to be float. In contrast, niimath retains both
the datatype and the intensity scaling parameters
when this is explicitly requested (both fslmaths and

niimath return float data if the output data type is
not specified). Furthermore, different versions of
fslmaths perform differently for the pass through
“fslmaths in out” which is useful for copying files.
Old versions will losslessly save in the input datatype,
while fslmaths 6.0 and later converts the data to float.
niimath retains the original datatype. While these
two situations may seem like an unusual edge cases,
these calls provide a simple way to clone an image.
Alternatively, FSL does provide its immv and imcp
commands for these purposes.

2. In developing niimath we discovered a bug in the
then current versions of fslmaths, which were unable
to process files where the string “.nii” appears in a
folder name.

3. The fslmaths “-dilD” function for modal dilation did
not consistently insert a modal value, often inserting
the maximum value it observed in the kernel. The lat-
est version of fslmaths (6.0.*) now correctly calculates
the mode, in issues of ties the tied value with the
maximum intensity is used.

4. The fslmaths “-roc” receiver operating characteristic
implementation explicitly ignores the (5-voxel wide)
boundary of an image. Therefore, it ignores voxels
near the edge of an image and generates the error
“given object has non-finite elements” if any dimen-
sion is less than 12 voxels.

5. The upper and lower threshold -thr or -uthr functions
expect numbers rather than images but, like other
functions in fslmaths it, will appear to run if the input
is an image, implicitly treating it is a zero value with-
out properly throwing an error..

6. Perhaps understandably, asking for the remainder
when dividing by zero (“fslmaths in1 -rem 0 out”)
will crash without an explanation. However, “fslmaths
in1 -rem in2 out” will also crash without explanation
if any voxel in the image in2 is zero. In contrast, ni-
imath provides a divide-by-zero warning message de-
scribing the reason that the operation failed.

7. The fslmaths function -rem uses the C language con-
vention of the % operator, and returns the integer
modulus remainder even though it generates floating
point images as default. This may be unexpected for
users of other languages, e.g. in Python “2.7 % 2” is
0.7, just like MATLAB’s “mod(2.7, 2)”. niimath clones
the fslmaths behavior, but also includes a new func-
tion -mod to return the modulus fractional remain-
der.

8. FSL does not use NIfTI voxel coordinate conventions
internally but aims to have all input and output co-
ordinates in user interfaces use NifTI conventions.
However, the fslmaths -tfceS option does not cor-
rectly use the NIfTI convention in this specific case
(fixed in fslmaths 6.0.7.7+).

9. Neither downsampling with the -subsamp2 nor -sub-
samp2offc functions in fslmaths accounts for anti-
aliasing. Be aware that -subsamp2offc can exhibit odd
edge effects. The problem is simple to describe. Intu-
itively, for slices in the middle of a volume, the output

niimath and fslmaths: replication as a method to enhance popular neuroimaging tools

Aperture Neuro 4

https://osf.io/y84gq/

Table 1. Common fslmaths commands to spatially smooth (-s), spatially filter (-kernel), demean (-Tmean) and
temporally filter (-bptf) a 3D (t1) or 4D (rest) image from the Human Connectome Project with a laptop using an
Intel i5-8259u (28w) CPU. The `Time` column reports the time for fslmaths to complete (in seconds). The Speed Up Speed Up
column reports the acceleration relative to fslmaths (e.g. 2.0 means that niimath completed in half the time it
took fslmaths).

Command Time (sec) Speed Up

fslmaths rest -s 2.548 out 270 5.0

fslmaths t1 -kernel boxv 7 -dilM out 216 245.0

fslmaths rest -Tmean -mul -1 -add rest out 101 2.5

fslmaths rest -bptf 77 8.68 out 998 2.0

Further, niimath provides a few mathematical functions
not found in fslmaths, filling gaps of the current FSL pack-
age (e.g. unsharp mask edge enhancement, sobel edge gra-
dient enhancement, and the previously described resize
functions). It also uses (with permission) code from AFNI’s
3d Teig software4 for diffusion tensor decomposition, lever-
aging these public-domain functions from AFNI (older por-
tions use the GPL).

With regards to performance, the Human Connectome
Project dataset demonstrates that niimath dramatically ac-
celerates a range of operations (Table 1). This establishes
that niimath is substantially faster than fslmaths for many
routines while generating equivalent results.

Modern neuroimaging pipelines tend to have multiple
tools, each which loads image data, calculates a transfor-

mation and subsequently saves a new image. As computers
have become faster at computation, the speed of loading
and saving data becomes significant. These effects can be-
come amplified on server and cloud instances, where file
reading and writing can be relatively slow. Tools like FSL
often compress NIfTI images using the GZip format, which
reduces disk size, though the decompression and in partic-
ular compression can be slow. We developed niimath to be
able to use four different methods of GZip compression: an
inbuilt miniz library (https://github.com/richgel999/miniz),
the zlib installed on the computer (system), the parallel
pigz which can leverage multiple threads, or the CloudFlare
zlib (https://github.com/cloudflare/zlib). We noted that the
CloudFlare library is twice as fast as the system zlib
(https://github.com/neurolabusc/zlib-bench-python).

DISCUSSION

Our evaluation demonstrates that fslmaths and niimath
generate equivalent results. The adage “imitation is the
highest form of flattery” is widely recognized. In the course
of time, our discipline has identified a handful of essential
tools that serve as the bedrock of our research. From first
principles, these core tools have become popular because
they fill critical needs. Typically, over time these features
have further evolved to address the core needs of the com-
munity. We contend that there is merit in revisiting, en-
hancing, and gaining a deeper comprehension of these fun-
damental tools. Our field invests significant financial and
energy resources in data processing, and enhancing the
core tools can yield valuable dividends for the entire com-
munity. Beyond improving performance, these enhanced
tools can fit emerging niches, such as cloud edge computing
and the R scripting language.

IMPROVING FSL

We recognize that most FSL users will continue to prefer
the proven fslmaths over niimath when using the estab-
lished FSL pipelines. As described above, the latest release
of fslmaths has already adopted changes based on our dis-
coveries of unexpected behavior. Furthermore, our work
identified several key optimizations that have been intro-
duced in recent versions of FSL, contributing to its im-
provement. First, FSL is now distributed with the Cloud-

slice is weighted 50% with the center slice, and 25%
for the slice below and the slice above. However, for
bottom slices (as well as first rows, first columns, last
rows, last columns, last slices) the filter weights 75%
on the central slice and just 25% on the slice above it.
Signal from this 2nd slice is heavily diluted. One po-
tentially better mixture would be 66% edge slice and
33% 2nd slice. This latter solution is implemented
in niimath. In addition, niimath introduces the novel
function -resize that resamples data with anti-alias-
ing using the nearest neighbor, trilinear, spline, Lanc-
zos or Mitchell filters as described by Schumacher.22

10. The fslmaths function -ztop for converting z-statis-
tics to uncorrected p-values does not use the conven-
tion of clamping extreme values. Therefore it will re-
port a p-value of precisely 1.0 for z values above 8 and
precisely 0.0 for values less than -8. Likewise, -ptoz
does not clamp values so (infinite) p-values of 0 and
1 will be converted to zero. niimath clones this be-
havior, but also provides clamped variations of these
functions (-ztopc -ptozc).

11. We also note differences in the rank and ranknorm
functions where ties are given different values be-
tween niimath and fslmaths (e.g. when two voxels all
have the same intensity and this is the brightest in-
tensity in the image, the order that 1, 2 is assigned
depends on sorting algorithm). This reflects an am-
biguous situation and both tools do not attempt to
provide mean ranks (e.g. assigned the tied brightest
voxels both the value 1.5).

niimath and fslmaths: replication as a method to enhance popular neuroimaging tools

Aperture Neuro 5

https://github.com/richgel999/miniz
https://github.com/cloudflare/zlib
https://github.com/neurolabusc/zlib-bench-python

Flare zlib (to facilitate this we replaced a GPL function
with a permissive equivalent to allow inclusion into FSL).
This doubles the speed of most image reading and writing
operations. Furthermore, we noted that the FSL tool dis-
tancemap and equivalent AFNI functions were exception-
ally slow at computing the Euclidean Distance Transform
(EDT). These tools were calculating this function in 3D,
whereas the problem is separable and can be computed as
three 1D functions.23 For some typical images, this acceler-
ated the processing time from 36.46 hours to just 1.5 sec-
onds (https://github.com/neurolabusc/distancemap). This
method has now been incorporated into FSL’s distancemap,
benefiting users of the popular Bianca24 and TBSS25 tools.
Finally, many of the niimath/fslmaths differences reported
above have been addressed by the FSL team, including
-tfceS input coordinates, the -roc border, value checking for
-thr* options, and improved help text for users. In all of
these cases, the development of niimath has directly bene-
fited the original tool.

BEYOND THE COMMAND LINE

The niimath clone uses minimal dependencies, which al-
lows it to be easily packaged in novel ways. One of our de-
rivatives is imbibe, an image calculator that is provided as
a package for R. This provides R users with a set of pop-
ular image processing routines, providing the performance
of low-level optimized C code with the convenience of R
scripting, and a pipe-based style of operation chaining fa-
miliar to R users through popular packages such as “dplyr”
(https://dplyr.tidyverse.org/) for tabular data. A second
novel application leverages the Emscripten LLVM-to-We-
bAssembly (WASM) compiler (https://github.com/em-
scripten-core/emscripten) allowing niimath functions to be
directly called by JavaScript applications. JavaScript is an
interpreted language with all numerics computed with dou-
ble precision, resulting in slow performance.26 Therefore,
niimath can provide the most popular image processing
routines in our field, using a popular syntax, with high per-
formance for easy access to cloud applications. This allows
a zero-footprint web page to calculate complex image pro-
cessing functions on the user’s computer. Since this com-
putation happens locally, the user does not have to share
their data across the web (this edge computing is important
for privacy, in particular as neuroimaging data contains
recognizable features). Relative to cloud computing, image
data does not have to be uploaded to and downloaded from
the cloud, avoiding the penalty for slow internet connec-
tions. Since the entire software is embedded in a web page,
the user does not have to install any software and the
routines work on any browser-compatible device (tablet,
phone, computer) regardless of operating system. We en-
vision these routines will enhance the capabilities of local
machine learning based inference.27 For example, image
processing routines can normalize data and do traditional
image processing while machine learning can aid in the tis-
sue segmentation, region of interest identification, lesion
detection and detecting white matter hyperintensities. A
live demo web page of niimath is available to demonstrate
these features (Figure 1).

RESOURCES AND SUPPORT

The core niimath software is available on Github
(https://github.com/rordenlab/niimath). The R wrapper im-
bibe has its own page (https://github.com/jonclayden/im-
bibe). Likewise, the WebAssembly implementation is
hosted on Github (https://github.com/niivue/niivue-ni-
imath) and has a live demo (https://niivue.github.io/niivue-
niimath/) that provides a zero-footprint web page for ex-
ploring the capabilities using NiiVue28 for visualization. All
of these projects exploit the Github mechanisms for report-
ing issues, forking the code and making novel contribu-
tions.

ACKNOWLEDGEMENTS

We recognize that fslmaths was developed organically and
had contributions from numerous developers and the com-
munity to refine its capabilities. Tool development by CR is
supported by NIH RF1-MH133701 and P50-DC014664. All
research at Great Ormond Street Hospital NHS Foundation
Trust and the UCL Great Ormond Street Institute of Child
Health is made possible by the NIHR Great Ormond Street
Hospital Biomedical Research Centre. We are grateful that
the FSL team explicitly allowed us to copy the fslmaths
command line help verbatim, providing users with a consis-
tent interface regardless of the underlying code. We thank
Benoît Béranger for improving niimath compilation. We are
grateful to the AFNI developers for allowing us to re-use
their tensor decomposition routines.

CONFLICT OF INTEREST

MW and MJ receive royalties from Oxford University Inno-
vations for licensing of the FSL software for commercial,
non-academic use.

Submitted: December 15, 2023 CDT, Accepted: February 26,
2024 CDT

niimath and fslmaths: replication as a method to enhance popular neuroimaging tools

Aperture Neuro 6

https://github.com/neurolabusc/distancemap
https://dplyr.tidyverse.org/
https://github.com/emscripten-core/emscripten
https://github.com/emscripten-core/emscripten
https://github.com/rordenlab/niimath
https://github.com/jonclayden/imbibe
https://github.com/jonclayden/imbibe
https://github.com/niivue/niivue-niimath
https://github.com/niivue/niivue-niimath
https://niivue.github.io/niivue-niimath/
https://niivue.github.io/niivue-niimath/

Figure 1. Once compiled to WebAssembly, niimath provides the familiar fslmaths functions for JavaScript
projects. Our live demo web page (https://niivue.github.io/niivue-niimath/) allows users to apply fslmaths image
processing without installing any software. In this example, the “spm152” T1-weighted anatomical scan is
loaded (the buttons on the bottom allow the user to choose from numerous modalities, but the user can also drag
and drop their own images) thresholded to zero white matter voxels with an intensity greater than 180 and
subsequently apply a Gaussian smooth with a 3.2mm sigma is applied (using the fslmaths notation -uthr 180 -s -uthr 180 -s
3.23.2).

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License

(CCBY-4.0). View this license’s legal deed at http://creativecommons.org/licenses/by/4.0 and legal code at http://creativecom-

mons.org/licenses/by/4.0/legalcode for more information.

niimath and fslmaths: replication as a method to enhance popular neuroimaging tools

Aperture Neuro 7

https://apertureneuro.org/article/94384-niimath-and-fslmaths-replication-as-a-method-to-enhance-popular-neuroimaging-tools/attachment/197871.png
https://niivue.github.io/niivue-niimath/

REFERENCES

1. Smith SM, Jenkinson M, Woolrich MW, et al.
Advances in functional and structural MR image
analysis and implementation as FSL. NeuroImage.
2004;23(Suppl 1):S208-S219. doi:10.1016/
j.neuroimage.2004.07.051

2. Poldrack RA, Gorgolewski KJ, Varoquaux G.
Computational and Informatic Advances for
Reproducible Data Analysis in Neuroimaging. Annu
Rev Biomed Data Sci. 2019;2(1):119-138. doi:10.1146/
annurev-biodatasci-072018-021237

3. Esteban O, Markiewicz CJ, Burns C, et al. nipy/
nipype: 1.8.3. Published online July 14, 2022.
doi:10.5281/ZENODO.6834519

4. Cox RW. AFNI: software for analysis and
visualization of functional magnetic resonance
neuroimages. Comput Biomed Res.
1996;29(3):162-173. doi:10.1006/cbmr.1996.0014

5. Yushkevich PA, Piven J, Hazlett HC, et al. User-
guided 3D active contour segmentation of anatomical
structures: significantly improved efficiency and
reliability. Neuroimage. 2006;31(3):1116-1128.
doi:10.1016/j.neuroimage.2006.01.015

6. Fischl B. FreeSurfer. Neuroimage.
2012;62(2):774-781. doi:10.1016/
j.neuroimage.2012.01.021

7. Friston KJ, Ashburner JT, Nichols TE, Penny WD.
Statistical Parametric Mapping the Analysis of
Funtional Brain Images. Elsevier/Academic Press;
2007.

8. Brett M, Markiewicz CJ, Hanke M, et al. nipy/
nibabel: 5.1.0. Published online April 3, 2023.
doi:10.5281/ZENODO.7795644

9. Esteban O, et al. fMRIPrep: a robust preprocessing
pipeline for functional MRI. Nat Methods.
2019;16:111-116.

10. Karp PD. Reviewing knowledgebase and database
grant proposals in the life sciences: the role of
innovation. Database. 2022;2022. doi:10.1093/
database/baac106

11. Ali J. Manuscript rejection: causes and remedies. J
Young Pharm. 2010;2:3-6.

12. Eaton JW, Bateman D, Hauberg S, Wehbring R.
GNU Octave version 5.2.0 manual: a high-level
interactive language for numerical computations.
Published 2020. https://www.gnu.org/software/
octave/doc/v5.2.0/

13. Morandat F, Hill B, Osvald L, Vitek J. Evaluating
the design of the R language. In: ECOOP 2012 –
Object-Oriented Programming. Springer Berlin
Heidelberg; 2012:104-131. doi:10.1007/
978-3-642-31057-7_6

14. Fortunato L, Galassi M. The case for free and
open source software in research and scholarship.
Philos Trans A Math Phys Eng Sci. 2021;379:20200079.

15. Li X, Morgan PS, Ashburner J, Smith J, Rorden C.
The first step for neuroimaging data analysis: DICOM
to NIfTI conversion. J Neurosci Methods.
2016;264:47-56.

16. Bore A, Bedetti C, Guay S, et al. UNFmontreal/
Dcm2Bids: 3.0.2. Published online August 31, 2023.
doi:10.5281/ZENODO.8306314

17. Kennedy DN. The Information Sharing Statement
Grows Some Teeth. Neuroinformatics.
2017;15(2):113-114. doi:10.1007/s12021-017-9331-3

18. Renton AI, Dao TT, Abbott DF, et al. Neurodesk:
An accessible, flexible, and portable data analysis
environment for reproducible neuroimaging. bioRxiv.
2023;2022.12.23.521691. doi:10.1101/
2022.12.23.521691

19. Kernighan BW, Plauger PJ. The Elements of
Programming Style. McGraw-Hill; 1974. doi:10.1145/
800183.810448

20. Van Essen DC, Ugurbil K, Auerbach E, et al. The
Human Connectome Project: a data acquisition
perspective. Neuroimage. 2012;62(4):2222-2231.
doi:10.1016/j.neuroimage.2012.02.018

21. Renton AI, Dao TT, Johnstone T, et al. Neurodesk:
an accessible, flexible and portable data analysis
environment for reproducible neuroimaging. Nat
Methods. Published online January 8, 2024.
doi:10.1038/s41592-023-02145-x

22. Schumacher D. 1.2 - GENERAL FILTERED IMAGE
RESCALING. In: Kirk D, ed. Graphics Gems III (IBM
Version). Morgan Kaufmann; 1992:8-16. doi:10.1016/
b978-0-08-050755-2.50012-9

niimath and fslmaths: replication as a method to enhance popular neuroimaging tools

Aperture Neuro 8

https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1146/annurev-biodatasci-072018-021237
https://doi.org/10.1146/annurev-biodatasci-072018-021237
https://doi.org/10.5281/ZENODO.6834519
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.5281/ZENODO.7795644
https://doi.org/10.1093/database/baac106
https://doi.org/10.1093/database/baac106
https://www.gnu.org/software/octave/doc/v5.2.0/
https://www.gnu.org/software/octave/doc/v5.2.0/
https://doi.org/10.1007/978-3-642-31057-7_6
https://doi.org/10.1007/978-3-642-31057-7_6
https://doi.org/10.5281/ZENODO.8306314
https://doi.org/10.1007/s12021-017-9331-3
https://doi.org/10.1101/2022.12.23.521691
https://doi.org/10.1101/2022.12.23.521691
https://doi.org/10.1145/800183.810448
https://doi.org/10.1145/800183.810448
https://doi.org/10.1016/j.neuroimage.2012.02.018
https://doi.org/10.1038/s41592-023-02145-x
https://doi.org/10.1016/b978-0-08-050755-2.50012-9
https://doi.org/10.1016/b978-0-08-050755-2.50012-9

23. Felzenszwalb PF, Huttenlocher DP. Distance
Transforms of Sampled Functions. Theory of
Computing. 2012;8(1):415-428. doi:10.4086/
toc.2012.v008a019

24. Griffanti L, Zamboni G, Khan A, et al. BIANCA
(Brain Intensity AbNormality Classification
Algorithm): A new tool for automated segmentation
of white matter hyperintensities. Neuroimage.
2016;141:191-205. doi:10.1016/
j.neuroimage.2016.07.018

25. Smith SM, Jenkinson M, Johansen-Berg H, et al.
Tract-based spatial statistics: voxelwise analysis of
multi-subject diffusion data. Neuroimage.
2006;31(4):1487-1505. doi:10.1016/
j.neuroimage.2006.02.024

26. OpenGL Insights. A K Peters/CRC Press; 2012.

27. Masoud M, Hu F, Plis S. Brainchop: In-browser
MRI volumetric segmentation and rendering. J Open
Source Softw. 2023;8(83):5098. doi:10.21105/
joss.05098

28. Hanayik T, Drake C, Rorden C, Hardcastle N,
Androulakis A. niivue/niivue: 0.21.1. Published
online March 2, 2022. doi:10.5281/ZENODO.6322862

niimath and fslmaths: replication as a method to enhance popular neuroimaging tools

Aperture Neuro 9

https://doi.org/10.4086/toc.2012.v008a019
https://doi.org/10.4086/toc.2012.v008a019
https://doi.org/10.1016/j.neuroimage.2016.07.018
https://doi.org/10.1016/j.neuroimage.2016.07.018
https://doi.org/10.1016/j.neuroimage.2006.02.024
https://doi.org/10.1016/j.neuroimage.2006.02.024
https://doi.org/10.21105/joss.05098
https://doi.org/10.21105/joss.05098
https://doi.org/10.5281/ZENODO.6322862

	niimath and fslmaths: replication as a method to enhance popular neuroimaging tools
	Introduction
	Methods / Implementation
	Design Considerations
	License
	Installation
	Evaluation

	Results
	Discussion
	Improving FSL
	Beyond the command line

	Resources and Support
	Acknowledgements
	Conflict of Interest

	References

